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Abstract: Convex relaxations of functions are used to provide bounding information to deterministic
global optimization methods for nonconvex systems. To be useful, these relaxations must converge
rapidly to the original system as the considered domain shrinks. This article examines the
convergence rates of convex outer approximations for functions and nonlinear programs (NLPs),
constructed using affine subtangents of an existing convex relaxation scheme. It is shown that
these outer approximations inherit rapid second-order pointwise convergence from the original
scheme under certain assumptions. To support this analysis, the notion of second-order pointwise
convergence is extended to constrained optimization problems, and general sufficient conditions for
guaranteeing this convergence are developed. The implications are discussed. An implementation
of subtangent-based relaxations of NLPs in Julia is discussed and is applied to example problems
for illustration.
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1. Introduction

Many process engineering problems may be formulated and approached as optimization
problems. Typical examples include seeking optimal operating conditions for combined cooling,
heating, and power (CCHP) systems [1–3]; seeking optimal schedules for thermal power plants [4,5];
and maximizing recovered energy in heat-waste recovery systems [6,7], subject to thermodynamic and
financial constraints.

Process models may exhibit significant nonconvexity, making them challenging to analyze,
simulate, and optimize. For example, periodic trigonometric functions are often employed to
estimate the total incident radiation in solar power generation systems [8]. In crude-oil scheduling
problems, bilinear terms are typically used to model constraints involving compositions of mixtures
transferred from holding tanks [9]. In the modeling of counterflow heat exchangers, logarithmic
mean temperatures are generally used to describe the temperature difference between hot and cold
streams [10]. Individual process units such as compressors [11] and hydroelectric generators [12] are
often modeled using nonconvex correlations. Moreover, models of thermodynamic properties often
introduce nonconvexity; such models include the Peng–Robinson equation of state [13], the Antoine
equation, and descriptions of the dependence of heat capacity on temperature [7]. Physical property
models involving empirical correlations may also introduce nonconvexities through fractional or
logarithmic terms, such as models of heat transfer coefficients [14] and friction factors in fluid
mechanics [11].

Due to the size and nonconvexity of chemical process models, stochastic global search
algorithms [15] are often used in practice to optimize them; such methods include genetic
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algorithms [16], differential evolution algorithms [17], and particle swarm algorithms [18]. However,
these heuristic methods will typically only locate a suboptimal local minimum in finite time.
Compared with a suboptimal local optima, a global optimum represents a more desirable outcome,
such as the lowest operating cost, the highest profit, or the most efficient heat integration.
Moreover, in several optimization applications, suboptimal local minima are inappropriate and global
optimization is essential. Such problems include parameter estimation problems for energy models [19],
design centering problems [20], and worst-case uncertainty analysis [21] involving either a probabilistic
risk analysis [22] or a safety verification analysis [23]. Parameter estimation aims to choose parameters
to minimize the difference between the prediction of a model and experiment data, and global
optimization can confirm that a particular model is inappropriate regardless of parameter choice.
A worst-case uncertainty analysis determines the maximal possible cost based on an assessment of the
probability distribution of parameter values.

Since stochastic global search algorithms will not typically locate a global optimum in finite time,
we instead focus on deterministic global optimization methods such as branch and bound [24], which
guarantee that the global minimum will be located in finite time to within a prespecified tolerance.
Branch-and-bound methods employ upper and lower bounds of objective functions, which are refined
progressively as the decision space is subdivided, until the bounds converge to within a specified
tolerance. When applied to minimization problems, upper bounds are typically furnished as local
minima obtained by local NLP solvers. Computing lower bounds, on the other hand, requires global
knowledge of the model and constraints and are typically obtained by replacing the objective function
and constraints by convex relaxations. The local optimization of these relaxations yields lower bounds
for the original problem. The convex relaxations supplied to a branch-and-bound method must
converge rapidly to the underlying model as the decision space is subdivided or else the overall global
optimization method will be impeded by cluster effects [25]. This notion of rapid convergence has
been formalized as a second-order pointwise convergence [26,27].

Several established approaches can be used to generate convex relaxations automatically,
including αBB relaxations [28,29], and McCormick relaxations [30–34], all of which exhibit second-order
pointwise convergence under mild assumptions [26,35]. However, obtaining lower bounds by
minimizing these relaxations can be expensive due to their nonlinearity. This article considers relaxing
nonlinear relaxations to piecewise-affine relaxations, which are weaker than the underyling nonlinear
relaxations but may be optimized inexpensively as linear programs. In this approach, one first
constructs subtangents of the nonlinear relaxations at linearization points which sample the decision
space. Then, piecewise-affine relaxations are constructed as the pointwise maximum of all considered
subtangents, and minimized using standard linear-program solvers to generate lower-bounding
information. These piecewise-affine relaxations are shown to inherit second-order pointwise
convergence from the nonlinear relaxations in certain cases, extending recent results concerning affine
relaxations [36]. Thus, in these cases, the piecewise-affine relaxations can converge rapidly enough to
the underlying systems as the decision space is subdivided to be useful in methods for deterministic
global optimization. To support this analysis, a useful notion of second-order pointwise convergence
is developed for general optimization problems with nontrivial constraints; sufficient conditions
are provided under which this convergence is guaranteed; and a counterexample is presented,
showing that a convergence may fail if these sufficient conditions are not satisfied. This convergence
framework for constrained optimization problems complements existing convergence results [37],
which determine the effect of including additional linearization points rather than shrinking the
underlying domain, and may be used in concert with recent techniques [34] to obtain tighter relaxations
of individual functions by leveraging subtangents in a different way. Moreover, it complements
previous work concerning second-order pointwise convergence [26,27,35,36,38], which does not
consider optimization problems with nontrivial constraints.

This article makes the following contributions. First, sufficient conditions are presented for
the second-order pointwise convergence of piecewise-affine outer approximations that are based
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on subgradients of an underlying convex relaxation scheme. These sufficient conditions are
straightforward to check and, thereby, provide a useful and novel guarantee that a broad class
of outer approximation methods will not introduce clustering into a branch-and-bound method
for global optimization. Practical recommendations for constructing appropriate piecewise-affine
relaxations are discussed. Second, these sufficient conditions are extended to nonlinear programs
(NLPs) with nontrivial constraints. It is shown that these constraints can introduce pathological
behavior; this behavior is shown nontrivially to be suppressed once sufficiently strong regularity
assumptions are imposed. This development is, to our knowledge, the first discussion of a second-order
pointwise convergence for optimization problems with nontrivial constraints. Third, the discussed
relaxation approaches are implemented in Julia [39], and it is shown through several numerical
examples that even a simple branch-and-bound method based on the described piecewise-affine
relaxations can compete with the state-of-the-art.

