Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Saline Water Samples
2.2. Experimental Setup
2.3. Parameters Analysis
3. Results and Discussion
3.1. Effect of Applied Current and Time
3.2. Effect of Initial pH
3.3. Effect of Temperature
3.4. Effect of Inter-Electrode Distance
3.5. Effect of Stirring Speed
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanafiah, M.M.; Xenopoulos, M.A.; Pfister, S.; Leuven, R.S.; Huijbregts, M.A. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ. Sci. Technol. 2011, 45, 5272–5278. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Singleton, M.S.; Gregor, H.; Alfred, H. Optimization of ramified absorber networks doing desalination. Phys. Rev. E 2011, 83, 016308. [Google Scholar] [CrossRef] [PubMed]
- Loow, Y.L.; Wu, T.Y.; Tan, K.A.; Lim, Y.S.; Siow, L.F.; Jahim, J.M.; Mohammad, A.W.; Teoh, W.H. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J. Agric. Food Chem. 2015, 63, 8349–8363. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.; Matis, K. Flotation in water and wastewater treatment. Processes 2018, 6, 116. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Xu, P. Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: Impact of salts and organic matter. Sci. Total Environ. 2017, 601, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Wenten, I.G. Reverse osmosis applications: Prospect and challenges. Desalination 2016, 391, 112–125. [Google Scholar] [CrossRef]
- Qiblawey, H.M.; Banat, F. Solar thermal desalination technologies. Desalination 2008, 220, 633–644. [Google Scholar] [CrossRef]
- Matis, K.A.; Peleka, E.N. Alternative flotation techniques for wastewater treatment: Focus on electroflotation. Sep. Sci. Technol. 2010, 45, 2465–2474. [Google Scholar] [CrossRef]
- Cipollina, A.; Micale, G.; Rizzuti, L. Seawater Desalination. Conventional and Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pérez-González, A.; Urtiaga, A.M.; Ibáñez, R.; Ortiz, I. State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 2012, 46, 267–283. [Google Scholar] [CrossRef]
- Merzouk, B.; Madani, K.; Sekki, A. Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalination 2010, 250, 573–577. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy. Technol. Environ. Sci. 2011, 333, 712–717. [Google Scholar]
- Glater, J.; Hong, S.K.; Elimelech, M. The search for a chlorine-resistant reverse osmosis membrane. Desalination 1994, 95, 325–345. [Google Scholar] [CrossRef]
- Xu, X.; Lin, L.; Ma, G.; Wang, H.; Jiang, W.; He, Q.; Nirmalakhandan, N.; Xu, P. Study of polyethyleneimine coating on membrane permselectivity and desalination performance during pilot-scale electrodialysis of reverse osmosis concentrate. Sep. Purif. Technol. 2018, 207, 396–405. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Bousher, A.; Shen, X.; Edyvean, R.G. Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Res. 1997, 31, 2084–2092. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Eiband, M.M.S.; de Melo, J.V.; Martínez-Huitle, C.A. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem. 2017, 801, 267–299. [Google Scholar] [CrossRef]
- Naje, A.S.; Chelliapan, S.; Zakaria, Z.; Abbas, S.A. Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. J. Electrochem. Sci. 2015, 10, 5924–5941. [Google Scholar]
- Nandi, B.K.; Patel, S. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arab. J. Chem. 2017, 10, S2961–S2968. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.K.; Khandegar, V.; Saroha, A.K. Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste 2013, 17, 146–152. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Baraka, A.M.; Omran, K.A.; Mokhtar, M.M. Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int. J. Electrochem. Sci. 2012, 7, 6654–6665. [Google Scholar]
