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Abstract: With the development of demand response technology, it is possible to reduce power
shortages caused by loads participating in power grid dispatching. Based on the equivalent thermal
parameter model, and taking full account of the virtual energy storage characteristics presented
during electro-thermal conversion, a virtual energy storage model suitable for electric heating loads
with different electrical and thermal parameters is proposed in this paper. To avoid communication
congestion and simplify calculations, the model is processed by discretization and linearization.
To simplify the model, a control strategy for electric heating load, based on the virtual state ofcharge
priority list, is proposed. This paper simulates and analyzes a control example, explores the relevant
theoretical basis affecting the control effect, and puts forward an optimization scheme for the control
strategy. The simulation example proved that the proposed method in this paper can reduce power
storage in the grid over a long period of time and can realize a power response in the grid.

Keywords: power shortage; electric heating load; electric water heater; demand response; virtual
energy storage (VES), virtual state of charge (VSOC)

1. Introduction

When a power shortage occurs in the generation side of the power system, the system frequency
will be reduced, resulting in a series of power quality problems. Demand response [1,2] can solve the
mismatch problem between supply and demand at a relatively lower cost, which is of great significance
to absorb new energy sources, reduce power shortages, and reduce environmental pollution [3–5].
The popularization of advanced metering infrastructure [6] makes it possible to use the control strategy
of thermostatically controlled load (TCL) and scale the application of trunked dispatching.

As an important part of the demand response, TCLs realize virtual power storage through indirect
heat energy storage. The main principle of electric heating load is Joule’s law, that is, the chamber
temperature is maintained within a certain temperature range through the on-off state of resistance
wire heating. On the premise of guaranteeing users’ basic comfort [7], electrical heating equipment,
such as electric water heaters [8,9], air conditioners, refrigerators, can be equivalent to virtual power
storage devices, so electric heating loads can be regarded as good TCLs. An electrical heating device
forced to shut down for several minutes can reduce power consumption by a small amount without
dropping the temperature below the comfortable temperature range. When a large amount of electric
heating loads are forced to shut down in order, they can release a large amount of electric power.
The indirect energy storage capability of electric heating loads can reduce peak load and improve the
reliability of power grid operation.
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Several studies on the virtual energy storage (VES) model of electric heating loads have been
undertaken. Reference [10] analyzed the mechanism of aggregated load oscillations caused by the
traditional temperature adjusting method, on the basis of the equivalent thermal parameter (ETP)
model, and modeled household electric heating load. However, the rationality for model linearization
has not been quantitatively analyzed. Reference [11] presented a temperature state priority list method
to suppress power flow and decreased power shortage demand for a given micro-grid; however, the
modeling of the working state of the constant temperature state was not accurate enough. Reference [12]
presented a load model suitable for terminal voltage control of electric water heaters, which could
reduce the peak load of the power grid while ensuring the comfort of users, but the modeling process
was not described in detail. In [13], using the characteristics of household electric heating loads such as
electric water heaters, a high-precision model reflecting different working conditions of electric heating
loads was proposed. However, due to the limitation of computational complexity, this model was
suitable for small-scale regulation and control only, instead of for large power grid-trunked dispatching.

ETP modelling, as the theoretical basis of control, is widely used [14]. However, previous studies
lack an analysis of power parameters, the complete VES index system, and the deep mining of the
coupling relationship between variables, and do not accurately reflect the actual electro-thermal
conversion relationship.

In terms of the control algorithm, reference [15] started from the macro-layer of the grid side and
the micro-layer of the load aggregator, and presented a bi-level optimal dispatch and control model for
air-conditioning loads based on direct load control. But the running states of loads before control right
transferring need to be uniformly distributed. Reference [10] proposed a new temperature-adjusting
method on the basis of the ETP model, to avoid load oscillations caused by the traditional temperature
regulation method, but the parameters of the devices participating in the demand side response
needed to be the same. Reference [16] proposed a demand-side decentralized control strategy with
variable participation to provide directional control of the start-up and shutdown of TCLs, so as to
improve the frequency regulation capability of isolated microgrid systems in collaboration with energy
storage systems. But, the operation of the units in the cluster control was not analyzed. Reference [17]
developed a weighting coefficient-queuing algorithm based on a modified coloredpower algorithm
state-queuing model, which can be used to directly control the TCLs of electric heating equipment.

