
processes

Article

Optimal Strategies for Dengue Prevention and
Control during Daily Commuting between Two
Residential Areas

Daniel Lasluisa 1, Edwin Barrios 2 and Olga Vasilieva 2,*
1 Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile; dlasluisa@dim.unichile.cl
2 Department of Mathematics, Universidad del Valle, Cali, Colombia; edwin.barrios@correounivalle.edu.co
* Correspondence: olga.vasilieva@correounivalle.edu.co; Tel.: +57-2-321-2100 (ext. 3107)

Received: 26 February 2019; Accepted: 2 April 2019; Published: 4 April 2019
����������
�������

Abstract: In this paper, we report an application for the mathematical theory of dynamic optimization
for design of optimal strategies that account for daily commuting of human residents, aiming to
reduce vector-borne infections (dengue) among human populations. Our analysis is based on a
two-patch dengue transmission model amended with control variables that represent personal
protection measures aimed at reduction of the number of contacts between mosquitoes and human
hosts (e.g., the use of repellents, mosquito nets, or insecticide-treated clothing). As a result, we have
proposed and numerically solved an optimal control problem to minimize the costs associated with
the application of control measures, while also minimizing the total number of dengue-infected
people in both residential areas. Our principal goal was to identify an optimal strategy for personal
protection that renders the maximal number of averted human infections per unit of invested cost,
and this goal has been accomplished on the grounds of cost-effectiveness analysis.

Keywords: dengue transmission dynamics; two-patch model; residence times; optimal control;
cost-effectiveness

1. Introduction

Population mobility is one of the factors that have historically influenced the spread of epidemics.
An infection that affects individuals in some geographically isolated area (patch or zone) can reach
other locations due to people traveling. This is true for many infectious diseases, including those that
are not transmitted by direct people-to-people contacts, but rather by means of an infectious agent
(transmitting vector), such as dengue, Chikungunya, Zika, etc.

In the present study, we focus on the transmission of dengue infections that are spread by
the female mosquito, mainly of the species Aedes aegypti, while accounting for population mobility.
This mosquito species is closely associated with human habitation due to its blood-feeding habits and
the presence of breeding sites widely available around households (desert coolers, flower vases, potted
plants, water tanks, cisterns, and other stored water). Adult mosquitoes usually spend all their life in a
radius not exceeding 100 meters around the breeding site they have emerged from, provided there is
food and other resources for their subsequent reproduction.

Aedes aegypti females usually bite people during daylight, and they rest indoors after darkness.
Therefore, the use of bed nets does little to protect people from their bites. Aedes aegypti females
need to ingest human blood to mature their eggs and may acquire the dengue virus (DENV) during
the blood-feeding on a DENV-infected person. When taking a subsequent blood meal on another
(uninfected) person, an infected female mosquito injects her saliva to prevent the host’s blood from
clotting and to ease feeding. This injection of saliva infects the host with the dengue virus. Infected
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mosquitoes continue to transmit dengue with each blood meal for the rest of their lives, while infected
human hosts usually remain infectious for about 5–12 days, and acquire life-long immunity for
homologous DENV strains and temporal cross-immunity for heterologous DENV strains. For more
information regarding the mosquito biology and ecology, as well as epidemiology of dengue, the
reader is invited to revise the book [1].

In the absence of an effective vaccine [2], dengue morbidity among human hosts can only
be reduced by appropriate vector control measures. Among these measures, we can detect two
main approaches:

• Suppression of the mosquito population using chemical substances (e.g., insecticides or larvicides),
biological control agents (natural predators of mosquito larvae and pupae), environmental
management (e.g., lethal ovitraps or elimination of mosquito breeding sites in and around
households), and the release of genetically modified mosquitoes (sterile males or insects carrying
a dominant lethal gene).

• Reduction of effective contact between female mosquitoes and humans (or mosquito bites) through
the use of repellents, mosquito nets, insecticide-treated clothing, and other measures targeting
personal protection.

In this work, we address the second approach and illustrate it using an example of our home
city (Cali, Colombia) together with its suburbs, since this area is considered hyper-endemic regarding
dengue morbidity among human residents [3].

To formalize our study, we present a two-patch dengue transmission model, where human hosts
residing in both patches may commute between them while mosquitoes do not relocate from their
zones. This metapopulation model describes the transmission of dengue virus between vectors and
human hosts residing in the city (Patch 1) and its suburbs (Patch 2), while accounting for population
mobility or people commuting between two zones under the two most probable scenarios. The first
scenario is focused on one-way people flow from suburbs to the city, and the second one accounts for
population movements in both directions; that is, between the city and its suburbs.

Further, we introduce the personal protection measures that can be assumed by (a share of) human
populations residing in both patches in order to avoid mosquito bites, and thus to reduce the risk
of infection with dengue virus. Such measures are modeled by two exogenous dynamical variables
widely known as control functions, and these variables are patch-specific.

Using the framework of optimal control theory [4], we propose possible strategies for
implementation of the personal protection measures by the residents of both patches and analyze them
from the standpoint of cost-effectiveness. As a result, we identify an optimal strategy, which is capable
of avoiding a greater number of human infections in both patches per unit of invested costs.

This paper is organized as follows. In Section 2, we construct the two-patch model, parting from
the simplest dengue transmission dynamics (that combines the “Susceptible-Infected-Susceptible”
dynamics for human hosts with “Susceptible-Infected” dynamics for vectors and is usually referred to
as “SIS-SI” transmission model) at each patch and introducing population mobility between patches.
Subsequently, we calculate the basic reproduction number (R2

0) associated with our model. In Section 3,
control variables are introduced into the two-patch model, and the underlying optimal control problem
is formulated. Section 4.1 contains numerical solutions of the optimal control problem under different
scenarios of population mobility and application of personal protection measures by the residents
of one or both patches. Finally, in Section 4.2 we perform the cost-effectiveness analysis in order to
identify an optimal strategy for personal protection that allows avoidance of the maximal number of
human infections in both patches per unit of invested costs. Section 5 provides some final remarks
and conclusions.
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2. Two-Patch Dengue Transmission Model

2.1. Formulation of the Model

We consider two separate areas or patches, and within each patch, we start from the simplest
dynamics of vector-borne disease transmission, known as the Ross-Macdonald model [5,6]. According
to this modeling framework, each patch contains two populations: human hosts Nhi and Aedes aegypti
females, or vectors Nvi, i = 1, 2.

Models of the Ross-Macdonald type usually operate under the following assumptions:

1. Human and vector populations remain essentially invariant in time.
2. Populations of human hosts and vectors are homogeneous in terms of susceptibility, attraction,

and exposure.
3. Virus incubation periods within both humans and mosquitoes are ignored.
4. Once infected, mosquitoes do not recover and die being infectious.
5. Disease-induced death in humans or in vectors is not considered.
6. Superinfection does not occur in either humans or mosquitoes; only susceptible or fully recovered

individuals may get infected.
7. Gradual acquisition of immunity in human hosts is ignored; they become susceptible immediately

after recovery.

The first assumption is rather typical for the majority of epidemiological models, since it allows for
their mathematical tractability. While it is quite natural to suppose that human populations Nhi, i = 1, 2
remain “essentially invariant” in time (that is, the numbers of births and deaths among human residents
is about the same per unit of time), this is not the case for mosquito populations Nvi, i = 1, 2. In reality,
mosquito populations exhibit daily variabilities induced by environmental and climatic factors, since
their reproduction and longevity essentially depend upon current temperature and humidity.

