Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pyrolysis Experiments
2.2.2. Evaluation of Synergy Effects during Co-Pyrolysis
2.2.3. Kinetics of Pyrolysis
3. Results and Discussion
3.1. Characteristics of Raw Samples
3.1.1. Sample Properties of Coal and Biomass
3.1.2. Pyrolysis Behaviors of Single Fuels in TGA
3.2. Co-Pyrolysis of Wheat Straw and Brown Coal in TGA
- 1)
- Biomass WS was placed above the HKN (up position), U10, U50;
- 2)
- Biomass WS was placed below the HKN (down position), D10, D50;
- 3)
- Well mixed samples were filled into the sample basket, W10, W50.
3.2.1. Mass Loss (TG) for Blend Samples
3.2.2. Reaction Rate for Blend Samples
3.2.3. Explanations of Synergy Effects for Co-Pyrolysis in TGA
3.3. Co-Pyrolysis of Wheat Straw and Brown Coal in LPA
3.3.1. Char Characteristics in Fixed Bed Reactor (LPA)
3.3.2. Gas Composition in Fixed Bed Reactor (LPA)
3.4. Volatile Release Kinetics (TGA) for Blend Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daneshazarian, R.; Cuce, E.; Cuce, P.M.; Sher, F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renew. Sustain. Energy Rev. 2018, 81, 473–492. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, G.; Schurz, M.; Steffen, K.; Meyer, B. Kinetic study on CO2 gasification of brown coal and biomass chars: Reaction order. Fuel 2016, 173, 311–319. [Google Scholar] [CrossRef]
- Sher, F.; Pans, M.A.; Afilaka, D.T.; Sun, C.; Liu, H. Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles. Energy 2017, 141, 2069–2080. [Google Scholar] [CrossRef]
- Sher, F.; Pans, M.A.; Sun, C.; Snape, C.; Liu, H. Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor. Fuel 2018, 215, 778–786. [Google Scholar] [CrossRef]
- Sahu, S.G.; Chakraborty, N.; Sarkar, P. Coal biomass co-combustion: An overview. Renew. Sustain. Energy Rev. 2014, 39, 575–586. [Google Scholar] [CrossRef]
- Lu, K.M.; Lee, W.J.; Chen, W.H.; Lin, T.C. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 2013, 105, 57–65. [Google Scholar] [CrossRef]
- Meesri, C.; Moghtaderi, B. Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes. Biomass Bioenergy 2002, 23, 55–66. [Google Scholar] [CrossRef]
- Sakurovs, R. Interactions between coking coals and plastics during copyrolysis. Fuel 2003, 82, 1911–1916. [Google Scholar] [CrossRef]
- Suelves, I.; Lazaor, M.J.; Moliner, R. Synergetic effects in the co-pyrolysis of samca coal and a model aliphatic compound studied by analytical pyrolysis. J. Anal. Appl. Pyrol. 2002, 65, 197–206. [Google Scholar] [CrossRef]
- Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 2007, 78, 256–271. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Zhao, W.; Liu, S. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel 2007, 86, 353–359. [Google Scholar] [CrossRef]
- Ulloa, C.A.; Gordon, A.L.; García, X.A. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Process. Technol. 2009, 90, 583–590. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, L.; Huang, G.; Ma, A.L. Study on co-pyrolysis behavior of coal and biomass blending using TGA-FTIR. Coal Convers. 2010, 33, 10–13. [Google Scholar]