The daily load peak of a power grid generally lasts for several hours, thus the transfer of control
rights can last from a few minutes to hours. Previous studies have paid less attention to the analysis
of the control effect in the case of long-term (several hours) transfer of control rights and theoretical
analysis of factors affecting the control effect.

In this paper, a load model and a trunked dispatching strategy for electric heating loads are
analyzed deeply to solve the problem of electric heating loads with different parameters and demands
participating in demand response at the same time. Based on a simplified first-order ETP model, a VES
model, which can reflect the electro-thermal exchange, is proposed where the potential of demand
response can be fully exploited. Based on this model, the trunked dispatching strategy based on virtual
state of charge (VSOC) priority list, is proposed. The control effect under the condition of long-term
control right transferring is analyzed, and the control strategy is optimized according to the analysis
results. The validity and advancement of the optimized control strategy based on the VSOC priority
list are proved by design and simulation examples.

2. Virtual Energy Storage (VES) Model of Electric Heating Load

2.1. Concepts of VES

When power consumption is increased (or reduced) by controlling the difference between the
working states of the equipment before and after the control right transferring of the equipment,
and this power is stored in other forms, the equipment can be equivalent to VES. When the electric
power consumption of the equipment after control right transferring is greater than that before
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transferring, it can be considered to be virtual energy storage charging, whereas, when the electric
power consumption of the equipment after control right transferring is less than that before transferring,
it can be regarded as VES discharging. The control system of VES can offset the shortage of energy
storage by guiding and intervening in energy demand, and can achieve the effect of reducing the
energy storage capacity and cost.

VES is described using four indicators—charging/discharging power, switch state, charge/discharge
time, and VSOC—which are defined as follows:

(1) Charging/discharging power: charging power is the difference in power consumption of the
equipment after control right transferring minus that before transferring. A VES is in the charging
state when the charging power is positive, and in the discharging state when the charging power
is negative. The value of the discharging power is the opposite of the charging power;

(2) Switch state: refers to the switching state of electric heating equipment;
(3) Charge time: the length of time of the charging state; and discharge time: the length of time of

the discharging state;
(4) VSOC: The United States Advanced Battery Consortium defines state of charge (SOC) as the ratio

of the residual electricity to the rated capacity under the same conditions at a certain discharge
rate. Similarly, virtual state of charge (VSOC) is defined as the ratio of the residual energy to the
rated capacity under the same conditions at a certain charging and discharging power, which
represents the responsiveness of VES at a given stage.

2.2. Equivalent Thermal Parameter (ETP) Model of Electric Heating Load

The main idea of the ETP modeling method is to equivalent the internal and external environment
parameters of the room (chamber) and the refrigerating (heating) capacity of electric energy conversion,
to circuit components, such as resistors, capacitors, and power supplies, then use circuit knowledge to
analyze the relationship between temperature and energy conversion.

Considering the process of heat exchange between the medium and the mass in the room (chamber),
and the exterior environment, the differential equation of the second-order ETP model is:

.
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The thermal energy storage process is described by heat capacity and heat transfer resistance.
In Equation (1), Pele represents electric power, η represents refrigeration or heating efficiency, and ηPele

is refrigeration or heating power (kW). Tin_g represents the temperature of the medium in the room
(chamber)(◦C), Tout represents the ambient temperature (◦C), Tin_m represents the temperature of the
mass in the room (chamber) (◦C), Ce represents the heat capacity of the medium (J/◦C), Cm represents
the heat capacity of the mass (J/◦C), R1 represents the heat transfer resistance of energy between the
interior and the exterior environment of the room (chamber) (◦C/W), and R2 represents the heat transfer
resistance of energy between the medium and the mass in the room (chamber) (◦C/W).

The widely used second-order ETP model [18] is shown in Figure 1.
When the temperature change is relatively smooth, there is no obvious difference between the

medium and the mass temperatures. In order to improve the practicability of the model, assuming
Tin_g = Tin_m = Tin, the second-order ETP model can be reduced to the first-order ETP model:

Tin − Tout

R1
+ Ce

dTin

dt
= ηPele (2)
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Tint represents the temperature (°C) of the room (chamber) at time t, S represents the switch state, 
with 0 representing disconnection (the device is closed) and 1 as closure (the device is open). Pheat = 
ηPele represents the VES power supply, whose specific form depends on the electric part. Pleakage = 
(Tint−Tout)/R1 represents the current leakage in the model, mainly represented by the energy loss 
caused by the temperature gap between the interior and exterior environment. 