For the sake of our modeling framework, nonetheless, we assume that both mosquito populations
do not surpass their maximal sizes Nvi, i = 1, 2, and thus focus on the “worst” scenario by supposing
that mosquito populations in both patches are always close to their saturated sizes. It is worthwhile to
note that the third and seventh assumptions are also related to the “worst” scenario: the transmissibility
of the virus is not delayed either by its incubation within humans and vectors, or by the gradual
acquisition of (cross)immunity in human hosts. These are the major limitations of our modeling
approach, which we acknowledge to the reader.

It is worth pointing out that the last assumption holds for dengue-endemic areas where different
serotypes of dengue virus (DENV1–DENV4) circulate simultaneously. This is exactly the case we are
interested in, since it fits the conditions of the city of Cali, Colombia (to be further regarded as Patch 1),
and its suburbs (to be regarded as Patch 2) in our two-patch model.

According to the Ross-Macdonald modeling framework, human and vector individuals at each
patch are considered to be either susceptible or infected. Since the virus incubation periods are ignored,
both human and mosquito individuals are considered infectious (i.e., capable of transmitting the virus)
from the moment that they become carriers of the virus. Table 1 provides descriptions and notations
for eight interacting sub-population groups of our model.

Table 1. Variables of the SIS-SI two-patch model.

Variable Description

shi Population of susceptible human hosts in Patch i, i = 1, 2
ihi Population of infected human hosts in Patch i, i = 1, 2
svi Population of susceptible mosquitoes in Patch i, i = 1, 2
ivi Population of infected mosquitoes in Patch i, i = 1, 2
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For both patches, we assume that human residents in each zone have similar characteristics
regarding their susceptibility, exposure, and recovery from the disease. Additionally, we suppose
that both zones have the same climatic conditions, where mosquitoes have the same entomological
characteristics. Table 2 presents notations and descriptions of the key parameters of the model, as well
as their respective units.

Table 2. Key parameters of the two-patch model.

Parameter Description Unit

α Mosquito biting rate day−1

ph Probability of infection in humans dimensionless
pv Probability of infection in mosquitoes dimensionless
Nhi Human population size in Patch i, i = 1,2 No. of individuals
Nvi Mosquito population size in Patch i, i = 1,2 No. of individuals
γ Human recovery rate day−1

µv Mosquito mortality rate day−1

qi j Residence times dimensionless

Generally speaking, the mosquito biting rate α expresses the number of bites taken by one female
mosquito on human hosts in average per unit time. Parameters ph and pv describe the probabilities
for a human host and vector to become infected after effective vector-to-human and human-to-vector
contacts, respectively.

Human recovery rate γ indicates that a virus-carrying human host remains infectious during 1/γ
days from the contact event until full recovery, and then becomes susceptible to acquiring infections
caused by other DENV serotypes.

Mosquito mortality rate µv is an inverse of its average lifespan, which corresponds to 1/µv days.
Here we ignore demographic changes (birth and death rates) in human populations and suppose that
mosquito recruitment rate is equal to µv in order to meet the first assumption of the model.

Parameters 0 ≤ qi j ≤ 1, i,j = 1,2, are elements of the residence time matrix, which is defined as

Q =

(
q11 q12

q21 q22

)
(1)

in accordance with a previous study [7]. Each qi j expresses the fraction of time a person residing in

Patch i spends, in average, in Patch j. In addition, the relationship
2∑

j=1
qi j = 1 holds for i = 1, 2.

Thus, people commuting between two patches can be modeled using the elements qi j of
matrix (1) and applying the approach developed in a previous study [8] to a particular case of
a SIS-SI metapopulation model, where human hosts and vectors are co-residents in both patches. It
is essential to recall that mosquitoes do not relocate from their zones and only human hosts may
commute between two zones.
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The dynamics of dengue transmission is schematically illustrated in Figure 1, and the differential
equations describing our SIS-SI two-patch model are:

dsh1

dt
= γih1 − αphsh1

(
q11iv1

q11Nh1 + q21Nh2
+

q12iv2

q12Nh1 + q22Nh2

)
,

dih1

dt
= αphsh1

(
q11iv1

q11Nh1 + q21Nh2
+

q12iv2

q12Nh1 + q22Nh2

)
− γih1,

dsh2

dt
= γih2 − αphsh2

(
q21iv1

q11Nh1 + q21Nh2
+

q22iv2

q12Nh1 + q22Nh2

)
,

dih2

dt
= αphsh2

(
q21iv1

q11Nh1 + q21Nh2
+

q22iv2

q12Nh1 + q22Nh2

)
− γih2,

dsv1

dt
= µvNv1 − αpvsv1

(
q11ih1 + q21Ih2

q11Nh1 + q21Nh2

)
− µvsv1,

div1

dt
= αpvsv1

(
q11ih1 + q21ih2

q11Nh1 + q21Nh2

)
− µviv1,

dsv2

dt
= µvNv2 − αpvsv2

(
q12ih1 + q22Ih2

q12Nh1 + q22Nh2

)
− µvsh2,

div2

dt
= αpvsv2

(
q12ih1 + q22ih2

q12Nh1 + q22Nh2

)
− µviv2.

(2)
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Figure 1. Compartmental scheme of the SIS-SI two-patch model (2) for dengue transmission dynamics.

Since the populations of vectors and human hosts remain essentially invariant in both patches,
the above model can be significantly simplified by using the following relationships:

shi = Nhi − ihi,
svi = Nvi − ivi, i = 1, 2.

(3)
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In other words, system (2) can be reduced to four equations with four state variables corresponding
to sub-populations of infectious human hosts and vectors in both patches (i.e., second, fourth, sixth,
and eighth equations from (2) with shi and svi replaced according to relationships in (3)).

Moreover, taking the fractions of the four remaining sub-populations

Ih1 =
ih1

Nh1
, Ih2 =

ih2

Nh2
, Iv1 =

iv1

Nv1
, Iv2 =

iv2

Nv2
(4)

and performing the corresponding change of variables, the normalized version of model (2) can be
obtained:

dIh1

dt
= αph(1− Ih1)

(
q11Nv1Iv1

q11Nh1 + q21Nh2
+

q12Nv2Iv2

q12Nh1 + q22Nh2

)
− γ Ih1,

dIh2

dt
= αph(1− Ih2)

(
q21Nv1Iv1

q11Nh1 + q21Nh2
+

q22Nv2Iv2

q12Nh1 + q22Nh2

)
− γ Ih2,

dIv1

dt
= αpv(1− Iv1)

(
q11Nh1Ih1 + q21Nh2Ih2

q11Nh1 + q21Nh2

)
− µvIv1,

dIv2

dt
= αpv(1− Iv2)

(
q12Nh1Ih1 + q22Nh2Ih2

q12Nh1 + q22Nh2

)
− µvIv2.

(5)

Equation (5) shows that population mobility (expressed by means of the residence times qi j) alters
the fractions of infected human hosts and vectors residing in both patches. To see such alterations in a
more comprehensive way, let us introduce the following matrix

P =

(
P11 P12

P21 P22

)
=


q11Nh1

q11Nh1 + q21Nh2

q12Nh1

q12Nh1 + q22Nh2
q21Nh2

q11Nh1 + q21Nh2

q22Nh2

q12Nh1 + q22Nh2

 (6)

Its elements, Pi j, satisfy the condition
2∑

i=1
Pi j = 1 for j = 1, 2 and express the proportion of residents

from Patch i effectively present in Patch j.
The matrix P defined by (6) is the matrix of residence times in terms of effective populations [8,9] and

its components are generated by the elements of the residence time matrix (1).
In model (5), the parameter βv = αpv represents the rate of human-to-vector contact in both zones.