The remainder of this article is structured as follows. Section 2 summarizes relevant established
results and methods, including a recent result [36] concerning subtangent convergence. Section 3
extends this result to piecewise-affine relaxations based on subtangents, thus demonstrating their
rapid convergence to the underlying system. The notion of second-order pointwise convergence
is extended to constrained optimization problems in a useful sense, and sufficient conditions are
developed under which this convergence is guaranteed. Practical considerations when constructing
piecewise-affine relaxations are discussed. Section 4 places the results of this article in context
with outer approximation methods [40–42] and recent subtangent-based tightening methods [34].
Section 5 presents an implementation of this article’s approximation approach in the language Julia;
this implementation is applied to various test problems for illustration.

2. Background

Relevant definitions and established results are summarized in this section. Throughout this
article, scalars are denoted as lowercase letters (e.g., p), vectors are denoted as boldfaced lowercase
letters (e.g., z), their components are denoted with subscripts (e.g., zi), inequalities involving vectors
are to be interpreted component-wise, sets are denoted as uppercase letters (e.g., Q), and the standard
Euclidean norm ‖ · ‖ and inner product 〈·, ·〉 are employed.

2.1. Branch-and-Bound Optimization Using Convex Relaxations

Branch-and-bound methods [24,43,44] are deterministic global optimization algorithms that
guarantee the location of a global minimum for a nonlinear program (NLP) to within a specified
tolerance. These methods proceed by evaluating upper and lower bounds of the objective function,
which are refined progressively as the domain is subdivided. Along the way, knowledge concerning
the feasibility and the best bounds determined thus far may be used to exclude certain subdomains
from consideration. Once the best bounds are equal up to the specified tolerance, the method
terminates successfully.

From here, only continuous problems are considered. If branch-and-bound is applied to such a
minimization problem, the supplied upper bounds can be any local minima obtained by local NLP
solvers. Furnishing appropriate lower bounds, on the other hand, requires global knowledge of
the model and constraints. A common approach is to replace the objective function and constraints
with convex relaxations, which are underestimators that are convex and, therefore, relatively easy to
minimize to global optimality using local methods. Thus, the local optimization of a convex relaxation
yields a lower bound for the original problem. Several established methods may be used to generate
convex relaxations, such as McCormick relaxations [30,31], αBB relaxations [28,29], and relaxations
obtained by Auxiliary Variable Methods [45]. Each of these relaxation schemes can be called a scheme
of convex relaxations, as defined below.
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Definition 1 (from Bompadre and Mitsos [26]). Let Q ⊂ Rn be a nonempty compact set and f : Q→ R
be a continuous function, and define IQ := IRn ∩ Q. Suppose that, for each interval W ∈ IQ, a function
f C

W
: W → R is convex and underestimates f on W. Then, the collection { f C

W
}

W∈IQ
is a scheme of convex

relaxations of f on Q.

2.2. Convergence of Convex Relaxation Schemes

The following definition from Bompadre and Mitsos [26] formalizes a notion of the convex
relaxations of a function approaching that function rapidly as the underlying subdomain shrinks.

Definition 2. Given a function f : Q → R and a scheme of convex relaxations { f C
W
}

W∈IQ
of f on Q as in

Definition 1, this scheme has second-order pointwise convergence if there exists a constant τ > 0 such that,
for each interval W ∈ IQ,

sup
z∈W

(
f (z)− f C

W
(z)

)
≤ τ(wid W)2,

where wid W := max{|wi − wi| : 1 ≤ i ≤ n} is the width of W.

Second-order pointwise convergence is beneficial in global optimization to avoid cluster
effects [25,27], in which a branch-and-bound method must divide excessively often on subdomains
that include or are near a global minimum.

Established results [26,35,38] show that several established methods for generating convex
relaxation schemes produce schemes with second-order pointwise convergence. These methods
include auxiliary variable methods [45], αBB relaxations [28], classic McCormick relaxations [26],
multivariate McCormick relaxations [32], and differentiable McCormick relaxations [38].

2.3. Subtangents of Convex Relaxations

Standard definitions of subtangents, subgradients, and subdifferentials for convex functions are
as follows.

Definition 3 (adapted from Rockafellar [46]). Given a convex set Z ⊂ Rn and a convex function φ : Z → R,
a vector s ∈ Rn is a subgradient of φ at ζ ∈ Z if

φ(z) ≥ φ(ζ) + 〈s, z− ζ〉, ∀z ∈ Z,

in which case the affine mapping z 7→ φ(ζ) + 〈s, z − ζ〉 is a subtangent of φ at ζ. The subdifferential
∂φ(ζ) ⊂ Rn is the collection of all subgradients of φ at ζ.

Consider a particular convex relaxation scheme with second-order pointwise convergence.
A recent result by Khan [36] showed that, although any convex relaxation dominates all of its
subtangents, subtangents for this relaxation scheme will nevertheless inherit the second-order
pointwise convergence under mild assumptions. This result is reproduced below; it employs the
constructions in the following definition and assumption.

Definition 4 (from Khan [36]). For any interval W := [w, w] ∈ IRn, denote the midpoint of W as wmid :=
1
2 (w + w) ∈W. For any α ∈ [0,+∞), define a centrally-scaled interval of W as

sα(W) := {wmid}+ α(W − {wmid}),

where the addition and subtraction are in the sense of Minkowski.

Observe that wmid ∈ sα(W) regardless of the value of α.
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Assumption 1. Consider a nonempty open set Z ⊂ Rn and a function f : Z → R of which the gradient ∇ f
exists on Z and is locally Lipschitz continuous. Let Q ⊂ Z be a nonempty compact set, and suppose that a
scheme of convex relaxations { f C

W
}W∈IQ of f on Q has a second-order pointwise convergence.

Theorem 1 (adapted from Khan [36]). Suppose that Assumption 1 holds, and choose some α ∈ [0, 1).
For each W ∈ IQ, choose some ζW ∈ sα(W) and a subgradient σW ∈ ∂ f C

W
(ζ), and consider a subtangent

f C
sub,W

: W → R of f on W with

f C
sub,W

(z) ≡ f C
W
(ζ) + 〈σW , z− ζ〉.

