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Abstract: Bacterial infections are a major global concern, since they can lead to public health problems.
To address this issue, bioinformatics contributes extensively with the analysis and interpretation of in
silico data by enabling to genetically characterize different individuals/strains, such as in bacteria.
However, the growing volume of metagenomic data requires new infrastructure, technologies,
and methodologies that support the analysis and prediction of this information from a clinical point of
view, as intended in this work. On the other hand, distributed computational environments allow the
management of these large volumes of data, due to significant advances in processing architectures,
such as multicore CPU (Central Process Unit) and GPGPU (General Propose Graphics Process Unit).
For this purpose, we developed a bioinformatics workflow based on filtered metagenomic data
with Duk tool. Data formatting was done through Emboss software and a prototype of a workflow.
A pipeline was also designed and implemented in bash script based on machine learning. Further,
Python 3 programming language was used to normalize the training data of the artificial neural
network, which was implemented in the TensorFlow framework, and its behavior was visualized
in TensorBoard. Finally, the values from the initial bioinformatics process and the data generated
during the parameterization and optimization of the Artificial Neural Network are presented and
validated based on the most optimal result for the identification of the CTX-M gene group.

Keywords: machine learning; metagenomics; bioinformatics; CTX-M

1. Introduction

Within the field of bioinformatics, researchers use metagenomics approaches to characterize
microbial genomes directly isolated from the environment [1]. For this, new sequencing technologies
generate large volumes of data to be analyzed, due to the abundant varieties of species that can be
found in metagenomics samples, which are characterized by sequences of short length and high
complexity. In addition, with the possibility of discovering new species, the problem of taxonomic
assignment of reads of short DNA sequences becomes extremely challenging [2]. In this respect,
metagenomics is considered as the field of study of many genomes in different environments that may
even be compartments or regions of living beings, such as mucous membranes and intestines, among
others. Therefore, metagenomics is a challenge for computer science researchers who seek to develop
methods to understand such amount of genetic information [3]. Concerning the area of computational
intelligence, this work deals with a technique already known and validated with artificial neural
networks. According to [3] Soueidan and Hayssam (2016), machine learning techniques currently offer
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a large set of promising tools to build predictive models for the classification of biological data. These
tools are built under different frameworks offering the possibility of implementing supervised and
unsupervised techniques (clustering), among others.

CTX-M-type enzymes are a group of class A extended-spectrum β-lactamases (ESBLs) that are
rapidly spreading among Enterobacteriaceae worldwide. The first recognition of the appearance of
CTX-M β-lactamases occurred almost simultaneously in Europe and South America in early 1989. The
first publication to recognize an ESBL from the CTX-M group was a report presenting a species of
E. coli resistant to cefotaxime but susceptible to ceftazidime, isolated from the ear of a four-month-old
child suffering from otitis media in Munich [4].

At the regional level, the Manizales Antibiotic Resistance Group (GRAM) is in charge of presenting
the accumulated antibiotic resistance data of the main hospitals in the city. Among total isolates from
patients in intensive care units, non-intensive care units and emergencies, the main bacteria identified
are Enterobacteriaceae such as Escherichia coli, Klebsiella pneumoniae, and Eneterobacter cloacae, among
others. All of these species display the capacity to carry ESBL genes of the CTX-M group. In addition,
according to the antibiotic susceptibility analyses carried out by different clinics in the city, resistance
to cefotaxime (cephalosporin with a broad hydrolysable spectrum by CTX-M) ranges between 15%
and 35% [5]. This means that, in Manizales, up to one out of every three isolates of this bacterial group
is suspected of carrying a CTX-M-type ESBL. The high frequency of this type of ESBL in our context
highlights the importance of this type of developments for antibiotic surveillance processes based on
metagenomic data.

The validation of this pipeline allows us to extend this analysis for other important genes such
as TEM, SHV, metalloenzymes, carbapenemases that are probably prevalent in our regional context,
considering the characteristics of the population, the clinical management protocols of patients and
health, and asepsis in operating rooms. Since this is a common problem, the development of a pipeline
that allows the identification of resistance variants becomes a fundamental step in the establishment
of a modern antibiotic surveillance system. The subsequent goal of this study will be to test this
development on metagenomic data derived from the surveillance process, in collaboration with
research groups in this field.

1.1. Metagenomics

According to the National Center for Biotechnology Information (NCBI) [6], metagenomics is an
area of bioinformatics that has evolved significantly in the last ten years, contributing on a large scale to
microbiology. In the same manner, this relatively new “omic” science has made surprising discoveries
in microbial taxonomy, revealing new capabilities and functionalities of different biomes [7].