On the other hand, for the vector-to-human contact rate, we must take into account that the number
of people effectively present at each patch may vary, as we are considering the mobility of people
between the two patches. Therefore, the vectorial density (i.e., an average number of vectors per
one human host) must fit the context of the model in both patches. Instead of considering an average
vectorial density at each patch (i.e., an average number of female mosquitoes per one human resident of
the patch), we should focus on the effective vectorial density, which corresponds to the total number of
female mosquitos Nvi present in Patch i divided by the effective size of the human population in Patch
i, that is, by q1iNh1 + q2iNh2.

Thus, we can introduce the quantities

Nv1

q11Nh1 + q21Nh2
and

Nv2

q12Nh1 + q22Nh2
, (7)

which stand for effective vectorial densities in both patches. Using these quantities, the vector-to-human
contact rates βh1 and βh2 become patch-specific, and can be written as follows:

βh1 =
αphNv1

q11Nh1 + q21Nh2
, βh2 =

αphNv2

q12Nh1 + q22Nh2
. (8)
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Finally, using the forms of components Pi j and βhi defined in (6) and (8), respectively, the
normalized version of the two-patch dengue transmission model (5) can be rewritten even more
succinctly:

dIh1

dt
= (1− Ih1)(q11βh1Iv1 + q12βh2Iv2) − γ Ih1,

dIh2

dt
= (1− Ih2)(q21βh1Iv1 + q22βh2Iv2) − γ Ih2,

dIv1

dt
= βv(1− Iv1)(P11Ih1 + P21Ih2) − µvIv1,

dIv2

dt
= βv(1− Iv2)(P12Ih1 + P22Ih2) − µvIv2.

(9)

It is worthwhile noting that all solutions X(t) = (Ih1(t), Iv1(t), Ih2(t), Iv2(t)) generated by any
initial condition X(0) = X0 ∈ Ω = [0, 1]4 remain in Ω = [0, 1]4 ⊂ R4

+ for all t ≥ 0. This conclusion is
straightforward and follows from (4).

2.2. Calculation of Basic Reproductive Number R0

In epidemiological modeling, the basic reproduction number (R0) usually represents the average
number of new secondary infections produced by one infected individual introduced to a fully
susceptible population [10].

In the context of the two-patch model (9), the basic reproduction number has a more global
sense. It expresses the average number of secondary infections produced by one infectious individual
(mosquito or human host residing either in Patch 1 or Patch 2) when such an individual is introduced
into a totally susceptible community comprising human and vector populations of both patches, where
only people are allowed to commute between two patches.

To calculate the basic reproduction number for our two-patch dengue transmission model (8), we
have followed the standard procedure described in a previous study [10]. First, we note that the state
vector X = (Ih1, Iv1, Ih2, Iv2) of the dynamical system (9) contains four infectious classes of vectors and
human hosts, while X0 = (0, 0, 0, 0) denotes the disease-free equilibrium of the system (9).

Let us rewrite the right-hand side of the model (9) as

F (X) −V(X) =


(1− Ih1)(q11βh1Iv1 + q12βh2Iv2)

βv(1− Iv1)(P11Ih1 + P21Ih2)

(1− Ih2)(q21βh1Iv1 + q22βh2Iv2)

βv(1− Iv2)(P12Ih1 + P22Ih2)

−


γ Ih1
µvIv1

γ Ih2
µvIv2


whereF (X) ≥ 0 represents the rate of the disease transmission (i.e., rate of appearance of new infections),
whileV(X) ≥ 0 stands for the rate of the disease transition. The Jacobian matrices F = DXF (X) and
V = DXV(X) of F (X) andV(X), evaluated in the disease-free equilibrium X0 = (0, 0, 0, 0), have the
following forms:

F =


0 βh1q11 0 βh2q12

βvP11 0 βvP21 0
0 βh1q21 0 βh2q22

βvP12 0 βvP22 0

, V =


γ 0 0 0
0 µv 0 0
0 0 γ 0
0 0 0 µv
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According to a previous study [9], the basic reproduction number is defined by the largest
eigenvalue (or spectral radius) of the next-generation matrix FV−1, which is

FV−1 =



0
βh1q11

µv
0

βh2q12

µv
βvP11

γ
0

βvP21

γ
0

0
βh1q21

µv
0

βh2q22

µv
βvP12

γ
0

βvP22

γ
0


Omitting some tedious calculations, we arrive to the following form of the basic reproductive

number for our model (9):

R0 = ρ
(
FV−1

)
=

√(
βv

2µv γ

)(
Φ1 + Φ2 +

√
(Φ1 −Φ2)

2 + 4W
)

(10)

where
Φ1 = βh1(P11q11 + P21q21),
Φ2 = βh2(P12q12 + P22q22),
W = βh1βh2(P12q11 + P22q21)(P11q12 + P21q22).

It should be emphasized that under the next-generation approach [10], the spectral radius of
FV−1 defines the number of secondary infections generated per stage [11], and that dengue, as well
as other vector-borne diseases, involves two stages of virus transmission from one human host to
another (that is, human-to-vector and vector-to-human transmission stages). Therefore, the basic
reproductive number obtained by this approach in the form (10) provides the average number of
secondary infections for each transmission stage, without specifying the initial source of infection
(from vector to human host or vice versa).

However, we are interested in the average number of secondary human infections produced by one
infectious human host in an entirely susceptible host community, including human populations residing
in both patches. Therefore, we should use the square of the “per stage” reproductive number defined
by (10).

Therefore, the global basic reproductive number corresponding to our two-patch dengue transmission
model (9) is given by the square of R0, that is,

R
2
0 = ρ

(
FV−1

)
=

βv

2µv γ

(
Φ1 + Φ2 +

√
(Φ1 −Φ2)

2 + 4W
)

(11)

Remark 1. It is easy to see that in absence of people commuting between two patches we have

R
2
0 = max

{
R

2
01,R2

02

}
,

where R2
01 and R2

02 denote patch-specific (or local) basic reproductive numbers corresponding to each particular
patch. Namely, when q11 = q22 = 1 and q12 = q21 = 0, we have

Φ1 = βh1 = αph
Nv1

Nh1
, Φ2 = βh2 = αph

Nv2

Nh2
, W = 0.

Consequently,

R
2
01 =

αβvph

γ µv

Nv1

Nh1
and R2

02 =
αβvph

γ µv

Nv2

Nh2
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which stand for the basic reproductive numbers corresponding to the traditional Ross-Macdonald
model for a single patch [5,6]). The latter also stays in line with the results of previous studies [7,9],
where a two-patch dengue transmission model with additional compartments of “Exposed-Recovered”
human hosts and “Exposed” vectors (known as SEIR(S)-SEI type and containing 14 state variables)
was proposed and analyzed.

Figure 2 displays the plot of the global reproductive number R2
0 as a function of residence times

q12 and q21 when Patch 2 (suburbs) has higher average vectorial density than Patch 1 (the city); that is,

Nv1

Nh1
≤

Nv2

Nh2

while all other parameters of the model remain the same for both patches.
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Figure 2. Global basic reproductive number R2
0 for two-patch dengue transmission (9) as a function of

residence times q12 and q21.

As shown in Figure 2, the global basic reproductive numberR2
0 exhibits a slight rise as q12 increases,

while q21 stays close to zero. In other words, more disease cases can be expected if the residents of
suburbs (Patch 2) decide to spend a greater fraction of their time in the city (Patch 1) when the inverse
flow (from Patch 1 to Patch 2) is very low or absent. Here we refer to the average number of expected
secondary dengue infections produced by one infected human host in the total human population
corresponding to both patches.

Conversely, the global basic reproductive number R2
0 declines with respect to q12 and regardless

of q21. Therefore, a lesser number of disease cases can be expected if the city residents (Patch 1) decide
to spend a greater fraction of their time in the suburbs (Patch 2). Thus, Figure 2 plainly illustrates that
population mobility may either increase or reduce the number of new infections. This conclusion fully
agrees with other results obtained by analysis of more sophisticated dengue transmission models [7,9].