Then, { f C
sub,W
}W∈IQ is also a scheme of convex relaxations of f on Q with a second-order pointwise convergence.

Observe that this theorem does not place any differentiability requirements on the underestimators
f C

W
and does not require the twice-continuous differentiability of f . Choosing each ζW to be an

element of sα(W) rather than W is crucial; Khan [36] presents a counterexample in which second-order
pointwise convergence is not obtained when this requirement is violated. Nevertheless, Khan [36]
also shows that if the entire scheme of convex relaxations is uniformly continuously differentiable in a
certain sense, then we may replace sα(W) with W without affecting the conclusion of Theorem 1.

3. New Convergence Results

This section extends the second-order pointwise convergence result of Theorem 1 to
piecewise-affine outer approximations of functions and nonlinear programs (NLPs), as the underlying
domain is reduced in size. This result complements an analysis by Rote [37], who considered the effect
on convergence of including additional cutting planes rather than shrinking the domain. Sufficient
conditions for a second-order pointwise convergence of NLPs with nontrivial constraints are also
developed and presented.

3.1. Relaxations of Functions

To proceed, we must first strengthen Assumption 1.

Assumption 2. Suppose that Assumption 1 holds and that the convex relaxations f C
W

are Lipschitz continuous
on their respective domains.

Definition 5. Suppose that Assumption 2 holds, and consider some α ∈ [0, 1). For each interval W ∈ IQ,
choose a point ζW ∈ sα(W) and a subset BW ⊂W. Define a subgradient-cutting mapping:

f C
cut,W

:= z 7→ max{ f C
W
(ζ) + 〈σW(ζ), z− ζ〉 : ζ ∈ BW ∪ {ζW}}, (1)

where, in each case, σW(ζ) is a finite subgradient of f C
W

at ζ.

Observe that any subgradient-cutting mapping f C
cut,W

is convex, since it is a pointwise maximum

of affine functions. Moreover, it is an underestimator of both f C
W

and f on W, since it is the pointwise

maximum of underestimators. Thus, { f C
cut,W
}W∈IQ is a scheme of convex relaxations of f on Q. If BW

is finite, then f C
cut,W

is additionally piecewise affine. The following corollary of Theorem 1 provides a
new convergence result for polyhedral outer approximations, by showing that subgradient-cutting
mappings inherit a second-order pointwise convergence.
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Theorem 2. Suppose that Assumption 2 holds, choose some α ∈ [0, 1), and consider a scheme { f C
cut,W
}W∈IQ

of subgradient-cutting convex relaxations as in Definition 5. The scheme { f C
cut,W
}W∈IQ has a second-order

pointwise convergence.

Proof. For each W ∈ IQ, observe that f C
cut,W

dominates the affine mapping

z 7→ f C
W
(ζW) + 〈σW(ζW), z− ζW〉

on W, which is a valid choice of f C
sub,W

in Theorem 1. Since ζ0
W ∈ sα(W) in each case, it follows that,

for each W ∈ IQ and each z ∈W,

f (z)− f C
cut,W

(z) ≤ f (z)− f C
sub,W

(z).

The claim then follows from Theorem 1.

3.2. Relaxations of Constrained Optimization Problems

Established definitions and analyses concerning second-order pointwise convergence [26,27,35,
36,38] have focused on applications in global optimization problems with only bound constraints.
To extend this analysis, this section considers the second-order pointwise convergence of optimization
problems with nontrivial inequality constraints and applies Theorem 2 to handle piecewise-affine
relaxations. Equality constraints may be regarded similarly, though with some care. As Example 1
below will illustrate, nontrivial constraints introduce obstacles to analysis that are not present in the
box-constrained case, and must be circumvented by enforcing additional assumptions.

This section considers optimization problems that are represented as constrained nonlinear
programming problems (NLPs) as follows.

Assumption 3. Suppose that Assumption 1 holds, and that it also holds with each component gi of a function
g : Z → Rm in place of f and with a scheme {gC

i,W
}W∈IQ in place of { f C

W
}W∈IQ. For each set W ∈ IQ, suppose

that f C
W

and each gC
i,W

are Lipschitz continuous on W. Let F denote the collection of all sets W ∈ IQ for which
there exists z ∈W that satisfies g(z) ≤ 0, and assume that F is nonempty.

Supposing that Assumption 3 holds, consider the following NLP for each W ∈ F. (Here “subject
to” is abbreviated as “s.t.”.)

min
z∈W

f (z)

s.t. g(z) ≤ 0.
(2)

For each W ∈ F, Weierstrass’s Theorem implies the NLP (2) has at least one solution and has a
finite optimal objective function value v(W). Replacing the objective function and constraints in (2) by
the convex underestimators provided in Assumption 3, we obtain the following auxiliary NLP.

min
z∈W

f C
W
(z)

s.t. gC
i,W

(z) ≤ 0, ∀i = {1, . . . , m}.
(3)

Again, Weierstrass’s Theorem implies the convex NLP (3) has at least one solution and has a finite
optimal objective function value v(W). Since the objective function and constraints of Equation (2)
were replaced in (3) by underestimators, (3) is a relaxation of (2) in that v(W) ≤ v(W) for each
W ∈ F. Such relaxations are commonly employed in deterministic methods for constrained global
optimization [44]. Equality constraints in (2) may be relaxed analogously by replacing them with
inequalities involving a convex underestimator and a concave overestimator; this was not presented
here for simplicity.
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We will explore conditions under which second-order pointwise convergence of the schemes of
underestimators for f and gi in Assumption 3 translate to second-order pointwise convergence of (3)
to (2), in the following sense.

Definition 6. Suppose that Assumption 3 holds, and consider the optimal-value mappings v and v as defined
above. Over all W ∈ F, the relaxed NLP (3) exhibits second-order pointwise convergence to the original NLP (2)
if there exists τv > 0 for which

0 ≤ v(W)− v(W) ≤ τv(wid W)2.

Since branch-and-bound methods require only bounding and feasibility information to proceed,
constrained second-order pointwise convergence in this sense plays the same role in eliminating
clustering [27] as second-order pointwise convergence for bound-constrained global optimization.
Nontrivial constraints may also be leveraged in range-reduction techniques, though we will not
consider these further.