Metagenomics is analyzed through computation and bioinformatics, especially with the use of
different information discovery techniques. From this field, we try to discover patterns within this
data to extract information that may be relevant for biologists, pharmacologists, chemists and/or
bioinformaticians. This information contributes to the solution of different pathologies related to
microbial attacks.

New techniques have been developed to analyze large volumes of information from large amounts
of metagenomic data, being big data and machine learning the most widely used [8]. These techniques
use distributed computational environments of large capacity that allow more efficient processing and
reduce computing times in a significant way.

1.2. Machine Learning

Machine learning seeks to answer a very concrete question: How can we build computer
systems that automatically improve with experience, and what fundamental laws govern this teaching
process? [9]

Through this discipline, it is possible to implement new methods that help researchers in making
new findings. Machine learning techniques are used, for example, to learn about models of gene
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expression in cells and other applications in bioinformatics, more specifically in metagenomics [10].
One can talk about three types of algorithms within the current machine learning techniques:

Supervised: Data training consists of labeled entries and known outputs that the machine analyzes
while relabeling. There are many applications of supervised algorithms in bioinformatics to solve
problems [11], which are based on information from adequately characterized genes.

Unsupervised: This type of analysis of unlabeled and categorized data is based on similarities that
have been identified. In this case, the machine can cluster the data based on shared characteristics.
Techniques that use unsupervised algorithms are often used for problems in which humans cannot
clearly infer patterns, that is, it requires exhaustive observation to identify such patterns. It is also a
technique that allows determining behaviors based on different interpretations.

Semi-supervised: This analysis refers to a combination of the two previously mentioned techniques.
It is used in large data sizes when the labels of some of these data are known. Unsupervised learning
is based on the analysis of unlabeled data to group them, while techniques of supervised learning
are used to predict the labels of this group formed by the first technique. Artificial Neural Networks
(ANN) are a known approach to address complex problems, as neural networks can be implemented
at the hardware or software level and, in turn, can use a variety of topologies and learning algorithms.

2. Materials and Methods

2.1. Selection of the CTX-M and Metagenome Baseline Reference Database for the Study

First, we based our selection on previous work by [12] Núñez in 2016 (unpublished data),
where all the CTX-M reported groups are already considered. After a review of the state of the art,
we consolidated the CTX-M database, previously filtered by the analysis of phylogenetic trees carried
out by [12] Núñez. Subsequently, the reference metagenome to be studied was selected through a
search in the EBI-Metagenomics database (https://www.ebi.ac.uk/metagenomics/), considering the
high probability that the CTX-M gene was present. We reviewed the following four metagenomes and
selected only one as input to develop the prototype:

1. https://www.ebi.ac.uk/metagenomics/projects/ERP001506
2. https://www.ebi.ac.uk/metagenomics/projects/ERP020191
3. https://www.ebi.ac.uk/metagenomics/projects/ERP016968
4. https://www.ebi.ac.uk/metagenomics/projects/ERP009131

The metagenome selected was antibiotic resistance within the preterm infant gut (https://www.ebi.
ac.uk/ena/data/view/PRJEB15257). Upon selection of the reference metagenome, we filtered the data by
following the pipeline described in Figure 1. The filtered metagenomics data was then prepared and
machine learning techniques were applied according to the computational pipeline shown in Figure 2,
where we assessed the accuracy and cost of the artificial neural network. A brief description is as
follows: the filtered metagenome from the first pipeline is provided as input; the data are transformed
by the conversion of nucleotide to binaries and the resulting binarized data are input to the ANN
(Artificial Neural Network); the ANN is implemented; and accuracy and cost metrics are assessed.
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We mapped the CTX-M reference database to the sample metagenome using Duk tool
(Li, Mingkun, et al., 2018) to eliminate information not relevant for the study. We obtained a
consolidated CTX-M database with a total of 211 reference sequences in FASTA (file format for
bioinformatics data). As initial mapping parameters, we used k-mers of 16 (default) and 63 for test
mappings. Next, we optimized mapping parameters following Algorithm 1.

Algorithm 1. Bioinformatic pipeline for filtering and formatting input data.

Parameterize the initial mapping with Duk using odd K-mers.
Execute tests using different K-mers.
Name: Pre-filter CTX-M
Start

For k-mer values between 17 and 65
Do

Execute duk with each k-mer against the reference database
Save results in a single file “duk_results”

Finish do
Best_K-mer < 0
Best p-value < 0
For each line in “duk_results” file
Do

Find p-value of each k-mer
If (P-value found is larger than Best p-value)

Best p-value < p-value found
Best_K-mer < k-mer found

End if
Convert output file of best k-mer to FASTA format
Format the FASTA file for the ANN (X, y)
For each end of CTX-M sequence
Do

Separate CTX-M group from each sequence.
Finish do

End

Based on the initial analysis, k-mers 17, 19 and 21 were found to be the best. Additionally,
we validated the results through an NCBI BLAST search of the contig obtained after adjusting the
k-mer to 17 and 19 to conclusively verify that this sequence corresponds to bacteria with the CTX-M
gene. The pipeline can be downloaded here:

https://github.com/dhcl1580/machinelearniginmetagenomicstesis.