3. Optimal Control Framework for Two-Patch Model (9)

3.1. Formulation of the Optimal Control Problem

To thwart the spread of the virus, intervention strategies could focus on reducing the number of
contacts (or mosquito bites) between female mosquitoes and human hosts, for example, through the
use of repellents, mosquito nets, and insecticide-treated clothing. Many scholars provide evidence
that topical repellents constitute an important tool for prevention of infections caused by vector-borne



Processes 2019, 7, 197 10 of 24

pathogens, and may offer nearly 100% protection when applied as a spray, lotion, or cream directly on
exposed skin [12]. A sole application of topic repellent may provide either a short-term protection
(an hour or even less), in the case of plant-derived non-allergenic oils, or a prolonged complete
protection (up to 12 h), in the case of commercially available chemical substances, such as DEET (or
diethyltoluamide), that are rejected by some people due to their allergenic potential [13,14]. The efficacy
of insect repellents depends not only on their active ingredients, but also on the application frequency.

There are some interesting studies that provide a solid background on the variability of the type of
insect repellent used, factors influencing their effectiveness, possible attitudinal responses by individuals
to their use, and a presentation of evidence regarding the correlation and some inconsistencies between
the efficacy of mosquito bite reduction and mosquito-borne disease prevention [12–15].

To formalize the modeling of repellent application by the residents of both patches, we are going to
introduce two control strategies that affect the rate of effective contacts of mosquitoes with susceptible
and infected human individuals.

To incorporate these interventions into model (9), we define two exogenous variables that are
time dependent and are independent of the other components in the model (9).

Let us denote u1(t) and u2(t), t ∈ [0, T] the control variables that act upon the rate of effective
contacts in Patches 1 and 2, respectively. Here T > 0 is the finite time of control action and u1, u2:
[0, T]→ [0, 1] are two piecewise continuous real functions that represent the proportion of human
residents from Patch 1 and Patch 2, respectively, that should apply repellent.

These control variables have the same goal that consists of reducing the number of bites taken by
female mosquitoes on human residents in both zones.

Incorporating these two control measures; our model (9) can be written as:

dIh1

dt
= (1− ηu1)(1− Ih1)(q11βh1Iv1 + q12βh2Iv2) − γ Ih1,

dIh2

dt
= (1− ηu2)(1− Ih2)(q21βh1Iv1 + q22βh2Iv2) − γ Ih2,

dIv1

dt
= βv(1− Iv1)(P11(1− ηu1)Ih1 + P21(1− ηu2)Ih2) − µvIv1,

dIv2

dt
= βv(1− Iv2)(P12(1− ηu1)Ih1 + P22(1− ηu2)Ih2) − µvIv2,

(12)

where η expresses the effectiveness of the repellent, which, in our case, is considered the same in
both patches.

We now formulate the problem of optimal control with the goal of minimizing the number of
infected human hosts residing in both zones, while also minimizing the cost of applying the two
controls. This goal can be defined by the following objective functional:

J(u1, u2) =

T∫
0

[
A1Ih1(t) + A2Ih2(t) +

1
2

A3u2
1(t) +

1
2

A4u2
2(t)

]
dt → min, (13)

where nonnegative constants A1, A2, A3, and A4 represent the weight coefficients and express the
priorities of each particular objective. They can also be considered as (relative) societal costs associated
with each summand [6,16]. In this study, we assume that the marginal cost associated with reducing
the number of infected human hosts (first two summands in (13)) is constant, whereas the marginal
costs of control measures (last two summands in (13)) are not constant, that is, they depend on the
underlying control actions.

The resulting optimal control problem is to find the optimal strategies u∗1(t) and u∗2(t) that minimize
the objective functional (13) subject to dynamical system (12) with assigned initial conditions

0 < Ih1(0) < 1, 0 < Ih2(0) < 1, 0 < Iv1(0) < 1, 0 < Iv2(0) < 1 (14)
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and under the following constraints imposed on both control variables

0 ≤ u1(t) ≤ u1 ≤ 1, 0 ≤ u2(t) ≤ u2 ≤ 1, ∀t ∈ [0, T] (15)

In the above expression, ui, i = 1, 2, represent the maximum proportions of human hosts residing
in Patch 1 (the city) and Patch 2 (the suburbs), respectively, that should use repellent for protection
from the mosquito bites. From relationship (15), we define the set U = [0, u1] × [0, u2] of all admissible
controls, which are piecewise continuous functions taking values in U for each t ∈ [0, T].

3.2. Existence of Optimal Controls

The problem of optimal control defined by (12)–(15) only makes sense when the disease persists.
Therefore, we assume that the basic reproduction number corresponding to model (9) without controls
is greater than one (that is, R2

0 > 1).

Proposition 1 (Existence of optimal controls). There exist optimal controls u∗1(t) : [0, T]→ [0, u1] and
u∗2(t) : [0, T]→ [0, u2] that minimize the objective functional J(u1, u2) defined by (13), and the corresponding
trajectories

(
I∗h1(t), I∗h2(t), I∗v1(t), I∗v2(t)

)
of the dynamical system (12) generated by the initial conditions (14) are

bounded for all t ∈ [0, T].

Proof. First, we prove that all trajectories of the system (12) are bounded for any admissible pair
of controls (u(t)1, u2(t)) ∈ U and for all t ∈ [0, T]. A mere glance at the equations of the system
(12) reveals that their right-hand sides are Lipschitz continuous with respect to state variables
X = (Ih1, Iv1, Ih2, Iv2). Therefore, for any initial condition X(0) = X0 ∈ Ω = [0, 1]4, there exists a unique
solution X(t) = (Ih1(t), Iv1(t), Ih2(t), Iv2(t)) ∈ Ω corresponding to any admissible pair of controls
(u1(t), u2(t)) ∈ U that remains in Ω for all t ≥ 0. Let Gi(Ih1, Iv1, Ih2, Iv2; u1, u2), i = 1, 2, 3, 4 denote the
right-hand side of the system (12). It is easy to see that the vector field G = (G1, G2, G3, G4) satisfies
the following conditions:

∂Gi
∂X j
≥ 0, i , j and

∂Gi
∂u1
≤ 0,

∂Gi
∂u2
≤ 0 for i, j = 1, 2, 3, 4

where (X1, X2, X3, X4) = (Ih1, Iv1, Ih2, Iv2). From the above relationships, we can conclude that the
controlled epidemiological dynamical model (12) is cooperative according to the definition given in
a previous study [17]. Therefore, its trajectories X(t; u1, u2) corresponding to any admissible pair of
controls (u1(t), u2(t)) ∈ U are bounded from below by the so-called super-solution X(t) = X(t; 0, 0),
and bounded from above by the so-called sub-solution X(t) = X(t; u1, u2) [17].

The proof of existence of the optimal controls is based on the standard existence result given in a
previous study [18] (see Theorem 4.1 and Corollary 4.1 on p. 68). In this context, let us emphasize that all
the hypotheses established in this result are satisfied for the optimal control (12)–(15) problem, namely:

1. State trajectories X(t; u1, u2) of the controlled dynamical system (12) remain bounded for all
admissible controls (u1(t), u2(t)) ∈ U and for all t ∈ [0, T].