- Sonobe, T.; Worasuwannarak, N.; Pipatmanomai, S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol. 2008, 89, 1371–1378. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour. Technol. 2010, 101, 6151–6156. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Cheng, S.; Zhang, H. Experimental study on pyrolysis behaviors of coal and biomass blending. Acta Energ. Sol. Sin. 2006, 26, 346–353. [Google Scholar]
- Vuthaluru, H.B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour. Technol. 2004, 92, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, A.K.; Gupta, P.; Goyal, T.; Saha, R.K. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresour. Technol. 2008, 99, 8022–8026. [Google Scholar] [CrossRef]
- Idris, S.S.; Rahman, N.A.; Ismail, K.; Alias, A.B.; Rashid, Z.A.; Aris, M.J. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour. Technol. 2010, 101, 4584–4592. [Google Scholar] [CrossRef]
- Zhu, T.; Xiao, Y.; Wang, Y. Effects of Gas Residence Time on Coal Pyrolysis. J. Combust. Sci. Technol. 2001, 7, 307–310. [Google Scholar]
- Zhang, Y.; Zheng, Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations. Fuel 2016, 183, 132–138. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data II. J. Polym. Sci. Part B Polym. Lett. 1965, 3, 917–920. [Google Scholar] [CrossRef]
- Yang, J.B. Experimental study for the effect of catalysts on the release of gasous products during pyrolysis of lignite. J. Eng. Thermophys. 2009, 30, 161–164. [Google Scholar]
- Xiong, J.; Zhou, Z.; Xu, S. Effects of alkali metal on rate of coal pyrolysis and gasification. CIESC J. 2011, 62, 192–198. [Google Scholar]
- Yin, H.Y.; Wang, M.J.; Wang, J.H.; Bao, W.R.; Chang, L.P. Effect of calcium and sodium additives on the pyrolysis characteristics of Pingshuo demineralized coal. Clean Coal Technol. 2010, 3, 31–35. [Google Scholar]
- Liu, H.; Zhou, J.; Wang, J. Effects of Ca-based additives on behaviors of slow and fast coal pyrolysis. Mod. Chem. Ind. 2011, 31, 70–72. [Google Scholar]
- Gong, X.; Guo, Z.; Wang, Z. Effects of Fe2O3 on pyrolysis reactivity of demineralized higher rank coal and its char structure. CIESC J. 2009, 15, 106–108. [Google Scholar]
- Haykiri-Acma, H.; Yaman, S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel 2007, 86, 373–380. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. Influence of mineral matter on pyrolysis of palm oil wastes. Combust. Flame 2006, 146, 605–611. [Google Scholar] [CrossRef]
- Long, J.; Song, H.; Jun, X.; Sheng, S.; Lun-shi, S.; Kai, X.; Yao, Y. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresour. Technol. 2012, 116, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Raclavská, H.; Corsaro, A.; Juchelková, D.; Sassmanová, V.; Frantík, J. Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires. Fuel Process. Technol. 2015, 131, 330–337. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, G.; Reinmöller, M.; Meyer, B. Effect of inherent mineral matter on the co-pyrolysis of highly reactive brown coal and wheat straw. Fuel 2019, 239, 1194–1203. [Google Scholar] [CrossRef]
Sample | Wheat Straw (WS) | Rhenish Brown Coal (HKN) |
---|---|---|
Ultimate Analysis (wt.%), d | ||
Carbon, C | 49.26 | 69.04 |
Hydrogen, H | 5.98 | 5.01 |
Nitrogen, N | 0.67 | 0.79 |
Sulfur, S | 0.30 | 0.64 |
Oxygen, O (diff a) | 43.79 | 24.52 |
Proximate analysis (wt.%), d | ||
Moisture b | 10.93 | 51.12 |