2.2. Defining an Optimal Neural Network Architecture

An exhaustive review of the existing literature was performed to define the architecture of
the neural network for metagenomics. We evaluated different machine learning models focused
on improving the precision of the techniques applied in neural networks, such as random forest,

https://github.com/dhcl1580/machinelearniginmetagenomicstesis.
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or algorithms based on decision trees [13]. None of the studies reviewed take into account a particular
architecture, whereby the main goal is to obtain a reduction in the cost function to guarantee that the
neural network apprenticeship is being carried out. Conversely, this study proposes an architecture of
a multi-layer perception neuronal network (Figure 3), because of the importance of the high sensitivity
that different neurons show in each of their layers concerning the activation functions, weights,
and epochs. This interaction allows considering more parameters when training and validating such
an architecture, taking into account its performance [14].
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2.3. Data Standardization for the Neural Network

To establish an appropriate training dataset for the proposed neuronal network, we developed
a routine in Python 3 in charge of normalizing the data obtained, where basically a binarization of
the CTX-M nucleotide sequences is carried out. All sequences are standardized to the value of the
longest identified sequence, and additional spaces are defined by the value N. The result is the file
“dataGen.csv”, where a total of 3896 values are generated for X and the 10 groups of CTX-M (Table 1).
The 10 most representative classes were selected to ensure a uniform distribution of classes for stratified
cross validation in Stage 2 (validation). Initially, there were 17 classes from which only those with
sequences represented at least four times within the test and validation dataset were selected. Each of
the 10 classes corresponds to the following CTX-M groups, respectively (Table 1).
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Table 1. CTX-M group and correspond class selected for the study.

Group CTX-M Class

1.0 0

9.0 1

14.0 2

15.0 3

22.0 4

24.0 5

27.0 6

55.0 7

59.0 8

65.0 9

3. Analysis of Results

3.1. Analysis of the Graph Resulting from the ANN

Figure 4 shows how the graph of the ANN is built. In this graph, it is possible to observe how the
nodes are distributed and how these interaction to the process data.
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3.2. Training Stage Over CPU an GPGPU

The activation functions tanh and sigmoid were experimented with RELU (Rectified Linear Units),
where the parameters LEARNING_RATE, TRAINING_EPOCHS, and HIDDEN_SIZE were varied,
obtaining the results presented below for each function. Table 2 shows the parameters that varied in
each experiment. The Figures 5–7 show the correspond graphics.

Table 2. Summary of target values during the training stage under CPU (Central Process Unit).

Activation
Function

LEARNING_
RATE

TRAINING_
EPOCH

HIDDEN_
SIZE

Initial
Cost

Value

Final
Cost

Value

Accuracy
of Initial
Training

Accuracy
of Final
Training

Precision
Test

Tanh 0.001 400 200 2.17 0.80 0.260 0.960 0.879

Sigmoid 0.001 400 200 2.19 1.61 0.030 0.680 0.698

RELU 0.001 300 200 2.19 0.00 0.110 1 1

The best values were obtained using the tanh activation function in this experiment.Processes 2019, 7, x FOR PEER REVIEW 7 of 10 
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Table 3. Summary of target values during the training stage under GPU (Graphics Process Unit).

Activation
Function

LEARNING_
RATE

TRAINING_
EPOCH

HIDDEN_
SIZE

Initial
Cost

Value

Final
Cost

Value

Accuracy
of Initial
Training

Accuracy
of Final
Training

Precision
Test
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Sigmoid 0.001 400 200 2.20 1.67 0.440 0.560 0.628

RELU 0.001 300 200 1.90 1.00 0.590 1 1

Processes 2019, 7, x FOR PEER REVIEW 8 of 10 

 

The best values were obtained using the tanh activation function in the other step, the Table 2 show 
the values ant the Figures 8, 9 and 10 show the correspond graphics. 

Table 2. Summary of target values during the training stage under GPU (Graphics Process Unit). 

Activation 
function LEARNING_RATE TRAINING_EPOCH HIDDEN_SIZE 

Initial 
cost 

value 

Final 
cost 

value 

Accuracy 
of initial 
training 

Accuracy 
of final 
training 

Precision 
test 

Tanh 0.001 400 200 2.16 0.84 0.380 0.920 0.909 
Sigmoid 0.001 400 200 2.20 1.67 0.440 0.560 0.628 

RELU 0.001 300 200 1.90 1.00 0.590 1 1 

 

Figure 8. Values of accuracy using tanh function over GPU (Graphics Process Unit). 