The electric power before control right transferring is set as the base power, Pbase. Electric heating 
equipment that is not in use does not have any discharge capability, and Pbase is 0. 
Charging/discharging power is closely related to the switching state, which directly reflects the real-
time reserve energy resource requirements. If Pele increases when the electric heating equipment 
participates in the demand response, and it can be considered that the VES is in charging state, and 
vice versa for the discharge state. Charging and discharging power can be expressed as: 

Figure 1. Second-order equivalent thermal parameter (ETP) model.

2.3. Thermal Parameters Part of VES Model for an Electric Heating Unit

On the basis of the first-order ETP model, a partial model of VES thermal parameters was
established as shown in Figure 2.
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Tin
t represents the temperature (◦C) of the room (chamber) at time t, S represents the switch

state, with 0 representing disconnection (the device is closed) and 1 as closure (the device is open).
Pheat = ηPele represents the VES power supply, whose specific form depends on the electric part.
Pleakage = (Tin

t
− Tout)/R1 represents the current leakage in the model, mainly represented by the energy

loss caused by the temperature gap between the interior and exterior environment.
The electric power before control right transferring is set as the base power, Pbase. Electric heating

equipment that is not in use does not have any discharge capability, and Pbase is 0. Charging/discharging
power is closely related to the switching state, which directly reflects the real-time reserve energy
resource requirements. If Pele increases when the electric heating equipment participates in the demand
response, and it can be considered that the VES is in charging state, and vice versa for the discharge
state. Charging and discharging power can be expressed as:

Pdisc= −S(t)Pheat(t) + Pbase

Pchar = S(t)Pheat(t) − Pbase
(3)

where, the subscript char represents charging power and disc represents discharging power.
S(t) represents the switching state at time t. It can be seen that the charging/discharging capacity of VES
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comes from the change of state rather than the duration of the state of batteries. Charge/discharge time
determines the sustainable response ability of demand resources. If Tin(t0) = C, the solution of (2) is:

Tin(t) = Tout(t)+SηR1Pele(t)−(Tout(t)+SηR1Pele(t) −C)e−
t

R1Ce (4)

and charge/discharge time is:

ton/off = R1Ce ln(
C− Tout(t) − SηR1Pele(t)

Tin(t) − Tout(t) − SηR1Pele(t)
) (5)

Using the relationship between temperature and power in ETP model, the maximum capacitance
of VES is:

Qcapacity = Ce(Tmax − Tmin) (6)

where Tmax, Tmin are protocol maximum temperature and protocol minimum temperature after the
control right is transferred, respectively. Based on the principle of energy conservation, the charge
capacity at time t is

Q(t) =Q(t0)+

∫ t

t0

(ηPele(ξ)−Pleakage)dξ (7)

The ratio of residual energy to rated capacity under the same conditions can be expressed by:

VSOC =
Q(t)

Qcapacity
(8)

Figure 3 shows the charge/discharge curves of two VES systems. Number 1 is denoted by solid
lines and number 2 by dotted lines. They participate in the response at t1, and their discharging
powers are Pchar_1 and Pchar_2 respectively. Since it is convenient to control the equivalent VES of
electric heating load, the power climbing state during the response process is neglected. ton_1 and
ton_2 represent the discharge time, generally less than the maximum discharge time and limited by
the VSOC state of virtual energy storage. For different VESs, their charging/discharging power and
charge/discharge time are quite different, but their change modes are the same. The charging state is
similar to the discharging state, so it is not necessary to elaborate.
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2.4. Electrical Parameters Part of VES Model for An Electric Water Heater

Here we analyze the electrical parameters of a VES model of an electric heating load, and take an
electric water heater as an example. An electric water heater keeps the chamber temperature within
a specific temperature range by switching the on-off mode of resistance wire, and acts soon after
receiving a control signal. As there is no delay when it starts up or turned off, its working state is
single. There is no obvious power shock in the water heater. Under the working mode of rated voltage
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and rated current, temperature control is realized by switching on/off the devices. The relationship
between heating power and electric power is as follows:

Pheatl = ηPrated · S(t)

S(t) =


S(t− 1) Tmin < Tin(t) < Tmax

0 Tmax ≤ Tin(t)
1 Tmin ≥ Tin(t)

(9)

where S(t) represents the switching state of the electric water heater at time t, S(t−1) represents the
switching state at the last time step, 1 for running and 0 for stop; Pheatl represents heating power
(kW); Prated is the rated electric power of electric water heater (kW); Tin(t) represents the chamber
temperature at time t (◦C).

