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Abstract: Monoclonal antibodies (mAbs) are commonly glycosylated and show varying levels of
galactose attachment. A set of experiments in our work showed that the galactosylation level of
mAbs was altered by the culture conditions of hybridoma cells. The uridine diphosphate galactose
(UDP-Gal) is one of the substrates of galactosylation. Based on that, we proposed a two-step model to
predict N-linked glycoform profiles by solely using extracellular metabolites from cell culture. At the
first step, the flux level of UDP-Gal in each culture was estimated based on a computational flux
balance analysis (FBA); its level was found to be linear with the galactosylation degree on mAbs. At the
second step, the glycoform profiles especially for G0F (agalactosylated), G1F (monogalactosylated)
and G2F (digalactosylated) were predicted by a kinetic model. The model outputs well matched
with the experimental data. Our study demonstrated that the integrated mathematical approach
combining FBA and kinetic model is a promising strategy to predict glycoform profiles for mAbs
during cell culture processes.
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1. Introduction

Monoclonal antibodies (mAbs) have achieved remarkable success in treating inflammatory disease,
infectious diseases, autoimmune diseases and cancer [1]. N-linked glycoform profiles are product
critical quality attributes (CQAs) which must be controlled in the production of mAbs [2,3]. Poor
control of glycosylation can lead to immunogenicity and product efficacy issues, thus resulting in
product rejections [2,4]. For example, the variation of galactosylation (the level of galactose attachment)
could raise some batch consistency concerns for mAb pharmaceuticals, particularly oncology products,
for which galactosylation can significantly alter effector functions [4,5].

Currently, glycosylation is often analyzed in products at the end of processing. For a better
operation, the glycoform profiles on mAbs should be monitored throughout the duration of a given
process and likely be fine-tuned. A box of “tools” to modulate N-linked glycan in process has been
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demonstrated with pre-defined components such as enzymatic inhibitors or activators [6]. For the next
step, a monitoring technique will be needed in this application to realize a full control loop. However,
most techniques for profiling N-linked glycoforms require extensive sample preparation and are not
ready for on-line implementation [7]. The need for monitoring N-linked glycoform profiles in real time
is still unmet.

Here, we asked the question—if a strategy for monitoring N-linked glycoform profiles can be
accomplished by linking the N-linked glycan to a pool of extracellular metabolites in processes via
mechanistic models. This is because a series of on-line technology is currently available for measuring
metabolites in bioreactors. For example, glucose and lactate can be monitored in-situ and in real-time
using systems such as the BioPAT® Trace. Amino acid measurements in the culture medium can
be accelerated by rapid at-line approaches using high-pressure liquid chromatography (HPLC) or
NMR [8–10]. More on-line techniques for amino acids are developed with Raman spectroscopy [11].

To construct a mechanistic model to link N-glycan to the culture medium, the metabolic processes
involved in N-linked glycosylation must be considered. One of the key processes is nucleotide sugar
synthesis. Many studies have reported that glycosylation is modulated by nucleotide sugar levels,
which in turn are subject to perturbations of culture conditions and medium supplements [12–20]. Thus,
the abundance of nucleotide sugars is considered in this work as a potential indicator for N-linked
glycoform variation.

Here, a two-step mathematical model prototype was developed. The first step estimates the
intracellular levels of nucleotide sugars in silico using spent medium data including glucose and
amino acids. This step uses constraint-based flux balance analysis (FBA). The second step links the
level of nucleotide sugars to a kinetic model. The model at this step describes the evolvement of
oligosaccharide in the Golgi and ultimately estimates the glycoform profiles of mAbs. We applied this
model framework to the data from our previous work and accurately predicted the mAb glycosylation
in a number of hybridoma cultures.

2. Materials and Methods

2.1. Bioreactor Process and Analytics

The experimental details of the bioreactor runs have been described previously [21]. A model
IgG3:K antibody-producing hybridoma cell was cultured in a parallel bioreactor system with multiple
1.2 L vessels in fed-batch mode for 5 days (120 h). To represent a diversity of culture variations
within the realistic range of a commercial manufacturing environment, 11 parameters were varied in a
Plackett-Burman design of 16 batches (including 12 experimental batches and 4 control batches).