 

Figure 9. Values of cost using tanh function over GPU (Graphics Process Unit). 

Figure 8. Values of accuracy using tanh function over GPU (Graphics Process Unit).



Processes 2019, 7, 235 9 of 11

Processes 2019, 7, x FOR PEER REVIEW 8 of 10 

 

The best values were obtained using the tanh activation function in the other step, the Table 2 show 
the values ant the Figures 8, 9 and 10 show the correspond graphics. 

Table 2. Summary of target values during the training stage under GPU (Graphics Process Unit). 

Activation 
function LEARNING_RATE TRAINING_EPOCH HIDDEN_SIZE 

Initial 
cost 

value 

Final 
cost 

value 

Accuracy 
of initial 
training 

Accuracy 
of final 
training 

Precision 
test 

Tanh 0.001 400 200 2.16 0.84 0.380 0.920 0.909 
Sigmoid 0.001 400 200 2.20 1.67 0.440 0.560 0.628 

RELU 0.001 300 200 1.90 1.00 0.590 1 1 

 

Figure 8. Values of accuracy using tanh function over GPU (Graphics Process Unit). 

 

Figure 9. Values of cost using tanh function over GPU (Graphics Process Unit). 
Figure 9. Values of cost using tanh function over GPU (Graphics Process Unit).

Processes 2019, 7, x FOR PEER REVIEW 9 of 10 

 

 

Figure 10. ROC (Receiver operating characteristics) analysis for the tanh activation function over GPU 
(Graphics Process Unit). 

4. Discussion 

4.1. Conclusions for the Tanh Activation Function 

We found that the ANN showed the most optimal behavior under the tanh activation function 
for the training stage. The reference value was 0.879 for the precision test that varied the training 
epoch and hidden size parameters. Precision and cost behaviors were as expected, considering that 
the cost decreased and the precision increased for all the evaluations proposed under different 
parameters. Another relevant conclusion is that, according to the ROC analysis, the classes that are 
least likely to be identified under these ANN parameters are classes 2 and 6. 

4.2. Conclusions About the Dataset 

Regarding the dataset, we can conclude that, for future work, it is advisable to consider more 
CTX-M contigs. In this study, the 10 most representative groups were considered, yet some of the 
groups were not representative enough to be able to carry out a stratified cross validation. This was 
particularly true for the experimentation in the validation stage, in which 20% of the initial dataset 
was used for this validation. Regarding the dataset, we can conclude that more CTX-M contigs should 
be considered for future studies. 

4.3. Perspective 

In a future study, we propose to validate a more significant number of metagenomes 
corresponding to the geographical area of influence, aiming to support the design of public policies 
related to the prevention and detection of infectious diseases. To corroborate the final results more 
accurately, other types of metrics, especially histograms, would be considered, taking advantage of 
the fact that they can be generated by the TensorBoard tool. Finally, we recommended to continue 
with the training process with other genes such as TEM, SHV, metalloenzymes, carbapenemases, so that 
this software can identify a higher number of infectious diseases with the same characteristics. 

Figure 10. ROC (Receiver operating characteristics) analysis for the tanh activation function over GPU
(Graphics Process Unit).

4. Discussion

4.1. Conclusions for the Tanh Activation Function

We found that the ANN showed the most optimal behavior under the tanh activation function for
the training stage. The reference value was 0.879 for the precision test that varied the training epoch
and hidden size parameters. Precision and cost behaviors were as expected, considering that the cost
decreased and the precision increased for all the evaluations proposed under different parameters.
Another relevant conclusion is that, according to the ROC analysis, the classes that are least likely to be
identified under these ANN parameters are classes 2 and 6.

4.2. Conclusions About the Dataset

Regarding the dataset, we can conclude that, for future work, it is advisable to consider more
CTX-M contigs. In this study, the 10 most representative groups were considered, yet some of the
groups were not representative enough to be able to carry out a stratified cross validation. This was
particularly true for the experimentation in the validation stage, in which 20% of the initial dataset was
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used for this validation. Regarding the dataset, we can conclude that more CTX-M contigs should be
considered for future studies.

4.3. Perspective

In a future study, we propose to validate a more significant number of metagenomes corresponding
to the geographical area of influence, aiming to support the design of public policies related to the
prevention and detection of infectious diseases. To corroborate the final results more accurately, other
types of metrics, especially histograms, would be considered, taking advantage of the fact that they
can be generated by the TensorBoard tool. Finally, we recommended to continue with the training
process with other genes such as TEM, SHV, metalloenzymes, carbapenemases, so that this software can
identify a higher number of infectious diseases with the same characteristics.
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