- Dolati, M.; Aghapour, A.A.; Khorsandi, H.; Karimzade, S. Boron removal from aqueous solutions by electrocoagulation at low concentrations. J. Environ. Chem. Eng. 2017, 5, 5150–5156. [Google Scholar] [CrossRef]
- Singh, T.S.A.; Ramesh, S.T. An experimental study of CI Reactive Blue 25 removal from aqueous solution by electrocoagulation using Aluminum sacrificial electrode: Kinetics and influence of parameters on electrocoagulation performance. Desalin. Water Treat. 2014, 52, 2634–2642. [Google Scholar] [CrossRef]
- Mollah, M.Y.A.; Schennach, R.; Parga, J.R.; Cocke, D.L. Electrocoagulation (EC) science and applications. J. Hazard. Mater. 2001, 84, 29–41. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Ownagh, K.A.; Mahvi, A.H. Application of electrocoagulation process using Iron and Aluminum electrodes for fluoride removal from aqueous environment. J. Chem. 2012, 9, 2297–2308. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Sivakumar, M. An empirical model for defluoridation by batch monopolar electrocoagulation/flotation (ECF) process. J. Hazard. Mater. 2006, 131, 118–125. [Google Scholar] [CrossRef]
- Can, O.T.; Kobya, M.; Demirbas, E.; Bayramoglu, M. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere 2006, 62, 181–187. [Google Scholar] [CrossRef]
- Lin, S.S.H.; Lin, C.S. Reclamation of wastewater effluent from a chemical fiber plant. Desalination 1998, 120, 185–195. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.; Tian, J.; Ma, F.; Tu, G.; Du, M. Electro-coagulation–flotation process for algae removal. J. Hazard. Mater. 2010, 177, 336–343. [Google Scholar] [CrossRef]
- Carmona, M.; Khemis, M.; Leclerc, J.P.; Lapicque, F. A simple model to predict the removal of oil suspensions from water using the electrocoagulation technique. Chem. Eng. Sci. 2006, 61, 1237–1246. [Google Scholar] [CrossRef]
- Mostefa, N.M.; Tir, M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions. Desalination 2004, 161, 115–121. [Google Scholar] [CrossRef]
- Lee, K.E.; Mokhtar, M.; Hanafiah, M.M.; Halim, A.A.; Badusah, J. Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies and development. J. Clean. Prod. 2016, 126, 218–222. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.H.; Yue, P.L. Separation of pollutants from restaurant wastewater by electrocoagulation. Sep. Purif. Technol. 2000, 19, 65–76. [Google Scholar] [CrossRef]
- Pouet, M.F.; Grasmick, A. Urban wastewater treatment by electrocoagulation and flotation. Water Sci. Technol. 1995, 31, 275–283. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Singh, T.A. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere 2017, 181, 418–432. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Khan, T.A.; Asim, M. Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sep. Purif. Rev. 2011, 40, 25–42. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.; Liu, H.; Qu, J. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process. J. Hazard. Mater. 2010, 184, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Drouiche, N.; Aoudj, S.; Lounici, H.; Drouiche, M.; Ouslimane, T.; Ghaffour, N. Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: An investigation of the effect of operational parameters. Procedia Eng. 2012, 33, 385–391. [Google Scholar] [CrossRef]
- Vasudevan, L.; Schultz, K.; Bateman, J. Rethinking composing in a digital age: Authoring literate identities through multimodal storytelling. Writ. Commun. 2010, 27, 442–468. [Google Scholar] [CrossRef]