Ash | 6.88 | 5.47 |
Volatile matter | 75.85 | 50.70 |
Fixed Carbon | 17.27 | 43.83 |
Ash analysis c (wt.%), d | ||
Na2O | 0.42 | 6.34 |
MgO | 2.24 | 16.21 |
K2O | 15.82 | 0.91 |
CaO | 6.71 | 37.51 |
Fe2O3 | 0.40 | 10.13 |
Al2O3 | 0.81 | 3.90 |
SiO2 | 62.79 | 9.39 |
Index of basicity e | 0.03 | 0.29 |
Sample | Cal.10% | W1 | U1 | D1 | Cal.50% | W5 | U5 | D5 |
---|---|---|---|---|---|---|---|---|
Char yield (wt.%) | 50.40 | 50.50 | 48.20 | 46.70 | 39.50 | 38.80 | 37.50 | 38.10 |
Proximate and ultimate analysis (d, wt.%) | ||||||||
Volatile matter | 6.42 | 7.96 | 6.42 | 6.24 | 6.61 | 5.94 | 5.79 | 6.00 |
Ash | 9.93 | 10.24 | 8.48 | 8.38 | 14.36 | 13.67 | 13.38 | 13.01 |
C | 86.26 | 87.15 | 87.49 | 87.74 | 80.49 | 82.25 | 82.39 | 82.93 |
H | 0.93 | 0.86 | 0.92 | 0.83 | 0.81 | 0.78 | 0.82 | 0.75 |
N | 0.89 | 0.83 | 0.87 | 0.81 | 0.89 | 0.82 | 0.89 | 0.79 |
S | 0.67 | 0.52 | 0.47 | 0.42 | 0.56 | 0.43 | 0.41 | 0.40 |
O | 0.75 | 1.43 | 1.76 | 1.82 | 1.06 | 2.05 | 2.11 | 2.12 |
Ash composition (d, wt.%) by XRF | ||||||||
Na2O | 0.71 | 0.70 | 0.70 | 0.73 | 0.46 | 0.57 | 0.50 | 0.52 |
MgO | 1.03 | 1.06 | 1.05 | 1.07 | 0.80 | 0.87 | 0.87 | 0.89 |
Al2O3 | 0.25 | 0.30 | 0.26 | 0.26 | 0.21 | 0.23 | 0.21 | 0.22 |
SiO2 | 2.05 | 2.09 | 1.54 | 1.48 | 8.18 | 6.61 | 6.42 | 6.01 |
P2O5 | 0.06 | 0.03 | 0.02 | 0.02 | 0.28 | 0.19 | 0.19 | 0.19 |
SO3 | 1.68 | 1.30 | 1.18 | 1.05 | 1.39 | 1.08 | 1.03 | 1.00 |
Cl | 0.05 | 0.07 | 0.08 | 0.05 | 0.08 | 0.08 | 0.08 | 0.06 |
K2O | 0.39 | 0.27 | 0.28 | 0.21 | 1.71 | 1.23 | 1.31 | 1.26 |
CaO | 3.98 | 3.00 | 3.00 | 3.02 | 3.01 | 2.59 | 2.55 | 2.60 |
TiO2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Fe2O3 | 0.88 | 0.83 | 0.80 | 0.84 | 0.55 | 0.57 | 0.56 | 0.58 |
BaO | 0.03 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
Sample | Temperature (°C) | E (KJ/mol) | A (1/s) | R2 |
---|---|---|---|---|
WS | 238–364 | 70.97 | 1.29 × 105 | 0.99 |
HKN | 312–486 | 26.88 | 1.55 × 102 | 0.99 |
W1 | 276–353 | 24.70 | 1.37 × 102 | 0.99 |
353–485 | 20.07 | 4.80 × 10−1 | 1.00 | |
U1 | 269–350 | 26.41 | 1.86 × 102 | 0.99 |
350–480 | 20.04 | 4.30 × 10−1 | 1.00 | |
D1 | 277–356 | 27.10 | 2.16 × 102 | 0.99 |
356–472 | 21.54 | 6.20 × 10−1 | 1.00 | |
W5 | 267–360 | 51.40 | 1.07 × 103 | 1.00 |
360–474 | 5.24 | 1.61 × 10−2 | 0.99 | |
U5 | 269–356 | 51.82 | 1.24 × 103 | 1.00 |
366–467 | 5.19 | 1.66 × 10−2 | 1.00 | |
D5 | 271–355 | 52.55 | 1.41 × 103 | 1.00 |
365–463 | 5.74 | 2.03 × 10−2 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Zhang, G.; Zhang, L.; Klinger, D.; Meyer, B. Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor. Processes 2019, 7, 179. https://doi.org/10.3390/pr7040179
Zhou L, Zhang G, Zhang L, Klinger D, Meyer B. Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor. Processes. 2019; 7(4):179. https://doi.org/10.3390/pr7040179
Chicago/Turabian StyleZhou, Lingmei, Guanjun Zhang, Ligang Zhang, Denise Klinger, and Bernd Meyer. 2019. "Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor" Processes 7, no. 4: 179. https://doi.org/10.3390/pr7040179
APA StyleZhou, L., Zhang, G., Zhang, L., Klinger, D., & Meyer, B. (2019). Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor. Processes, 7(4), 179. https://doi.org/10.3390/pr7040179