In light of Theorem 2, the convex underestimators f C
W

and gC
i,W

in Assumption 3 may be chosen
to be subgradient-cutting mappings. In this case, the relaxed NLP (3) may be rearranged to exploit
its structure for efficiency. Suppose that points ζW ∈ sα(W) and subsets BW ⊂ W are chosen as
in Definition 5 and that analogous points ζ

(i)
W ∈ sα(W) and subsets B(i)

W ⊂ W are chosen for each

i ∈ {1, . . . , m}. Suppose that each set BW and B(i)
W is finite. Let σ f ,W(ζ) denote a subgradient of f C

W
at

ζ ∈W, and let σgi ,W(ζ) denote a subgradient of gC
i,W

at ζ. (Since f C
W

and gC
i,W

are Lipschitz continuous,
such subgradients exist.) Then, for each W ∈ IQ, if subgradient-cutting mappings are employed as
the estimating schemes in Assumption 3, the relaxed NLP (3) has the same optimal objective function
value as the following linear program (LP):

min
z∈W, t∈R

t

s.t. f C
W
(ζ) + 〈σ f ,W(ζ), z− ζ〉 ≤ t, ∀ζ ∈ {ζW} ∪ BW

gC
i,W

(ζ) + 〈σgi ,W(ζ), z− ζ〉 ≤ 0, ∀ζ ∈ {ζ(i)W } ∪ B(i)
W , ∀i = {1, . . . , m}.

(4)

Such an LP can generally be solved more efficiently than a typical NLP of a similar size; these
relaxations will be applied to several numerical examples in Section 5 below.

We might hope that the relaxed NLP (3) exhibits second-order pointwise convergence to (2) with
no additional requirements beyond Assumption 3. However, the following counterexample shows
that this is not always the case.

Example 1. Consider sets Z := R and Q := [−1, 0] ⊂ Z, a function f : Z → R for which f (z) ≡ z, and a
function g : Z → R for which g(z) ≡ z2. Consider the following schemes of convex estimators for f and g
over all intervals W ∈ IQ:

f C
W
(z) ≡ z, and gC

W
(z) ≡ z2 − (wid W)2.

Observe that f and g are convex and smooth, as are their convex underestimators, and that Assumption 3
is satisfied. For each ε ∈ [0, 1], define Wε := [−ε, 0] ∈ IQ.

With these choices of functions and sets, it is readily verified that each Wε ∈ F and the NLP (2) is trivially
solved on Wε for each ε ∈ [0, 1] to yield an optimal objective function value of

v(Wε) = min{z ∈ [−ε, 0] : z2 ≤ 0} = 0,

with a minimum of z∗ := 0 in each case.
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Next, for each ε ∈ [0, 1], observe that

gC
Wε

(z) ≡ z2 − ε2,

and so the constraint gC
Wε

(z) ≤ 0 is satisfied for each z ∈ Wε. Hence, the relaxed NLP (3) is trivially solved
to yield:

v(Wε) = min{z ∈ [−ε, 0] : z2 − ε2 ≤ 0} = min
z∈[−ε,0]

z = −ε,

with a minimum of z∗ := −ε in each case. So, for each ε ∈ [0, 1], we have

v(Wε)− v(Wε) = ε = wid Wε,

in which case

lim
ε→0+

v(Wε)− v(Wε)

(wid Wε)2 = +∞,

and so the relaxed NLP (3) does not exhibit second-order pointwise convergence to (2).

The above example shows that nontrivial constraints may determine whether second-order
pointwise convergence holds, even when schemes of convex underestimators for the objective and
constraints are available with second-order pointwise convergence and even when the original NLP (2)
is convex. This is essentially because, as in the above example, it is possible for a small perturbation
of a nontrivial inequality constraint to change the corresponding feasible set significantly. In such
cases, it is possible for the optimal objective function value of (3) to approach the optimal objective
function value of (2) slowly as W shrinks, if at all. A nonconvexity of the components of g may present
additional obstacles but is not the primary hindrance here.

A sufficient condition for the second-order pointwise convergence of (3) may, nevertheless, be
obtained by strengthening Assumption 3 as follows. The extra requirements of this assumption are
adopted from Shapiro [47], who used similar requirements to rule out pathological behavior in a
perturbation analysis for NLPs. These requirements are essentially second-order sufficient conditions
to ensure that the feasible set of (2) is somewhat stable under perturbations. Recall that no such
additional assumptions were needed in the bound-constrained case explored in Theorem 2.

Assumption 4. Suppose that Assumption 3 holds and that the functions f and g are twice-continuously
differentiable on Z. For each W ∈ F, express the bound constraints in the NLPs (2) and (3) as explicit inequality
constraints, and append these to g. For each W ∈ F, let M(W) ⊂ W denote the optimal solution set for the
NLP (2), and suppose that all of the following conditions are satisfied for each y ∈ M(W).

1. The NLP (2) satisfies the linear-independence constraint qualification (LICQ). That is, with I(y) denoting
the subset of {1, . . . , m} for which gi(y) = 0, the gradients ∇gi(y) for i ∈ I(y) are linearly independent.
Hence, as shown by Rockafellar [46], there exist unique multipliers µi(W) ≥ 0 (depending on W but not
y) for each i ∈ {1, . . . , m} for which

• 0 = ∇ f (y) + ∑m
i=1 µi(W)∇gi(y), and

• µi(W) = 0 for each i /∈ I(y).

2. µi(W) > 0 for each i ∈ I(y).
3. Any vector w ∈ Rn that satisfies both of the following conditions

• wT∇gi(y) = 0 for each i ∈ I(y), and
• wT(∇2 f (y) + ∑m

i=1 µi(W)∇2gi(y))w = 0

is also an element of the linear space tangent to M(W) at y.

Theorem 3. If Assumption 4 holds, then the relaxed NLP (3) exhibits second-order pointwise convergence to (2)
over all W ∈ F, as does the LP (4) based on subgradient-cutting mappings.
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Proof. Under Assumption 4, Theorem 2 shows that the LP (4) is, in each case, equivalent to an instance
of (3) (adopting different schemes of underestimators that nevertheless still satisfy Assumption 4).
Hence, it suffices to show only that the relaxed NLP (3) exhibits second-order pointwise convergence
to (2).