2. The integrand of the objective functional (13) is convex with respect to the state and
control variables.

3. The right-hand side of the dynamical system (12) is linear with respect to both controls u1(t) and
u2(t).

4. By definition, the set of admissible controls U is compact.
5. The sets of all possible initial X(0) = (Ih1(0), Iv1(0), Ih2(0), Iv2(0)) and terminal X(T) =

(Ih1(T), Iv1(T), Ih2(T), Iv2(T)) states of the system (12) are compact; that is, X(0), X(T) ∈ Ω =

[0, 1]4.
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Items 1–5 displayed above clearly indicate that sufficient conditions for existence of optimal
control [18] (Theorem 4.1 and Corollary 4.1) are satisfied. The latter clearly proves the existence of
optimal controls u∗1(t) : [0, T]→ [0, u1] and u∗2(t) : [0, T]→ [0, u2] that minimize the functional J(u1, u2)

given in (13). �

3.3. Characterization of Optimal Controls

The optimal control problem defined by (12)–(15) can be formally solved via direct application of
Pontryagin’s maximum principle [4]. To proceed, we define the Hamiltonian function

H(X, u1, u2, Λ) = A1Ih1 + A2Ih2 +
A3

2
u2

1 +
A4

2
u2

2

+λ1[(1− ηu1)(1− Ih1)(q11βh1Iv1 + q12βh2Iv2) − γ Ih1]

+λ2[(1− ηu2)(1− Ih2)(q21βh1Iv1 + q22βh2Iv2) − γ Ih2]

+λ3[βv(1− Iv1)(P11(1− ηu1)Ih1 + P21(1− ηu2)Ih2) − µvIv1]

+λ4[βv(1− Iv2)(P12(1− ηu1)Ih1 + P22(1− ηu2)Ih2) − µvIv2]

(16)

that depends on four state variables X = (Ih1, Ih2, Iv1, Iv2), two control variables u1, u2, and four adjoint
variables Λ = (λ1,λ2,λ3,λ4) or co-states. The adjoint vector depends on time t ∈ [0, T] and satisfies
the so-called adjoint system of differential equations

dΛ

dt
= −

dH
dX

, Λ(T) = 0 (17)

where the endpoint condition at t = T is usually referred to as the transversality condition. The
components λi(t), i = 1, 2, 3, 4 of Λ(t) are the so-called “shadow prices” associated with the respective
state variables. Generally speaking, they express the change in the objective value J(u1, u2) calculated
for the optimal solutions u∗1(t), u∗2(t) when the dynamic constraints represented by the controlled
system (12) are relaxed by one unit [4].

Proposition 2 (Characterization of optimal controls). Given the optimal controls
(
u∗1(t), u∗2(t)

)
and their

corresponding trajectories X∗(t) =
(
I∗h1(t), I∗h2(t), I∗v1(t), I∗v2(t)

)
of the system (12) that minimizes the objective

functional (13) on U, there exists an absolutely continuous adjoint vector-function Λ(t) : [0, T]→ R4 satisfying
(17), such that u∗1(t) and u∗2(t) can be expressed in terms of the components of X∗(t) and Λ(t) in the following
way:

u∗1(t) = min
{
u1, max

{
0, Ψ1(X∗(t), Λ(t))

}}
u∗2(t) = min

{
u2, max

{
0, Ψ2(X∗(t), Λ(t))

}} (18)

where Ψ1(X∗(t), Λ(t)) and Ψ2(X∗(t), Λ(t)) have the following forms:

Ψ1 =
η

A3

[(
q11βh1I∗v1 + q12βh2I∗v2

)(
1− I∗h1

)
λ1 + βvI∗h1

[
P11

(
1− I∗v1

)
λ3 + P12

(
1− I∗v2

)
λ4

]]
,

Ψ2 =
η

A4

[(
q21βh1I∗v1 + q22βh2I∗v2

)(
1− I∗h2

)
λ2 + βvI∗h2

[
P21

(
1− I∗v1

)
λ3 + P22

(
1− I∗v2

)
λ4

]]

Proof. Existence of adjoint vector-function Λ(t) satisfying (17) is a standard result of Pontryagin’s
maximum principle [4], which establishes the necessary conditions for optimality of u∗1(t) and u∗2(t).
This necessary condition states that the Hamiltonian functionH attains its maximum with respect to
controls in (u∗1(t), u∗2(t)) at each point t ∈ [0, T] along the optimal trajectory X∗(t), that is,

H(X∗, u1, u2, Λ) ≤ H
(
X∗, u∗1, u∗2, Λ

)
, ∀ (u1, u2) ∈ U, t ∈ [0, T].
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In other words, if (u∗1(t), u∗2(t)) ∈ int U, then it holds that

∂H
(
X∗, u∗1, u∗2, Λ

)
∂u1

= 0,
∂H

(
X∗, u∗1, u∗2, Λ

)
∂u2

= 0. (19)

Otherwise, u∗1(t), u∗2(t) must take values on the boundary of U, that is, u∗i (t) = 0 or u∗i (t) = ui , i =
1, 2. Solving equations (19) for u∗1(t) and u∗2(t), and keeping in mind that

u∗i (t) =


0, if

∂H
∂ui

> 0 and u∗i < 0

u∗i (t), if
∂H
∂ui

= 0 and u∗i ∈ (0, ui)

ui, if
∂H
∂ui

< 0 and u∗i >ui

(20)

we arrive at the closed forms (18). �

Remark 2. Necessary conditions for optimality (19) of u∗i (t), i = 1, 2 can be written as

A3u∗1 − η
[(

q11βh1I∗v1 + q12βh2I∗v2

)(
1− I∗h1

)
λ1 + βvI∗h1

[
P11

(
1− I∗v1

)
λ3 + P12

(
1− I∗v2

)
λ4

]]
= 0,

A4u∗2 − η
[(

q21βh1I∗v1 + q22βh2I∗v2

)(
1− I∗h2

)
λ2 + βvI∗h2

[
P21

(
1− I∗v1

)
λ3 + P22

(
1− I∗v2

)
λ4

]]
= 0.

In the above relationships, the positive terms A3u∗1 and A4u∗2 express the marginal costs of two control
actions u∗1(t) and u∗2(t), respectively, whereas the negative terms of the form −η[. . .] refer to the marginal benefits
of u∗1(t) and u∗2(t).

Thus, from the economics standpoint, Pontryagin’s maximum principle states that the marginal
cost of the optimal strategy u∗i (t), i = 1, 2 must be equal to the marginl benefit rendered by this strategy

(that is,
∂H
∂ui

= 0). It also follows from (20) that if the marginal cost of u∗i (t), i = 1, 2 is higher than

its marginal benefit (that is,
∂H
∂ui

> 0), then it is optimal not to use this strategy at all, and we have

u∗i (t) = 0, i = 1, 2. Alternatively, if the marginal cost of u∗i (t), i = 1, 2 is lower than its marginal benefit

(that is,
∂H
∂ui

< 0), then it is optimal to use all available resources, and we have u∗i (t) = ui, i = 1, 2.

It is worthwhile to point out that transversality conditions λi(T) = 0, i = 1, 2, 3, 4 from the
adjoint system (17) guarantee that u∗1(T) = u∗2(T) = 0, meaning that both control actions must be
suspended by the end of the observation period [0, T]. This property is attributed to the continuity
of adjoint variables λi(t) = 0, i = 1, 2, 3, 4 when t→ T and to the closed forms of optimal control
characterizations (18). Additionally, the optimal controls given by (18) are minimizers, because the
Hessian matrix D2

ui j
H of the Hamiltonian function H taken with respect to control variables and

evaluated in (u∗1(t), u∗2(t)) is constant and positive definite:

D2
ui j
H

(
X∗, u∗1, u∗2, Λ

)
=

(
A3 0
0 A4

)
Using the closed forms of optimal controls (18), the original optimal control problem (12)–(15)

can be reduced to a two-point boundary value problem (known as “optimality system”), which is
composed of eight differential equations with eight endpoint conditions, namely:

• Four direct equations (12) plus four adjoint equations (17), where (u1, u2) are replaced by their
characterizations (18);
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• Four initial conditions (14) specified at t = 0, plus four transversality conditions from (17) specified
at t = T.