The viable cell density, extracellular metabolites (glucose, glutamine, lactate, ammonia) and titer
were measured daily. The glycoform profiles were analyzed from the harvested and purified antibodies.
The analytical methods of the above components were introduced in the earlier publication [21]. The
free amino acids content from daily culture media was 0.22 µm filtered and underwent automated
derivatization, separation and detection using a Poroshell C18 3 × 100 mm column, a guard column
and high-performance liquid chromatography (HPLC, Agilent Technologies, Lexington, MA, USA)
following the instructions of the manufacturer.

2.2. Rationale of Data Selection from the Previous Study

The 16 batches were sorted by level of galactosylation. Considering that some modest analytical
error exists when measuring glycan profiles, only the batches of the highest, the lowest and one
medium level of galactosylation, out of the total of 12 experimental batches, were selected to be
used in this work. A fourth data set was from one of the control conditions in the Plackett-Burman
design. This selection increased the odds that the model was tested for predicting substantial biological
variation between batches versus analytical errors.
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In this work, the batch with the medium level of galactosylation was named standard culture and
will be used for model calibration. The other three batches with varied level of galactosylation (either
higher or lower from the standard culture) were named Batch I, II and III and used for prediction.
The culture operation patterns of those four batches selected are shown in Table 1. To express the
difference in the level of galactosylation among those four batches, a galactosylation index (GI) was
calculated for each batch using the Equation (1) [22]. In this equation, G0F is agalactosylated, G1F is
monogalactosylated and G2F is digalactosylated. The GI value (between zero and one) represents the
extent of galactosylation of each mAb.

Galactosylation index (GI) =
0×G0F + 1×G1F + 2×G2F

2× (G0F + G1F + G2F)
(1)

Table 1. Operating patterns of the batches used in this study.

0 h 48–72 h 72 h

Batch ID % DO Set
Point

Sparge
Rate

(SLPH)

Agitation
Rate (RPM)

Temperature
(◦C)

Inoculation
Density

(Cells/mL)

Nonessential
Amino
Acids

Fatty
Acids Hydrocortisone Feeding

Strategy

Temperature
Shift

(at 72 h)

Standard
batch 20 0.3 90 37 50,000 Add Add Add Bolus Shift

Batch I 40 0.3 170 37 100,000 Add Bolus No Shift
Batch II 40 0.3 90 35.5 100,000 Add Add Drip No Shift
Batch III 30 0.5 135 37 75,000 Bolus No Shift

3. Modeling

The model aims to estimate the glycan variation resulting from altered culture processes. The two
steps are shown in Figure 1. The first component is an FBA. The inputs are the consumption or
accumulation rates of extracellular metabolites. The second component is a kinetic model describing
oligosaccharide evolution as nascent antibodies pass through the Golgi. The glycoform distribution at
the exit of the Golgi determines the final glycoform profiles. Each step of the model is described in
detail in the subsections.
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Figure 1. The workflow of two-component prediction model of glycoform profiles.

3.1. Estimating Fluxes of Nucleotide Sugar Syntheses from FBA

FBA is used to resolve intracellular fluxes at cellular pseudo steady-state [23]. The FBA network
configuration and calculation were conducted using MATLAB software (MathWorks, Natick, MA,
USA). The metabolic network was based on a previously published work [18] and the biomass
composition was based on existing determination [24]. The metabolic network consists of 154 reactions
and 120 metabolites [18], interlinking three metabolic parts: (1) central metabolism (glycolysis, TCA,
amino acids metabolism and pentose phosphate pathways); (2) nucleotide sugar synthesis; and (3)
mAb synthesis with nucleotide sugar attachment. These networks are represented in Figure 2.
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Figure 2. Simplified view of metabolic pathways included in the flux balance analysis (FBA). (A)
central metabolism; (B) nucleotide sugar synthetic pathways; (C) oligosaccharide modification process.
The numbers of reactions correspond with the ones initially used in Reference [18].