By Assumption 4, there exists τ > 0 for which, for each W ∈ F,

0 ≤ sup
z∈W

( f (z)− f C
W
(z)) ≤ τ(wid W)2

and 0 ≤ sup
z∈W

(gi(z)− gC
i,W

(z)) ≤ τ(wid W)2, ∀i ∈ {1, . . . , m}.

For each W ∈ F, consider the following variants of the NLP (2):

min
z∈W

f (z)

s.t. g(z)− τ(wid W)2 ≤ 0, ∀i = {1, . . . , m},
(5)

and
min
z∈W

f C
W
(z)

s.t. g(z)− τ(wid W)2 ≤ 0, ∀i = {1, . . . , m},
(6)

and let v†(W) and v†(W) denote the respective optimal objective function values for (5) and (6).
Analogously to the construction of M(W), let M(W), M†(W), and M†(W) denote the respective
optimal solution sets for (3), (5), and (6); these and M(W) are all nonempty compact sets. Choose
the respective optimal solutions ξ(W) ∈ M(W), ξ(W) ∈ M(W), ξ†(W) ∈ M†(W), and ξ†(W) ∈
M†(W), so that the distance ‖ξ(W)− ξ†(W)‖ is minimized. (Such a choice is always possible due to
Weierstrass’s Theorem and Lemma 1 in Section 5 of Filippov [48].) By comparing the feasible sets
and objective functions of the constructed NLPs, observe that v(W) ≥ v(W) ≥ v†(W) for each W ∈ F.
Hence, it suffices to establish the existence of τv > 0 for which, for each W ∈ F,

v(W)− v†(W) ≤ τv(wid W)2.

Now, by construction of ξ†(W) and noting that (5) and (6) share the same feasible set, observe
that f (ξ†(W)) ≤ f (ξ†(W)). Thus, for each W ∈ F,

v†(W)− v†(W) = f (ξ†(W))− f C
W
(ξ†(W)) ≤ f (ξ†(W))− f C

W
(ξ†(W)) ≤ τ(wid W)2. (7)

Next, under Assumption 4, observe that (2) satisfies the hypotheses of Corollary 3.2 by Shapiro [47].
Hence, M is “upper Lipschitzian” in the sense of [47]; since Q is compact, this implies the existence of
τL > 0 (independent of W) for which

‖ξ(W)− ξ†(W)‖ ≤ τL(wid W)2, ∀W ∈ F.

With k f denoting a Lipschitz constant for f on Q, it follows that, for each W ∈ F,

v(W)− v†(W) = f (ξ(W))− f (ξ†(W)) ≤ τLk f (wid W)2. (8)

Adding Equations (7) and (8) yields

v(W)− v†(W) = (v(W)− v†(W)) + (v†(W)− v†(W)) ≤ (τ + τLk f )(wid W)2

for each W ∈ F, as required.
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To our knowledge, this is the first result establishing sufficient conditions for second-order
pointwise convergence for relaxations of NLPs with nontrivial constraints. While Assumption 4 is
somewhat stringent, it crucially does not require each optimal solution set M(W) to be a singleton,
as is typically assumed in quantitative sensitivity analyses for NLPs. Observe that the NLP considered
in Example 1 does not satisfy the LICQ and, thus, does not satisfy Assumption 4.

The proof of Theorem 3 does not make use of the convexity of the relaxations f C
W

and gC
i,W

at
all, beyond establishing the independence of the multipliers µi(W) to y in Assumption 4. It may be
possible—though nontrivial—to exploit this convexity to weaken the hypotheses of Theorem 3.

While any equality constraint h(z) = 0 may be represented as the pair ±h(z) ≤ 0 of inequality
constraints, this transformation yields an NLP that can never satisfy the LICQ and, thus, cannot
satisfy Assumption 4. One way to extend Theorem 3 to NLPs with equality constraints without
violating the LICQ is to relax each equality constraint h(z) = 0 by replacing it with two weaker
inequality constraints:

h(z)− ε ≤ 0 and − h(z)− ε ≤ 0,

for small ε > 0. Affine equality constraints may alternatively be eliminated by changing
variables appropriately.

3.3. Constructing Subgradient-Cutting Mappings

Constructing subgradient-cutting mappings for functions or outer-approximating LPs (4) for
NLPs in practice involves making several decisions; this section presents some suggestions for handling
these decisions.

The simplest way to generate suitable points ζW ∈ sα(W) is to choose ζW to be the midpoint of
the interval W. This choice is valid regardless of α and is straightforward to compute.

The sets BW on which subgradients are evaluated may, in principle, be chosen in any manner;
we suggest using points for which data is already available if possible or leveraging any prior
knowledge concerning which points might be useful. In the absence of any such prior knowledge, Latin
hypercube sampling (as described by Audet and Hare [49]) is a straightforward method for generating
pseudo-random points that, in a sense, sample all of W. Intuitively, including more elements in BW
results in a larger LP (4) and demands more subgradient evaluations to set up but also yields a tighter
relaxation (4) of (2). We consider the effect of the number of linearization points in BW on several test
problems in Section 5 below.

As described earlier, several established relaxation schemes may be used to construct schemes of
underestimators { f C

W
}W∈IQ and {gC

i,W
}W∈IQ with second-order pointwise convergence. Subgradients

may then be computed using standard automatic differentiation tools [50] when all functions
involved are continuously differentiable; in this case, subgradients coincide with gradients.
Otherwise, if nonsmooth relaxations are employed, then dedicated nonsmooth variants of automatic
differentiation [30,51] may be applied to compute subgradients efficiently.

4. Comparison with Established Relaxation Methods

In this section, we compare the subtangent-based approach of this article with established
outer approximation (OA) methods [40–42,52] and a recent subgradient-based enhancement of the
McCormick relaxations by Najman and Mitsos [34].

OA approximates nonlinear convex relaxations as the pointwise maximum of the collection of their
affine supports [42]. There are several established schemes for constructing the affine supports in OA,
such as interval bisection, slope bisection, maximum error rules, and cord rules [42]. The convergence
result of this paper applies to all of these schemes in principle, assuming that they are based on
an underlying relaxation scheme with second-order pointwise convergence and that a subdomain’s
midpoint is always chosen as one linear support. These complement the convergence results in
References [37,42], which show that for any fixed subdomain, the piecewise-affine convex relaxations
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constructed by combining the linear supports converge quadratically to the dominating convex
relaxations as the number of linearization points increases.