As shown in Figure 4, the VES model mainly includes the electric power curve, the electrical part
and the thermal part. The arrowed solid line indicates the energy flow, and the arrowed dotted line
indicates the signal flow.
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3. Model Preprocessing

In advanced metering infrastructures (AMI), only discrete data are transmitted, and communication
time intervals exist. It is necessary to discrete the original VES model. Furthermore, model linearization
is also needed to simplify the calculation and reduce communications traffic.

3.1. Discretization

Assume that the time step is ∆t, (3) can be expressed as:

Tin
t+1 = Tout

t+1 + SηR1Pele − (Tout
t + SηR1Pele − Tin

t)e−
∆t

R1Ce (10)

where Tin
t and Tin

t+1 are the internal temperature of the room(chamber) at time t and t + 1, respectively;
Tout

t and Tout
t+1 are the external ambient temperature at time t and t + 1, respectively.
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By connecting the discrete dots calculated by Equation (10) into a smooth curve, the relationship
between time and temperature can be accurately described. Figure 5 shows the change of electric
power and chamber temperature over time, where Tset is the setting temperature.

In 0~t1, the water heater is heated from the initial temperature to the protocol maximum
temperature. In t1~t2, the water heater stops heating until the temperature drops to the protocol
minimum temperature. The dot dash expresses the temperature drop curve after the unit is shut down.
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3.2. Linearization

In order to simplify the calculation, we intend to linearize the temperature curve in Figure 5 and
prove the rationality.

The process of temperature change is slow and the time for equipment to participate in demand
response is relatively short, so it can be considered that the external temperature is constant. That is,
Tout

t = Tout
t+1. The temperature range of the room(chamber) is set to [Tmin,Tmax], the control cycle of

Pele is tcyc, and the time interval(i.e., time step) is ∆t. The length of time of electric power input is ton,
and the length of time without electric power input is toff. Substitute Tmin, Tmax into Equation (10) for
reception calculation, we get:

Tmax= (Tout + ηR1Pele)(1− e−
ton∆t
R1Ce )+Tmine−

ton∆t
R1Ce

Tmin = Tout(1− e−
toff∆t
R1Ce )+Tmaxe−

toff∆t
R1Ce

tcyc = ton + toff

(11)

After solution, ton and toff are described by:

toff = R1Ce
∆t ln(Tmax−Tout

Tmin−Tout
)

ton = R1Ce
∆t ln( Tmin−Tout−ηR1Pele

Tmax−Tout−ηR1Pele
)

(12)

To describe the temperature change of each iteration by the ratio of the time step ∆t to ton and toff,
we obtain:  Tin

t+1 = Tin
t + ∆t

ton
(Tmax − Tmin)s = 1

Tin
t+1 = Tin

t
−

∆t
toff

(Tmax − Tmin)s = 0
(13)
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3.3. Rationality of Linearization

Take the actual running condition of an electric water heater as an example. Assume that an
electric water heater is heated from 30 ◦C to 50 ◦C, and after that the temperature is controlled from Tmin

to Tmax; the operation parameters of the electric water heater are as below: ton = 20 min, toff = 20 min,
Pele = 2000 W, Tmin = 50 ◦C, Tmax = 60 ◦C, Tout ≡ 20 ◦C, Tin

0 = 30 ◦C. It is available from (12) that:
R1 = 3.5 × 10−2 ◦C/W; Ce = 1.192× 105 J/◦C. The shorter the communication time step, the more accurate
the model and the more timely the control are. But at the same time, the communication pressure and
the construction cost of AMI will increase. In this paper, the time step ∆t is 1 min.