The specific rates of consumption/accumulation of a series of extracellular components (including
amino acids, glucose, lactate and ammonia) were calculated using Equation (2). In the equation, q
represents the specific accumulation or consumption rate of a metabolite (e.g., glucose); c represents the
concentration of extracellular metabolites; t represents time; X represents the viable cell density. The
rates calculated were used as constraints to the FBA. The calculation finally resolved all the reaction
fluxes included in the network with an objective function of maximum IgG accumulation.

q =
dc
dt
·
1
X

(2)

The key outputs sought in the analysis were the fluxes of nucleotide sugars from synthesis. For
example, the flux for UDP-Gal was a sum of flux 80 and 89 (Figure 2B). This calculated flux indicates
the level of nucleotide sugar synthesized before entering the Golgi, which is the level of substrates that
is available to be used for glycosylation.

3.2. Construction of Glycosylation Kinetic Model

A glycosylation kinetic model was written in MATLAB (MathWorks, Natick, MA, USA). As
shown in Figure 3B, the model treats the Golgi as a single plug flow reactor (PFR). A steady
flow of antibody enters the PFR with 100% of initial glycoform (Man9). The glycan structures
evolve along the Golgi as mAbs encounter with nucleotide sugar donors and enzymes, as
shown in Figure 3A. This network keeps the necessary paths for mAbs to obtain the glycoforms
detected in this study [25–27]. The network includes seven enzymes: mannosidase I (ManI),
mannosidase II (ManII), N-acetylglucosaminyltransferase I (GnTI), N-acetylglucosaminyltransferase
II (GnTII), galactosyltransferase (GalT), fucosyltransferase (FucT) and sialyltransferase (SiaT). The
N-acetylglucosaminyltransferase III (GnTIII) is not included because bisecting N-acetylglucosamine
was found only in ~0.2% of the total glycan, meaning this cell line had only minimal GnTIII activity.
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Figure 3. Structure of the kinetic model. (A) Reaction network of oligosaccharide evolvement in the
Golgi. (B) The analog of Golgi as a single plug flow reactor in the model. Nucleotide sugars are
transported from cytoplasm to Golgi. (C) Distribution profile of glycosylation enzymes in Golgi as
adjusted from Reference [27].

The concentrations of all the intermediate glycoforms at steady state were calculated by a series of
ordinary differential equations (ODEs). The generic equation representing the mass balance of each
intermediate glycoform is shown in the Equation (3), where q represents the influx rate of mAb into
Golgi; D represents the diameter of the Golgi; z represents the length of the Golgi; OSi represents each
intermediate glycoform; vi, j represents the stoichiometric matrix for reaction network; r j represents the
rate of each reaction in the network. The reactions adopt the Michaelis-Menten kinetics described in
Reference [28]. Solving this series of ODEs gives the concentration profiles of each glycoform along
the Golgi length. The percentage of each glycoform was calculated at the exit point of the Golgi and
represents the glycoform profile on the secreted mAbs.

4q
πD2

dOSi
dz
−

N.R.∑
j=1

vi, jr j = 0 (3)

Table S2 shows the whole list of parameters used for the model. All the kinetic model parameters
are constants and keep same when using the model for predictions. The volumetric flow rate for
antibodies entering Golgi was 1.12 × 1015 dm3/min. This value was referenced from a previous
modeling study [28] where the protein production rate was between 7.5 and 112.5 µg (106 cells)−1

day−1. The rate of mAb production in this study during the exponential phase was around 17.5 µg
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(106 cells)−1 day−1 and falls into the range of reference. The same volumetric flow rate value was used
for all the four batches since there was little variation for the mAb specific production rates across
batches. The distribution of glycosylation enzymes in the sub-compartments of Golgi (i.e., Cis-Golgi,
Medial-Golgi and Trans-Golgi) should be cell line specific. Therefore, the enzymatic profiles described
in Reference [27] was slightly adjusted to fit our glycan datasets (Figure 3C). The kinetic constants were
selected based on the values from previous models [25,28] and a full summary is shown in Table S2.