Najman and Mitsos [34] propose a tighter variant of McCormick relaxations of compositions of
known intrinsic functions (which include the standard scientific calculator operations). This variant
provides improved interval bounds for every composed function compared with classic McCormick
relaxations and, thus, typically results in tighter overall relaxations for the composite function.
The improved bounds are described by constructing simple affine or piecewise-affine relaxations for
each factor and minimizing or maximizing these relaxations, resulting in tighter bounds. This process
can be repeated based on the new bounds to get further tighter bounds of each factor. Then,
tighter overall relaxations are approximated by their subtangents at midpoints of intervals. In the
current article’s approach, on the other hand, the overall composite function is approximated
by piecewise-affine relaxations; individual functions are not considered directly, and there is no
requirement to use McCormick relaxations. Both approaches can be combined; the tight relaxations
of the Najman-Mitsos method may be employed as the underlying convex relaxations of which the
subtangents are used in Theorem 2. Notably, the numerical results of Najman and Mitsos [34] suggest
that it is not computationally worthwhile to select linearization points (such as the sets BW we consider),
optimally using optimization solvers; based on this result, we do not recommend choosing the sets BW
by solving a nontrivial optimization problem.

5. Implementation and Examples

This section discusses an implementation of the outer-approximating LPs (4), which was used to
illustrate the convergence features discussed in this article.

5.1. Implementation in Julia

A numerical implementation in Julia v0.6.4 [39] was developed to solve nonconvex NLPs of
the form (2) to global optimality, by using outer-approximating LPs of the form (4) to obtain lower
bounds in an overarching branch-and-bound method for a deterministic global optimization. For
simplicity, the central-scaling factor α is set to 0 in each case, so the midpoint of each interval W is
always selected to be one of the linearization points at which the subgradients are evaluated. For each
i ∈ {1, . . . , m}, the sets B(i)

W are set to BW . Equality constraints are effectively replaced in each case by a
pair of inequality constraints; a satisfaction of Assumption 4 was not verified.

This implementation uses EAGO v0.1.2 [53,54] to carry out a simple branch-and-bound
method (without any range reduction) and to compute convex relaxations of nonconvex functions.
JuMP v0.18.2 [55] is used as an interface with optimization solvers; CPLEX v12.8 is used to solve LPs,
and IPOPT v3.12.8 [56] is used to solve NLPs. Convex relaxations and subgradients are computed
automatically in EAGO using either the standard McCormick relaxations [30,31] or the differentiable
McCormick relaxations [38], combined with the interval-refining algorithm of Najman and Mitsos [34].
Latin hypercube sampling, as described by Audet and Hare [49], is adopted to select linearization
points pseudo-randomly while sampling the entire subdomains in question. All numerical results
presented in the following section were obtained by running this implementation on a Dell Precision
T3400 workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory were
dedicated to each job.

5.2. Convergence Illustration

A first numerical example illustrates the second-order convergence results of this article.

Example 2. As in Reference [38], consider the function

f : [0.3, 0.7]→ R : x 7→ (x− x2)(log x− e−x).
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This function is plotted in Figure 1, along with a series of subgradient-cutting relaxations constructed as described
in Definition 5. These relaxations were evaluated using the implementation described above on intervals of the
form X(ε) := [0.5− ε, 0.5 + ε], for each ε := 0.4(2−k), where k ∈ {1, . . . , 20}.

Figure 1. A plot of the function f in Example 1 (dashed) and its associated subgradient-cutting
relaxations (solid) on intervals of the form [0.5− ε, 0.5 + ε] for 0 < ε < 0.2.

With φX(ε) denoting the relaxation of f constructed on X(ε), Figure 2 presents a log-log plot of the
maximum discrepancy supx∈X(ε)( f (x)− φX(ε)(x)) against the width of the interval X(ε), together with a
reference line with a slope of 2. The agreement between these two suggests that the convex relaxations φx(ε)

exhibit second-order pointwise convergence to f as ε→ 0+.

Figure 2. A log-log plot of d f := supx∈X(ε)( f (x)− φX(ε)(x)) vs. w := 2ε (circles) and a reference line
(dotted) with a slope of 2, for Example 1.

5.3. Optimization Test Problems

The described implementation was applied to three nonconvex NLP instances from the MINLPLib
benchmark library [57], to examine the performance of LP outer approximations in a global
optimization setting, and to consider the effect of including more linearization points in each set
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BW . Small but relatively difficult nonconvex problems were chosen in each case. For comparison, these
problems were also solved using the state-of-the-art global optimization solver BARON v18.5.8 [58,59]
in GAMS. GAMS formulations for these problems were downloaded from the MINLPLib website [57]
and were adapted to include bounds on any unbounded variables. These problems were considered to
be solved to global optimality (by either our implementation or BARON) whenever the determined
upper and lower bounds were equal to within either an absolute tolerance of 10−6 or a relative
tolerance of 10−3. In each of these cases, our implementation (which does not employ range reduction)
outperformed BARON with range reduction disabled; while not conclusive, this does suggest
that piecewise-affine outer approximations of McCormick relaxations without auxiliary variables
are competitive.

Example 3. The first considered NLP instance was bearing, which has 14 continuous variables, 10 equality
constraints, and 3 inequality constraints, and is as follows.

min
x∈X,t∈R

t

s.t. 10000t− 10000x7 − 10000x8 = 0
−1.42857142857143x4x6 + 10000x8 = 0

10x7x9 − 0.00968946189201592x3(x4
1 − x4

2) = 0
143.3076x10x4 − 10000x7 = 0

3.1415927x6(0.001x9)
3 − 6e− 6x3x4x13 = 0

101000x12x13 − 1.57079635x6x14 = 0
log10(0.8 + 8.112x3)− 10964781961.4318x−3.55

11 = 0
−0.5x10 + x11 = 560

x1 − x2 ≥ 0
0.0307x2

4 − 0.3864(0.0062831854x1x9)
2x6 ≤ 0

101000x12 − 15707.9635x14 ≤ 0
−(ln(x1)− ln(x2)) + x13 = 0

−(x2
1 − x2

2) + x14 = 0

(9)

Since finite upper bounds of some decision variables were not provided in MINLPLib, we set them to
reasonable values for branch-and-bound purposes. The considered domains for the variables x are shown in
Table 1.

Table 1. The considered domains of variables x when solving (9).