The solution for the optimality system is a rather challenging task, due to its non-linearity and
high dimension. Therefore, it can only be solved numerically, and the following section provides the
underlying results.

4. Results

4.1. Numerical Simulations

To solve the optimality system resulting from the optimal control problem (12)–(15), we have
employed the software package GPOPS-II (Next-Generation Optimal Control Software, Version 2.4, RP
Optimization Research LLC, Gainesville, FL, USA), which implements the numerical technique based
on the direct orthogonal collocation [19].

Numerical values of parameters for the optimal control problem formulated in the previous
section are given in Table 3. The greater part of these values are borrowed from published papers [5,6,9]
dealing with dengue epidemic studies conducted in the city of Cali and its suburbs. Some parameter
values have been assumed or estimated.

Let us provide some explanations concerning the entries of Table 3, which are assumed or
estimated. There is no published data regarding estimations of the average vectorial density in Patch 2
(corresponding to suburbs), and we have assumed it is about two times higher than that in Patch 1
(the city) for the following reasons:

1. Smaller towns and settlements in Colombia are known to have problems with sanitation and
intermittent water supply. Therefore, water storage tanks kept by suburban residents contribute
to mosquito proliferation.

2. In contrast to major Colombian cities located in dengue endemic areas (such as Cali–Patch 1),
vector control measures in suburban areas are irregular or absent [20].

Table 3. Parameter values assumed for numerical simulations.

Parameter Description Assumed Value Reference

α Mosquito biting rate 0.36065 [5]
ph Probability of infection in humans 0.22687 [5]
pv Probability of infection in mosquitos 0.08058 [5]
γ Human recovery rate 1/10 [5,6]
µv Mosquito mortality rate 1/30 [5,6]

Nh1 Human population in Patch 1 2, 344, 703 [9]
Nh2 Human population in Patch 2 527, 091 [9]

Nv1/Nh1 Average vectorial density in Patch 1 1.59691 [5,6]
Nv2/Nh2 Average vectorial density in Patch 2 3 assumed

u1 = u2
Maximal proportions of residents in
Patches 1 and 2 to use the repellent 1 assumed

η Efficiency of repellent 70% [6,21]
T Observation period (in days) 30 assumed

A1 = A2
Daily societal cost per one infected human

host in Patches 1 and 2 ($) 60 [6]

A3
Cost associated with repellent application

in Patch 1
Nh1
Nh2
×

A1
50

estimated

A4
Cost associated with repellent application

in Patch 2
A2
50

[6,16]
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Since we do not possess information regarding the total sizes of vector populations present in
both patches, these entries have been estimated as

Nv1 = 1.59691×Nh1 and Nv2 = 3×Nh2,

respectively. The upper values u1 and u2 for control variables (representing the maximum proportion
of residents in both patches who use repellent for personal protection) was set to unity in order to fit the
assumption of homogeneous mixing of all human hosts residing in both patches. On the other hand,
we set η = 0.7 despite knowing that most common repellents can reduce the number of mosquito bites
by up to 95% when applied with adequate frequency [21]. In this manner, we can admit that not all
human hosts may apply repellents, and that the number of effective contacts (mosquito⇔ human) can
be reduced by 70% at most.

Knowing that dengue epidemics in Cali and its suburbs usually lasts for 1–3 months [5,6,9], the
observation period T > 0 was set to 30 days.

To define the values of weights Ai, i = 1, 2, 3, 4 in the objective functional (13), we used the
arguments provided in [6]. The values of A1 and A2 are associated with the total daily cost of one
infected individual (accounting for treatment and temporary disability leave) residing at either patch.
Since the societal cost of one dengue case in Colombia is $600 [6], and considering that it takes 10 days
to recover (1/γ), it was supposed that A1 = A2 = 60.

The values of A3 and A4 represent the estimated expenditure for educational campaigns aiming to
motivate the human population (residing in both patches) to take personal protection measures. From
previous studies [6,16], the unit cost estimated for these highly efficient campaigns is approximately
50 times less than the total medical and social unit cost of one infected person when only one patch
is considered. However, when dealing with two patches, we should account for different human
population sizes of these patches (Nh1 > Nh2), and make the underlying adjustments. Thus, we assume

that A3 =
Nh1

Nh2
×

A1

50
and A4 =

A2

50
.

As a result, we can assess the total cost related to implementation of the control measures
ui(t), t ∈ [0, T], i = 1, 2 for both patches in accordance with a previous study [16], making use of the
marginal instantaneous costs:

Cost (u1, u2) = A3

T∫
0

u1(t) dt + A4

T∫
0

u2(t) dt. (21)

To characterize the current level of the disease in our two-patch system, we assign the initial
conditions (expressed in proportions) to all four state variables of the dynamical system (12):

Ih1(0) = 2, 5219× 10−4, Ih2(0) = 0.5× Ih1(0),

Iv1(0) =
Nv1

Nh1
× Ih1(0), Iv2(0) =

Nv2

Nh2
× Ih2(0).

The first condition is realistic and comes from a previous study [9], while the second one is chosen
to be compatible with current statistics on yearly dengue incidence rates in Colombia [20]. According
to this source, major Colombian cities report 2–4 times more dengue cases per thousand inhabitants
than their suburban areas. Since there is no reliable data regarding the fractions of infectious vectors in
both patches, we suppose the fractions of infectious human hosts residing in underlying patches to be
proportional (the last two initial conditions).

Finally, we should assign numerical values to all parameters dealing with population mobility (i.e.,
define the elements of time residence matrix Q given by (1)). Before considering possible scenarios of
population mobility between two patches, it is useful to revisit Figure 2, which displays the global basic
reproductive number R2

0 (see Formula (11)) as a function of residence times q12 and q21, while keeping
in mind that q11 = 1 − q12 and q22 = 1 − q21. This figure is plotted using the values of parameters
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corresponding to the city of Cali (Patch 1) and its suburbs (Patch 2), which are given in Table 3.
This figure also helps visualize that people commuting between two patches may enhance or reduce
the value of R2

0, and thus have an impact on the disease propagation.
However, we seek to keep our model as close as possible to realistic situations regarding people

commuting between the city (Patch 1) and its suburbs (Patch 2). We are also interested in exploring the
effects of the personal protection measures on the transient dengue morbidities in both patches and to
estimate the efficiency of these control measures.

Thus, we assume that Cali residents stay mostly at their home patch (q12 = 0) or rarely commute
to another patch (q12 > 0 is rather small), while the opposite is true for the suburban residents (q21 > 0).
This assumption leads to two basic types of population mobility between the two patches:

1. One way: Suburban residents (Patch 2) spend, on average, 40% of their time in the city (Patch 1),
while the city residents do not commute to the suburbs:

q21 = 0.4 and q12 = 0

2. Both ways: Suburban residents (Patch 2) spend, on average, 40% of their time in the city (Patch
1), while the city residents spend, on average, 5% of their time in the suburbs:

q21 = 0.4 and q12 = 0.05.

The One way option is rather realistic since a significant share of suburban residents commute to
the city for work, study, shopping, etc., on a regular basis. However, some companies are starting to
move their headquarters and plants to the suburban areas; therefore, the Both ways option may also
become realistic in the near future.