- Hu, C.Y.; Lo, S.L.; Kuan, W.H.; Lee, T.D. Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Res. 2005, 39, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Drondina, P.V.; Drako, I.V. Electrochemical technology of fluorine removal from underground and waste waters. J. Hazard. Mater. 1994, 37, 91–100. [Google Scholar] [CrossRef]
- Missaoui, K.; Bouguerra, W.; Hannachi, C.; Hamrouni, B. Boron removal by electrocoagulation using full factorial design. J. Water Purif. Technol. 2013, 5, 867. [Google Scholar] [CrossRef]
- Sayiner, G.; Kandemirli, F.; Dimoglo, A. Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes. Desalination 2008, 230, 205–212. [Google Scholar] [CrossRef]
- Bektaş, N.; Öncel, S.; Akbulut, H.Y.; Dimoglo, A. Removal of boron by electrocoagulation. Environ. Chem. Lett. 2004, 2, 51–54. [Google Scholar] [CrossRef]
- Koparal, A.S.; Ogutveren, U.B. Removal of nitrate from water by electroreduction and electrocoagulation. J. Hazard. Mater. 2002, 89, 83–94. [Google Scholar] [CrossRef]
- Abuzaid, N.S.; Al-Hamouz, Z.; Bukhari, A.A.; Essa, M.H. Electrochemical treatment of nitrite using stainless steel electrodes. Water Air Soil Pollut. 1999, 109, 429–442. [Google Scholar] [CrossRef]
- Un, U.T.; Ocal, S.E. Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. Int. J. Environ. Sci. Dev. 2015, 6, 425. [Google Scholar] [CrossRef]
- Akbal, F.; Camci, S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 2011, 425, 214–222. [Google Scholar] [CrossRef]
- Heidmann, I.; Calmano, W. Removal of Ni, Cu and Cr from a galvanic wastewater in an electrocoagulation system with Fe-and Al-electrodes. Sep. Purif. Technol. 2010, 71, 308–314. [Google Scholar] [CrossRef]
- Ziyadi, M.S.; Jawad, L.A.; Almukhtar, M.A.; Pohl, T. Day’s goby, Acentrogobius dayi Koumans, 1941 (Pisces: Gobiidae) in the desert Sawa Lake, south-west Baghdad, Iraq. Mar. Biodivers. Rec. 2015, 8, e148. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Sivakumar, M. Fluoride removal by a continuous flow electrocoagulation reactor. J. Environ. Manag. 2009, 90, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Shreesadh, E.; Thakur, S.; Chauhan, M. Electro-coagulation in wastewater treatment. Int. J. Eng. Sci. Res. 2014, 4, 584–589. [Google Scholar]
- Daneshvar, N.; Ashassi-Sorkhabi, H.; Tizpar, A. Decolorization of orange II by electrocoagulation method. Sep. Purif. Technol. 2003, 31, 153–162. [Google Scholar] [CrossRef]
- Chen, G.; Chen, X.; Yue, P.L. Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Eng. 2000, 126, 858–863. [Google Scholar] [CrossRef]
- Halim, A.A.; Han, K.K.; Hanafiah, M.M. Removal of methylene blue from dye wastewater using river sand by adsorption. Nat. Environ. Pollut. Technol. 2015, 14, 89. [Google Scholar]
- Gude, V.G. Energy consumption and recovery in reverse osmosis. Desalin. Water Treat. 2011, 36, 239–260. [Google Scholar] [CrossRef]
- Lanzarini-Lopes, M.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 2017, 188, 304–311. [Google Scholar] [CrossRef]
- Daneshvar, N.; Sorkhabi, H.A.; Kasiri, M.B. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater. 2004, 112, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Nassef, E. Removal of Phosphorous Compounds by Electrochemical Technique. Eng. Sci. Technol. Int. J. 2012, 2, 403–407. [Google Scholar]
- Murthy, Z.V.P.; Parmar, S. Removal of strontium by electrocoagulation using stainless steel and aluminum elecrrodes. Desalination 2011, 282, 63–67. [Google Scholar] [CrossRef]
- Khaled, B.; Wided, B.; Béchir, H.; Elimame, E.; Mouna, L.; Zied, T. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- Can, O.T.; Bayramoglu, M.; Kobya, M. Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes. Ind. Eng. Chem. Res. 2003, 42, 3391–3396. [Google Scholar] [CrossRef]