Nucleotide sugar concentrations in the Golgi are inputs for the kinetic model. The nucleotide
sugar concentrations in the standard culture were calibrated by fitting the model with the experimental
glycoform profiles. For the other culture conditions (I, II and III), the nucleotide sugar fluxes estimated
by FBA for these batches were used as a basis for quantifying the variation of nucleotide sugar
availability in the Golgi. Specifically, the values of nucleotide sugar concentrations in Batch I, II and
III were adjusted from the value in the standard culture with the ratio obtained for nucleotide sugar
fluxes between this batch and the standard batch.

4. Results

4.1. Glycan Variation across Batches

The profiles of cell growth and mAb production from the four batches (i.e., standard and Batch
I, II and III) are shown in Figure 4. In these batches, cells reached peak density around 72 h or 96 h,
followed by a rapid crash and absence of stationary phase. The period of 24–72 h (shaded in the
plots) was considered as the cell exponential growth phase. In the following sections, the FBA and
kinetic model were applied to this phase. Due to the lack of glycoform profile data at earlier days, we
used glycoform profiles of mAbs at day 5 (Figure 5), assuming that the cross-batch glycoform profiles
variation at day 5 in cultures could still represent the early point variation, even though the glycan for
the mAbs produced at late culture would have been affected.

As expected for most mAbs, G0F, G1F and G2F were the most dominant glycoforms from cultures.
Those three combined constituted more than 90% of the total glycan on mAbs. The rest of the
glycoforms (e.g., high mannose, non-fucosylated or sialylated glycoforms) only represented a small
fraction (each less than 1%) of the total glycoforms. The large population of G0F, G1F and G2F also
indicates the highly completed fucosylation and N-aetyl-glucosaminylation since fucose and GlcNAc
are both added to glycan before galactose (Figure 3A).

A GI value was used for each culture to represent the galactosylation level, as described in the
Equation (1). A GI value of one represents a full galactosylation degree. For limited galactosylation,
the GI value would be a number between zero and one. Compared to the standard batch (GI = 0.61),
Batch I and III showed a lower level (GI = 0.52, 17% lower than the standard) and Batch II showed a
higher level (GI = 0.74, 22% higher than the standard).

4.2. Estimating Nucleotide Sugar Fluxes by FBA

To estimate the intracellular fluxes for pathways including nucleotide sugars, the specific
consumption or accumulation rates for the extracellular metabolites (glucose, lactate, ammonia
and amino acids) were calculated during the exponential phase (24–72 h) in each culture. Fluxes of a
total of 154 reactions were estimated. The complete set of flux values are not shown for brevity. Most
of the carbon and nitrogen resources are distributed in the central metabolism fluxes. The distribution
of TCA fluxes between the four batches was overall similar (Figure 6A), indicating that only little
change had occurred in the energy generation during the exponential phase under these varied culture
conditions. However, for the glycolysis, Batch I and II showed a lower glucose uptake flux than the
standard batch and Batch III, coinciding with the slower growth of Batch I and II than the other two
batches (Figure 4A).
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The flux values of the seventeen reactions associated with nucleotide sugar synthesis and
degradation are shown in Figure 6B. The list of reactions and reaction network can be referred
to Table S1 and Figure 2B. The amount of fluxes flowing to several nucleotide sugars were
calculated (Table 2). These nucleotide sugars include uridine diphosphate galactose (UDP-Gal),
guanosine diphosphate mannose (GDP-Man), guanosine diphosphate fucose (GDP-Fuc), uridine
diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5′-monophospho-N-acetylneuraminic
acid (CMP-Neu5Ac or CMP-SA). Variation was seen with the fluxes across four batches. When the
overall galactosylation level from the four batches was plotted against the UDP-Gal synthetic flux, a
significant linear correlation (R2 > 0.9) was found (Figure 6C). This correlation suggests that UDP-Gal
level in cells has played a strong role in the galactosylation degree on mAbs and thus can be used as a
relevant indicator to predict the galactosylation degree on mAbs.

Table 2. Influx values of the nucleotide sugars being synthesized (fmol/cell/day).