Component Lower Bound Upper Bound

x1 1 6
x2 1 6
x3 1 6
x4 1 6
x6 990 1000
x7 0.0001 2
x8 0.0001 2
x9 1 2
x10 50 50
x11 550 600
x12 1 3
x13 0.0001 3
x14 0.001 10

Applying our implementation in EAGO with lower bounds computed using LP outer approximations
Equation (4), this problem is solved to a global minimum of t∗ = 1.931. Table 2 shows the impact on
solution time of the number of linearization points (1 + |BW |) whose subgradients are used to construct the
subgradient-cutting mappings. As described above, these were chosen pseudo-randomly using Latin hypercube
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sampling. Among the numbers of linearization points considered, 8 was time-optimal for this example; we
expect this is because too few linearization points yields looser relaxations and poorer lower bounds early in the
branch-and-bound process, whereas too many linearization points yields larger LP outer approximations (4)
for lower bounding, requiring excessive computational time to solve. Our implementation was run both with
and without the Najman–Mitsos interval-refining algorithm [34]; Table 3 shows comparable solution times in
each case.

Table 2. The impact of the number of linearization points (1 + |BW |) on our implementation’s
branch-and-bound solution time for (9).

# Linearization Points Lower-Bounding Time (s) * Upper-Bounding Time (s) * Total Time (s) * # Iterations *

1 73.94 654.10 733.47 15,309
2 17.39 93.66 111.84 2217
4 10.25 26.13 36.68 737
8 12.54 17.47 30.26 484
16 20.34 13.09 33.68 402
32 35.76 13.38 49.46 364
64 66.38 10.35 77.17 332

* Each number here is the average of 10 runs. The package loading time in Julia is excluded from the reported
solving time.

Table 3. The solution statistics for our implementation when applied to (9).

# lin. pts. † N-M ‡ Lower-Bounding Time (s) * Upper-Bounding Time (s) * Total Time (s) * # Iterations *

1 Yes 70.56 596.16 672.04 15,309
1 No 53.15 581.41 639.77 15,309

2 Yes 17.39 93.66 111.84 2217
2 No 16.96 125.41 140.77 2923

4 Yes 10.25 26.13 36.68 737
4 No 11.33 55.91 67.71 1194

* Each number here is the average of 10 runs. The package loading time in Julia is excluded from the reported
solving time. † The number of linearization points (1 + |BW |) at which subgradients were evaluated. ‡ “Yes”
if Najman–Mitsos interval tightening was employed.

This problem was also solved with BARON in GAMS, both with and without range reduction, with
the results shown in Table 4. (Our implementation did not incorporate range reduction.) No solution was
identified before the allocated time of 1000 s in either case. We were unable to determine why; this did not appear
to be an issue of setting tolerances incorrectly (such as constraint satisfaction tolerances), and the lower-bounding
LP statistics were not readily available. Perhaps the highly nonlinear logarithmic terms interfere with BARON’s
outer approximation methods in this case.

Table 4. The results of BARON v18.5.8 in GAMS when applied to (9), with 1000 s of solver time
allocated in each case.

Range Reduction Used? No Yes

Wall clock time 1020.00 1030.00
Total CPU time 1000.00 1000.00

Total no. of BaR * iterations 282,404 467,659
Best solution found at node 184,858 1

Max. no. of nodes in memory 40,177 53,517
Best upper bound identified 1.95 1.91
Best lower bound identified 1.02 1.65

* Branch-and-reduce.

Example 4. The second considered NLP instance from the MINLPLib library was ex6_2_11, with 4 continuous
variables and 2 equality constraints and with bound constraints as provided by the library. This instance is
shown below.
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min
x∈X, t∈R

t

s.t. − ((15.3261663216011x2 + 23.2043471859416x3

+ 6.69678129464404x4) ln(2.1055x2 + 3.1878x3 + 0.92x4)

+ 1.04055250396734x2 − 2.24199441248417x3 + 3.1618173099828x4

+ 6.4661663216011x2 ln(x2/(2.1055x2 + 3.1878x3 + 0.92x4))

+ 12.2043471859416x3 ln(x3/(2.1055x2 + 3.1878x3 + 0.92x4))

+ 0.696781294644034x4 ln(x4/(2.1055x2 + 3.1878x3 + 0.92x4))

+ 9.86x2 ln(x2/(1.972x2 + 2.4x3 + 1.4x4))

+ 12x3 ln(x3/(1.972x2 + 2.4x3 + 1.4x4))

+ 7x4 ln(x4/(1.972x2 + 2.4x3 + 1.4x4))

+ (1.972x2 + 2.4x3 + 1.4x4) ln(1.972x2 + 2.4x3 + 1.4x4)

+ 1.972x2 ln(x2/(1.972x2 + 0.283910843616504x3 + 3.02002220174195x4))

+ 2.4x3 ln(x3/(1.45991339466884x2 + 2.4x3 + 0.415073537580851x4))

+ 1.4x4 ln(x4/(0.602183324335333x2 + 0.115623371371275x3 + 1.4x4))

− 17.2981663216011x2 ln(x2)− 25.6043471859416x3 ln(x3)

− 8.09678129464404x4 ln(x4)) + t = 0

x2 + x3 + x4 = 1

(10)

Using our implementation, the problem is solved to a global minimum of t∗ = −2.67× 10−6. Table 5
summarizes the results of our implementation, including the impact on solution time of the number of
linearization points and the interval-computing algorithm. No range reduction was employed. This case
study also suggests that using multiple linearization points can reduce the computational time required.

Table 5. The solution statistics for our implementation when applied to (10).

# lin. pts. † N-M ‡ Lower-Bounding Time (s) * Upper-Bounding Time (s) * Total Time (s) * # Iterations *

1 Yes 573.26 2356.06 3133.24 470,291
1 No 400.54 2028.58 2600.11 479,501

2 Yes 323.64 882.06 1278.40 210,928
2 No 360.95 1393.27 1872.82 310,279

4 Yes 251.70 513.98 806.21 136,107
4 No 322.95 1003.76 1404.62 245,125

* Each number here is the average of 5 runs. The package loading time in Julia is excluded from the reported
solving time. † The number of linearization points (1 + |BW |) at which subgradients were evaluated. ‡ “Yes”
if Najman–Mitsos interval tightening was employed.

BARON could not solve this problem in 1000 s without range reduction, throwing an error suggesting
the bounds were inappropriate, but did solve it with range reduction during preprocessing, obtaining the same
optimal solution as our implementation. The corresponding statistics are displayed in Table 6.