Before proceeding to the numerical solution to the optimal control problem (12)–(15), let us briefly
revise the outcome of our two-patch dengue transmission model without control intervention, i.e.,
with u1(t) = u2(t) = 0, t ∈ [0, T], and under both options for commuting (One way and Both ways).
For that purpose, it is helpful to introduce two auxiliary variables, Chi(t), i = 1, 2 (linked to each
patch), known as cumulative incidences [9]. These variables express the cumulative proportion of
all human infections occurring in each patch during the observation period. In mathematical terms,
these additional variables are defined by the following differential equations with corresponding
initial conditions

dCh1

dt
= (1− ηu1)(1− Ih1)(q11βh1Iv1 + q12βh2Iv2), Ch1(0) = Ih1(0),

dCh2

dt
= (1− ηu2)(1− Ih2)(q21βh1Iv1 + q22βh2Iv2), Ch2(0) = Ih2(0).

(22)

Figure 3 presents the cumulative incidences Chi(t), i = 1, 2 for both commuting options (One way
and Both ways) obtained by numerical integration of six differential equations, (12) and (22), with
u1(t) = u2(t) = 0, t ∈ [0, T].
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use of personal protection measures (u1(t) = u2(t) = 0).

It is worth noting that One way option generates less infections in Patch 1 and more infections
in Patch 2 than Both ways option (see Figure 3). This outcome can be explained using the concept
of effective vectorial density (see Equation (7)). In effect, under the One way option, Patch 1 receives
visitors, and this reduces its average vectorial density (i.e., number of vectors per one resident of Patch
1) to a lesser value of effective vectorial density (i.e., number of vectors per one human host effectively
present in Patch 1):

(average in Patch 1)
Nv1

Nh1
>

Nv1

Nh1 + q21Nh2
(effective in Patch 1)

Therefore, residents of Patch 1 receive less mosquito bites under the One way option, and this is
reflected in a reduced number of infections occurring in Patch 1. In case of Both ways option, Patch 2
exhibits a reduction in the number of infections, since it holds that

(One way)
Nv2

q22Nh2
>

Nv2

q12Nh1 + q22Nh2
(Both ways)

The latter decreases the number of infectious bites received by the residents of Patch 2 under
Both ways option. To corroborate the above deduction, we can also calculate the absolute cumulative
numbers of infections Ĉhi(T) = Nhi ×Chi(T), i = 1, 2 acquired during T = 30 days by human hosts in
both patches:

One way ⇒ Ĉh1(T) = 3 408, Ĉh2(T) = 989,
Both ways ⇒ Ĉh1(T) = 3 550, Ĉh2(T) = 867.

These estimations will help us in evaluation of preventive control policies, which are further
obtained by the numerical solution of the optimal control problem (12)–(15), amended with auxiliary
variables Chi(t), i = 1, 2 introduced in (22).

Let us determine three basic strategies for personal protection of human hosts:

• S1⇒ Repellent is used only by the city residents
(
0 ≤ u∗1(t) ≤ u1, u∗2(t) = 0

)
.

• S2⇒ Repellent is used only by the suburban residents
(
u∗1(t) = 0, 0 ≤ u∗2(t) ≤ u1

)
.

• S3⇒ Repellent used by human populations in both patches
(
0 ≤ u∗1(t) ≤ u1, 0 ≤ u∗2(t) ≤ u1

)
.
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Subsequently, we can define six scenarios resulting from combinations of three strategies (S1, S2, S3)
described above with two options of commuting (One way and Both ways). These scenarios can be
summarized as follows:

One way ⇒


S1 − Scenario 1
S2 − Scenario 2
S3 − Scenario 3

Both ways ⇒


S1 − Scenario 4
S2 − Scenario 5
S3 − Scenario 6

(23)

Finally, the problem of optimal control (12)–(15), (22) is solved numerically (using GPOPS-II
software package) under six different scenarios (23) and its solutions u∗i (t), C∗hi (t), i = 1, 2 are displayed
in Figure 4 (Scenarios 1 and 4) and Figure 5 (Scenarios 2 and 5). It should be noted that we omit here
the plots for Scenarios 3 and 6 because they bear almost no difference to plots presented in Figures 4
and 5 for each patch, and this difference is visually undetectable.Processes 2019, 7, x FOR PEER REVIEW 17 of 23 
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On the other hand, this small difference can be viewed by calculating the absolute cumulative
numbers of infections Ĉ∗hi(T) = Nhi × C∗hi(T), i = 1, 2 acquired by the human hosts in both patches

under the personal protection measures
(
u∗1(t), u∗2(t)

)
corresponding to each scenario.

Additionally, we can estimate the number of infections that can be averted in each patch whenever
the residents of one or both patches use personal protection measures in accordance with the optimal
control strategy given by u∗i (t), i = 1, 2.

Let P̂i
(
u∗1(t), u∗2(t)

)
, i = 1, 2 express the absolute number of human infections prevented by the

optimal control policy
(
u∗1(t), u∗2(t)

)
, t ∈ [0, T] in Patch i, i = 1, 2 for each scenario given in (23). Then

we have
P̂i

(
u∗1(t), u∗2(t)

)
= Ĉhi(T) − Ĉ∗hi(T), i = 1, 2 (24)

where Ĉhi(T) corresponds to the total number of infections acquired by the residents of Patch i, i = 1, 2
during the observation period [0, T] without control (i.e., supposing u1(t) = u2(t) = 0, t ∈ [0, T]), while
Ĉ∗hi(T) stands for the total number of human infections in the same patch under the optimal control

policy
(
u∗1(t), u∗2(t)

)
, t ∈ [0, T]. Table 4 presents the summary of results.

Scenarios 1 and 4 deal with application of the personal protection measure only by the city residents
(strategy S1 in (23)), and the bottom row of Figure 4 provides the optimal profiles of u∗1(t), t ∈ [0, T]
under two mobility options: One way (left chart) and Both ways (right chart). In this case, we have
u∗2(t) = 0, t ∈ [0, T], meaning that suburban residents do not use personal protection. The structure of
u∗1(t), t ∈ [0, T] in the lower row of Figure 4 indicates that until approximately day 25, all residents
of Patch 1 should protect themselves with repellent; then, the fraction of human hosts who use
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the measures of personal protection gradually decrease towards zero during the last 5 days of the
observation period.

The effect of optimal control on the reduction of dengue morbidity is illustrated on the two upper
charts of Figure 4 (for Patch 1) and the two upper charts of Figure 5 (for Patch 2) under two mobility
options: One way and Both ways (left and right charts, respectively). For Patch 1 (the city), the impact
of control action is clearly visible (compare black and red dashed curves in Figure 4).

Table 4. Estimations of the expected numbers of averted human infections with respective costs under
different scenarios.

Scenario No. of Human
Infections in Patch 1

No. of Human
Infections in Patch 2

No. of Averted
Infections in Patch 1

No. of Averted
Infections in Patch 2

Mobility option: One way
u1 = 0,u2 = 0 3408 989 0 0

1 1709 978 1699 11
2 3392 405 16 584
3 1700 399 1708 590

Mobility option: Both ways
u1 = 0,u2 = 0 3550 867 0 0

4 1773 833 1777 34
5 3509 366 41 501
6 1752 346 1798 521

However, the application of protective measures only by the residents of Patch 1 has very little
effect on the disease suppression among the residents of suburbs (Patch 2, see Figure 5). Yet, Scenario 4
(mobility option: Both ways) yields more prevented human infections among suburban residents than
Scenario 1 (mobility option: One way). The estimated numbers of averted human infections given in
Table 4 confirms this conclusion.

Scenarios 2 and 5 deal with application of the personal protection measure only by the suburban
residents (strategy S2 in (23)), and the bottom row of Figure 5 provides the optimal profiles of
u∗2(t), t ∈ [0, T] under two mobility options: One way (left chart) and Both ways (right chart). In this
case, we have u∗1(t) = 0, t ∈ [0, T], meaning that city residents do not use personal protection.
The structure of u∗2(t), t ∈ [0, T] in the lower row of Figure 5 indicates that until approximately day
28, all residents of Patch 2 (both commuters and non-commuters) should protect themselves with
repellent. Then, the fraction of human hosts who use the measures of personal protection abruptly
decreases towards zero during the last 2 days of the observation period.