- Bhatti, E.U.H.; Khan, M.M.; Shah, S.A.R.; Raza, S.S.; Shoaib, M.; Adnan, M. Dynamics of Water Quality: Impact Assessment Process for Water Resource Management. Processes 2019, 7, 102. [Google Scholar] [CrossRef]
- Ifelebuegu, A.; Salauh, H.; Zhang, Y.; Lynch, D. Adsorptive Properties of Poly (1-methylpyrrol-2-ylsquaraine) Particles for the Removal of Endocrine-Disrupting Chemicals from Aqueous Solutions: Batch and Fixed-Bed Column Studies. Processes 2018, 6, 155. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Liao, M. Integration Multi-Model to Evaluate the Impact of Surface Water Quality on City Sustainability: A Case from Maanshan City in China. Processes 2019, 7, 25. [Google Scholar] [CrossRef]
- Ariffin, F.D.; Halim, A.A.; Hanafiah, M.M.; Awang, N.; Othman, M.S.; Azman, S.A.A.; Bakri, N.S.M. The effect of African catfish, Clarias gariepinus pond farms effluent on water quality of Kesang River on Malacca, Malaysia. Appl. Ecol. Environ. Res. 2019, 17, 1531–1545. [Google Scholar] [CrossRef]
- Shaikh, M.M.; AlSuhaimi, A.O.; Hanafiah, M.M.; Ashraf, M.A.; Harun, S.N. Study on Migration of Phenolic and Volatile Organic Compounds from Plastic Pipes used in Plumbing Home Networks into Tap Water. Desalin. Water Treat. 2018, 112, 344–350. [Google Scholar] [CrossRef]
- Alssgeer, H.M.A.; Gasim, M.B.; Hanafiah, M.M.; Abdulhadi, E.R.A.; Azid, A. GIS-Based Analysis of Water Quality Deterioration in the Nerus River, Kuala Terengganu Malaysia. Desalin. Water Treat. 2018, 112, 334–343. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Nadheer, A.H.; Ahmed, S.T.; Ashraf, M.A. Removal of chromium from aqueous solutions using a palm kernel shell adsorbent. Desalin. Water Treat. 2018, 118, 172–180. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Mohamad, N.H.S.M.; Aziz, N.I.H.A. Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi dalam rawatan air sisa kumbahan. Sains Malays. 2018, 47, 1625–1634. [Google Scholar] [CrossRef]
Parameters | Unit | Range | Run | Replicated Optimal Conditions |
---|---|---|---|---|
Current density | mA/cm2 | 0.5 to 3.0 | 6 | 3 |
Reaction time | min | 20 to 100 | 5 | 3 |
PH solution | - | 5 to 11 | 8 | 3 |
Temperature | °C | 25 to 45 | 5 | 3 |
IED | cm | 0.5 to 2 | 4 | 3 |
Ss | rpm | 250 to 750 | 3 | 3 |
Parameter | Meter/Method |
---|---|
pH | pH meter-pHM84 |
Turbidity | HACH 2100P |
Electric conductivity | HANNA HI-99301 |
TDS | Gravimetric method |
Cl− | Titration method |
Br− | ion chromatography |
SO42− | APHA Gravimetric |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Al-Raad, A.; Hanafiah, M.M.; Naje, A.S.; Ajeel, M.A.; O. Basheer, A.; Ali Aljayashi, T.; Ekhwan Toriman, M. Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes 2019, 7, 242. https://doi.org/10.3390/pr7050242
A. Al-Raad A, Hanafiah MM, Naje AS, Ajeel MA, O. Basheer A, Ali Aljayashi T, Ekhwan Toriman M. Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes. 2019; 7(5):242. https://doi.org/10.3390/pr7050242
Chicago/Turabian StyleA. Al-Raad, Abbas, Marlia M. Hanafiah, Ahmed Samir Naje, Mohammed A. Ajeel, Alfarooq O. Basheer, Thuraya Ali Aljayashi, and Mohd Ekhwan Toriman. 2019. "Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes" Processes 7, no. 5: 242. https://doi.org/10.3390/pr7050242
APA StyleA. Al-Raad, A., Hanafiah, M. M., Naje, A. S., Ajeel, M. A., O. Basheer, A., Ali Aljayashi, T., & Ekhwan Toriman, M. (2019). Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes, 7(5), 242. https://doi.org/10.3390/pr7050242