Standard Batch I Batch II Batch III

UDP-Gal 0.0262 0.0236 0.0328 0.024
GDP-Man 0.0394 0.0353 0.0492 0.035
GDP-Fuc 0.0131 0.0118 0.0164 0.012

UDP-GlcNAc 0.0656 0.0589 0.0820 0.058
CMP-SA 0.0262 0.0236 0.0328 0.023

4.3. Model Calibration

In this section, the concentrations of nucleotide sugars in the standard batch were calibrated by
fitting the batch’s glycoform profiles to the kinetic model as described in Section 3.2. The values obtained
are shown in the first column of Table 3. It was shown that the calibrated concentration of UDP-Gal
was much lower than the other nucleotide sugars. A previous study where intracellular nucleotide
sugar concentrations were measured in a hybridoma cell line found the range of concentration at
5–150 µM [29]. While the set of values listed in Table 3 was generated in silico, the range of 8–2000 µM
is reasonable compared to the other study’s measured profiles. The values of kinetic parameters used
in the model are shown in Table S2. The topological profiles from simulation for all the intermediate
glycoforms are shown in Figure 7A. The glycan profile at the end of the Golgi is treated as the glycoform
profiles on secreted mAbs. As shown in Figure 7B(i), the simulated glycoform profiles including G0F,
G1F and G2F for the standard culture have well matched the experimental data.

Table 3. Input value setting for nucleotide sugars (µM).

Standard a Batch I b Batch II b Batch III b

UDP-Gal 9.4 8 12.6 8
UDP-GlcNAc 1600 1436 1998 1403

GDP-FUC 576 517 719 517
CMP-SA 950 852 1187 833

a—the nucleotide sugar concentrations were calibrated with experimental data. b—the nucleotide sugar
concentrations were the product of the calibrated value and the ratio of nucleotide sugar fluxes between the
specific condition and the standard condition.
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Figure 7. Kinetic model simulation. (A) The topological profile of high-mannose (HM), galactosylated
and sialylated glycoforms evolving along the normalized reactor length-axis in the Golgi. (B) Calibration
and simulation of the kinetic model describing oligosaccharide modification. (i) Simulation of the
standard batch output after the calibration; (ii) simulation of Batch I glycan output; (iii) simulation of
Batch II glycan output; (iv) simulation of Batch III glycan output.

4.4. Sensitivity Analysis of the Kinetic Model

The construction and parameter settings of a kinetic model can significantly affect a model’s
performance [30,31]. Before predicting glycoform profiles for the other three batch cultures, we carried
out a sensitivity analysis to examine if the model’s simulation with the current parameters can show
expected cell behavior. To do so, each nucleotide sugar concentration was altered within a range from
five times lower to five times higher than the calibrated value in the standard culture. The glycoform
profiles were accordingly simulated (Figure S1, Supplementary Materials). As a result, several empiric
characteristics of the cell line were shown, including: (1) The G0F, G1F and G2F distribution was highly
sensitive to the variation of UDP-Gal concentrations (Figure S1-C); (2) Most of the glycoforms were
insensitive to the variations at the UDP-GlcNAc and GDP-fucose concentrations (Figure S1-A and
Figure 7B); (3) The sialylation level was insensitive to the variation of CMP-SA concentration (Figure
S1-D). Ultimately, this sensitivity test proves the rationality of the structure and parameter values
currently in our model.

4.5. Prediction of Glycoforms in Altered Culture Conditions

Finally, we tested the model to predict the glycoform profiles in the Batches I, II and III.
As mentioned, the nucleotide sugar concentration values were the inputs for each prediction. The values
were adjusted for each batch with the fold changes varied at the nucleotide sugar fluxes, following
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the steps described in Section 3.2. The concentration values after adjustments are shown in Table 3
(2nd to 4th columns). Note that the other parameters in the model remain the same as used in the
calibration. The glycoform profiles simulated for mAbs in Batches I, II and III are respectively shown
in Figure 7B (ii–iv). It was seen that the deviation between the simulated results and the experimental
measurements was less than 10%. It was also noted that not only did the three major glycoforms
(G0F, G1F, G2F) fit well with the experimental profiles but the distribution of all the other ten minor
glycoforms were also consistent with the experimental results. The good agreement between the
simulated and experimental profiles further indicates that the model construction and parameter setup
had properly described the cellular physiology.