Table 6. The solution statistics for (10), using BARON with range reduction.

Wall clock time (s) 13.00
Total CPU time used (s) 12.48

Total no. of BaR * iterations 12,475
Max. no. of nodes in memory 357

* Branch-and-reduce.
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Example 5. The final considered NLP instance from the MINLPLib library was process, shown as follows,
with bound constraints as provided by the library.

min
x∈X, t∈R

t

s.t. 5.04x2 + 0.035x3 + 3.36x4 + 10x9 − 0.063x1x8 = t
−3x8 + x10 = −133

x7 + 0.222x10 = 35.82
1.22x1 − x2 − x4 = 0

−(x3 + x4)/x2 + x6 = 0
−0.325x5 − 1.098x6 + x8 + 0.038x2

6 = 57.425
x1 − (0.13167x6 − 0.00667x2

6 + 1.12)x2 = 0
−0.001(x1x5x7/(−x5 + 98)) + x9 = 0

(11)

Our Julia implementation solves this problem to a global minimum of t∗ = −1161.34; the solution statistics
are listed in Table 7. Qualitatively, the results display similar trends to Example 3.

Table 7. The solution statistics for our implementation applied to (11).

# lin. pts. † N-M ‡ Lower-Bounding Time (s) * Upper-Bounding Time (s) * Total Time (s) * # Iterations *

1 Yes 10.06 33.71 45.69 4133
1 No 17.63 95.34 116.28 8939

2 Yes 7.20 13.32 21.67 2312
2 No 13.66 37.72 53.54 4662

4 Yes 6.87 7.65 15.45 1394
4 No 13.27 19.32 34.13 3044

8 Yes 8.39 5.13 14.28 1064
8 No 18.53 16.36 36.30 2769

* Each number here is the average of 10 runs. The package loading time in Julia is excluded from the reported
solving time. † The number of linearization points (1 + |BW |) at which subgradients were evaluated. ‡ “Yes”
if Najman–Mitsos interval tightening was employed.

When range reduction was turned off in BARON, the upper and lower bounds did not converge by the end
of the allocated 1000 s. (Recall that range reduction is not yet included in our implementation.) The best lower
bound obtained by that time was t̄ = −3085.43. With range reduction, BARON solved the problem rapidly. The
solution statistics for BARON are presented in Table 8.

Table 8. The solution statistics for (11) using BARON, with 1000 s of solver time allocated in each case.

Range Reduction Used? No Yes

Wall clock time (s) 1002.00 1.00
Total CPU time (s) 1000.00 0.44

Total no. of BaR * iterations 330,033 563
Best solution found at node 298,558 9

Max. no. of nodes in memory 40,307 51
Best upper bound determined −1161.34 −1161.34
Best lower bound determined −3085.43 −1162.37

* Branch-and-reduce.

5.4. Application: Power Scheduling

A practical example from References [60,61] considers an application in electrical engineering,
with two electrical generators connected to a net with three nodes. The constraints enforce that the
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power flowing into a node balances the power flowing out. The NLP formulation is shown below,
and the lower/upper bounds of variables are provided in Table 9.

min
x∈X,t∈R

t

s.t. 0.4− x1 + 2Cx2
5 + x5x6(D sin(−x8)− C cos(−x8)) + x5x7(D sin(−x9)− C cos(−x9)) = 0

0.4− x2 + 2Cx2
6 + x5x6(D sin(x8)− C cos(x8)) + x5x7(D sin(x8 − x9)− C cos(x8 − x9)) = 0

0.2− x3 + 2Dx2
5 − x5x6(C sin(−x8) + D cos(−x8))− x5x7(C sin(−x9) + D cos(−x9)) = 0

0.2− x4 + 2Dx2
6 − x5x6(C sin(x8) + D cos(x8))− x5x7(C sin(x8 − x9) + D cos(x8 − x9)) = 0

0.8 + 2Cx2
7 + x5x7(D sin(x9)− C cos(x9)) + x6x7(D sin(x9 − x8)− C cos(x9 − x8)) = 0

− 0.337 + 2Dx2
7 − x5x7(C sin(x9) + D cos(x9))− x6x7(C sin(x9 − x8) + D cos(x9 − x8)) = 0

t ≥ 3000x1 + 1000x3
1 + 2000x2 + 666.667x3

2

C = (48.4/50.176) sin(0.25)

D = (48.4/50.176) cos(0.25)

(12)

Table 9. The bound constraints for decision variables in (12).

Component Lower Bound Upper Bound

x1 0.5 1.2
x2 0.5 1.2
x3 0 0.3
x4 0 0.3
x5 0.90909 1.0909
x6 0.90909 1.0909
x7 0.90909 1.0909
x8 −0.5 0.3
x9 −0.5 0.3

This problem was solved with our implementation to a global minimum of t∗ = 5055.0,
agreeing with a previously located local minimum [61] obtained using the local solvers CONOPT
and MINOS (but not previously verified to be a global minimum). The global optimization solvers
BARON and ANTIGONE [62] cannot be used to solve this problem as they do not support the
trigonometric operations.

6. Conclusions and Future Work

This article shows that, under mild assumptions, if piecewise-affine convex relaxations of functions
are constructed using subtangents of an original relaxation scheme, then the piecewise-affine relaxation
scheme will inherit second-order pointwise convergence from the original scheme. A foundation
for the second-order pointwise convergence of NLPs with nontrivial constraints is also provided,
along with sufficient conditions motivated by Shapiro [47] for exhibiting this convergence. Combining
these results, if outer-approximating LPs (4) are constructed from NLPs using subtangents, and the
NLP-specific sufficient conditions for convergence are satisfied, then these LPs inherit second-order
pointwise convergence. Ultimately, these results motivate using subtangents in practice: even though
their use weakens a relaxation scheme, they do not weaken the scheme enough to introduce clustering
into a branch-and-bound-style global optimization method when the developed sufficient conditions
are satisfied. Moreover, their simplicity makes them easier to use in practice, as our implementation in
Julia via EAGO demonstrates.

Future work will involve developing the Julia implementation further and further developing
the convergence analysis for NLPs to better make use of convexity. Moreover, second-order
pointwise convergence does not address a branch-and-bound method’s performance early on in
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the branch-and-bound tree; we expect that developing tighter convex relaxation schemes will still be
beneficial to the performance of global optimization algorithms.
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