The effect of optimal control on the reduction in dengue morbidity is illustrated in the two upper
charts of Figure 4 (for Patch 1) and the two upper charts of Figure 5 (for Patch 2) under two mobility
options: One way and Both ways (left and right charts, respectively). For Patch 2 (suburban areas),
the impact of control action is clearly visible (see the difference between black dashed and blue solid
curves in Figure 5).

However, the application of protective measures only by the residents of Patch 2 has very little
effect on the disease suppression among the city residents (Patch 1, see Figure 4), even though Scenario
5 (mobility option: Both ways) yields more prevented human infections among city residents than
Scenario 2 (mobility option: One way). The latter is reflected in the estimated numbers of averted
human infections given in Table 4.

Scenarios 3 and 6 deal with application of the personal protection measure for the residents of both
patches (strategy S3 in (23)), and the optimal control profiles

(
u∗1(t), u∗2(t)

)
, t ∈ [0, T] corresponding

to these scenarios have almost the same structures as u∗1(t) and u∗2(t) plotted in the lower charts of
Figures 4 and 5 under two mobility options: One way (left charts) and Both ways (right charts).
Naturally, and quite expectedly, the effect of

(
u∗1(t), u∗2(t)

)
on the disease suppression in both patches

is very explicit and can be visualized in the upper chart of Figures 4 and 5 for two mobility options
(see the difference between black dashed and green dotted curve in Figures 4 and 5). Additionally,
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the estimations given in Table 4 indicate that
(
u∗1(t), u∗2(t)

)
are capable of preventing between 50% and

60% of human infections in both patches.
Thus, from the standpoint of potential benefits, the control intervention policies

(
u∗1(t), u∗2(t)

)
corresponding to Scenarios 3 and 6 are definitely the best for each underlying option of
population mobility.

However, in order to decide which control strategy (S1, S2, S3) is the most efficient (or
cost-effective), we have to take into account not only the benefits rendered by each strategy (expressed
in terms of averted human infections in both patches) but also the underlying costs.

4.2. Cost-Effectiveness Analysis

The cost-effectiveness analysis is an economic assessment tool that aims to compare the costs
and the effects of two or more control intervention policies in order to determine which particular
policy renders higher benefits per unit cost. In the healthcare management, the principal measure of
cost-effectiveness is the indicator known as Average Cost-Effectiveness Ratio (or ACER) that expresses the
cost per one averted disease case, and can be formally defined [22] in the following way:

ACER
(
u∗1(t), u∗2(t)

)
=

Cost of strategy
(
u∗1(t), u∗2(t)

)
Benefit of strategy

(
u∗1(t), u∗2(t)

) .

The total costs of the optimal control policies
(
u∗1(t), u∗2(t)

)
, t ∈ [0, T] corresponding to each

scenario described in (23) can be estimated using the underlying formula for their marginal costs (21).
The benefit of each control strategy is then obtained by summing up the estimated number of human
infections averted by applying this strategy in both patches, that is,

Benefit
(
u∗1(t), u∗2(t)

)
= P̂1

(
u∗1(t), u∗2(t)

)
+ P̂2

(
u∗1(t), u∗2(t)

)
where P̂1 and P̂2 are calculated according to (24). Table 5 presents the summary of results for three types
of control strategies (S1, S2, S3) and two options for population mobility (One way and Both ways).

Table 5. Estimations of total costs, averted infections (benefits), and the respective Average
Cost-Effectiveness Ratio (ACERs) for all scenarios.

Scenario Total Cost No. of Averted Human Infections in Both Patches ACER

Mobility option: One way
1 148.2675 1710 0.0867
2 35.6250 600 0.0594
3 183.4698 2298 0.0798

Mobility option: Both ways
4 149.3466 1811 0.0825
5 35.6066 542 0.0657
6 184.2195 2319 0.0794

A mere glance at the last column of Table 5 reveals that Scenarios 2 and 5 possess the lowest ACER
for each mobility option. This suggests that the control intervention policies corresponding to these
two scenarios render higher benefits per unit cost invested. Therefore, strategy S2 is the most efficient
(or cost-effective) under both mobility options (One way and Both ways).

In other words, it is more “cost effective” that all suburban residents (Patch 2), commuters, and
non-commuters, susceptible and infected (possibly asymptomatic), protect themselves with repellents.

This conclusion, obtained from the mathematical standpoint, can also be attributed to the following
“common-sense” factors:
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1. The human population size of Patch 2 is smaller than that of Patch 1. Therefore, the cost associated
with educational campaigns promoting personal protection measures among residents of Patch 2
is lower than the cost of similar campaigns targeting residents of Patch 1.

2. Both average and effective vectorial density is higher in Patch 2 than in Patch 1. Therefore, residents
of Patch 2 are at greater risk of receiving mosquito bites, and reducing their contact with vectors
(bites) by applying repellent should have a greater effect on residents of Patch 2 than on residents
of Patch 1 (where both average and effective vectorial density is lower).

5. Conclusions

In this paper, we have addressed the role of personal protection measures on dengue transmission,
while considering people commuting between two zones, both located in a dengue-endemic area (city
of Cali, Colombia, and its suburbs). We have tried to model two realistic situations regarding daily
commuting and to analyze strategies of personal protection aiming to reduce the number of contacts
between human hosts and vector transmitters of the disease (mosquito bites).

We have considered the modeling framework of an SIS-SI for the dynamics together with the
so-called Lagrangian approach [8]. Under this approach, the dispersal of human hosts between two
patches caused by daily commuting was modeled using the fractions of time that human individuals
spend at each patch, which are also known as residence times [7–9].

Our two-patch model for dengue transmission preserves the key properties of more sophisticated
models where multiple patches are considered [8], or where the dengue transmission modeling is more
detailed (dengue dynamics of SEIRS-SEI type, [7,9]). Namely, it shows that daily mobility affects the
disease transmission in both patches quite differently, and such differences can be explained using the
concepts of effective human population sizes [8] and effective vectorial densities [9].

Using the two-patch dengue transmission model, we have developed an optimal control framework
in order to design patch-specific strategies for personal protection of human hosts from mosquito bites
that are capable of mitigating the disease transmission in both patches.

Optimal policies for application of personal protection measures have been designed under six
different scenarios resulting from combinations of two options for population mobility (One way
and Both ways) with three strategies (protection used only by the city residents, only by suburban
residents, and by both human populations).

All designed policies have been evaluated from the standpoint of cost-effectiveness, where the
potential benefits of each policy was assessed via the number of prevented human infections. As a result
of the cost-effectiveness analysis, it was concluded that application of personal protection measures by
all suburban residents (both susceptible and infected, commuters, and non-commuters) renders higher
benefits (expressed via number of avoided human infection in both patches) per unit of cost invested
in promotion of personal protection measures.

This sends a clear message to local healthcare authorities that may help them in appropriate
preparation and scheduling of the educational campaigns, which seek to motivate local populations
in daily use of personal protection from mosquito bites. If there are no sufficient funds to hold a
large-scale campaign both in the city and its suburbs, then it is better to strongly promote the use of
personal protection measures among the residents of suburban areas, including free distribution of
repellent or mosquito nets to the suburban population.

The role of personal protection via the use of repellent may become even more visible if combined
with other vector control measures, such as elimination of mosquito breeding sites inside and around
households. However, implementation of successful programs based on personal protection would
require cooperation and interaction between the residential communities and healthcare authorities,
which is not easy to reach. A starting point could be to organize educational campaigns and to inform
the local residents that combinations of personal protection measures are likely to be more effective
than single methods.
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