5. Discussion

Cell lines used in industry exhibit various characteristics in glycosylation. It was known from
our experiments that the cell line has a limited processing capability for galactosylation. While only
galactosylation was mainly found in our hybridoma processes, variation of high mannose (HM)
glycoforms were found in CHO cells, indicating UDP-GlcNAc might also be limiting [32]. These cell
line dependent characteristics should be considered in the kinetic model structures as going to be
discussed later.

UDP-Gal is the main building block for galactosylation and has been found to be a limiting source
of galactosylation [15,33,34]. Other possibilities of the process limitation might be associated with the
activity of UDP-Gal transporter or galactosyltransferase. Several studies had previously shown that
gene transcripts for glycosylation enzymes can be altered under different culture conditions [19,35].
According to our finding from FBA, the synthetic fluxes of UDP-Gal have correlated with the unsaturated
level of galactosylation on mAbs. This provides the rationale for using the estimated nucleotide sugar
level for N-linked glycoform prediction.

In several existing literatures, kinetic models have been made to link extracellular metabolites
and nucleotide sugars with detailed kinetic reaction rates [22,29]. These reactions involve many kinetic
constants which need to be parameterized beforehand. During cell growth and production, it remains
unexplored if kinetic parameters would change, and therefore, it is a benefit to reduce parameter
numbers in models. In this work, the usage of FBA for nucleotide sugar estimation and then base the
flux level to adjust UDP-Gal concentrations in the Golgi for further prediction was to eliminate solving
the excess parameters involved in the large network of nucleotide sugar synthesis. Even though we
have only applied FBA to the exponential phase of the culture given the absence of stationary phase in
cultures, the same approach can be applied to stationary phase, which is commonly seen for industrial
fed-batch CHO cell cultures [36].

According to the FBA results, other nucleotide sugars, such as UDP-GlcNAc, GDP-fucose and
CMP-SA were similarly altered. This indicates that the source of this variation was stemmed from
precursors of these nucleotide sugars, such as G6P or F6P. A major effect on the carbon flux in glycolysis
were probably raised by the varied culture conditions. However, the level of other monosaccharide on
mAbs (such as fucose, mannose) was not affected by the variation of their influxes amongst the batches
examined. This is because these pathways were not rate- limited by neither the substrate level nor
other factors on the pathways, as a characteristic of the cell line. In fact, over 90% of glycan in all the
four batches reached full attachment with fucose and GlcNAc. Although the terminal sialylation was
exceptionally unsaturated, the limitation of sialic acid attached has been in general attributed to the
steric hindrance on mAbs.

While non-parameter FBA is used in the first part of the model, the second model describing
the kinetic details in the Golgi is necessary to obtain the distribution of differently galactosylated
glycoforms (i.e., G0F, G1F and G2F). An inevitable weakness is the uncertainty of the parameters.
While using most parameter values from literature, it is important for us to show that the model has
exhibited the characteristic of the cell system— the galactosylation process is limited in this cell line.
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Due to the data limitation in this study, we examined the model prediction with one time point
glycan data. Further studies can be done to examine the model’s predictions in-process by comparing
with the N-linked glycoform profiles over the course of cultures. Our recent study has showed detailed
time series data for culture supplement, nucleotide sugars and N-linked glycoform profiles [20].

6. Conclusions

Real-time estimation of mAb glycosylation is highly desirable in manufacturing processes. In this
work, a two-component modeling framework integrating FBA and glycosylation kinetic model was
demonstrated. With the data tested from multiple altered cultures, it was shown that the model could
successfully estimate the variation of glycosylation profiles from extracellular metabolite dynamic
information. In the future, this approach can be potentially conducted in real time and used to monitor
glycosylation against culture perturbations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/4/227/s1,
Figure S1: Model-simulated glycan profiles in response to variation in each of the four nucleotide sugars. Table S1:
Glycosylation precursor synthetic reactions. Table S2: Kinetic model parameter summary.
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