Simulation is conducted on MATLAB R2016a (MathWorks, Natick, MA, USA) and the variation
of temperature along time is shown in Figure 6. The solid line represents the results of the first-order
ETP model, and the dotted line represents the results of the linearized ETP model.
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Calculate the root mean square error (RMSE) of the two curves, and the smaller RMSE is, the less
the influence of substitution will be.

RMSE(X, Y) =

√√√
1
N

N∑
i=1

(Xi −Yi)
2 (14)

As the calculated RMSE between the linearized ETP model and the first-order ETP model within
113 min is only 0.2751 ◦C, it can be concluded that the linearized model fits well with the original
model and will not bring significant change to the related results. Actually, the smaller the heating
time ton is or the greater the cooling time toff is, the smaller RMSE is. Considering the actual situation
of electric water heater, the duration of heating process of the equipment is generally much shorter
than the duration of cooling process, that is, ton < toff.

4. Control Strategy of Electric Heating Loads Based on Virtual State of Charge (VSOC)
Priority List

4.1. Proposal of the Control Strategy

Set the following assumptions:
The internal and external environment do not change when the control right is transferred;

the energy conversion of electric heating equipment is 100%; the energy loss only comes from the
difference between the chamber temperature and outside environment; the refresh time interval of
communication data is ∆t.
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The following analysis still takes the electric water heater as an example. When a certain number
of electric water heaters are controlled at the same point, the charge and discharge power of the jth one
can be described by:

P j
disc(t) = −S j(t)P j

rated + Pbase
j

P j
char(t) = S j(t)P j

rated − Pbase
j

(15)

where the superscript j represents the jth VES.
At time t, the jth VES (VSOCj) is like formula (8). After the model preprocessing of discretization

and linearization, bring (13) into (7) to derive the formula (16):

VSOC j(t) =
Q(t)

Qcapacity
=

C j(T j(t) − T j
min)

C j(T j
max − T j

min)
=

T j(t) − T j
min

T j
max − T j

min
(16)

In (16), electrical parameters are described by thermal parameters, and interconversion from
electrical parameters to thermal parameters is completed in time domain. The relationship between
linearized temperature curve, VSOC curve and electric power is shown in Figure 7.
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Figure 7. The relationship between linearized temperature curve, virtual state of charge (VSOC) curve
and electric power.

The shaded portion indicates that the temperature of VES equipment has not reached the protocol
value. Tj(t) represents the temperature of jth VES at time t; tj

off and tj
_on are remaining discharge and

charge time of jth VES at time t; tj
off_max and tj

on_max are the maximum discharge and charge time of
jth VES.

The recursion formula of VSOCj is as follows:

VSOC j(t + 1) −VSOC j(t) =
T j(t + 1) − T j

min

T j
max − T j

min
−

T j(t) − T j
min

T j
max − T j

min
(17)

By substituting (13) into (17), it can be concluded that VSOCj is related to time step:

VSOC j(t + 1) =
∆t

S jt j
on_max − (1− S j)t j

off_max

+VSOC j(t) (18)
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Charge/discharge time are important constraint indexes. On the one hand, they can ensure that
the VES will not charge or discharge excessively, which means that the temperature fluctuation of the
electric water heater is within the set range. On the other hand, they can ensure that the state of the
device will not change during the time step, which shuns affecting the control accuracy and bringing
unnecessary grid side fluctuations. According to Figure 7, we can obtain:

t j
off

t j
off_max

=
VSOC j(t)−VSOC j

min

VSOC j
max−VSOC j

min

1−t j
on

t jon_max
=

VSOC j(t)−VSOC j
min

VSOC j
max−VSOC j

min

(19)

t j
off =

T j (t)−T j
min

T jmax−T j
min

t j
off_max= VSOC j(t)t j

off_max

t j
on =

T j
max−T j (t)

T jmax−T j
min

t j
on_max = (1−VSOC j(t))t j

on_max

(20)

To sum up, taking discharge as an example, the control strategy of VES are:
P j

disc(t) = −S j(t)P j
rated + Pbase

j

VSOC j(t + 1) = ∆t
S jt j

on_max−(1−S j)t j
off_max

+VSOC j(t)

t j
off =

T j (t)−T j
min

T jmax−T j
min

t j
off_max= VSOC j(t)t j

off_max

(21)

Taking the demand side response of discharge condition as an example, the principle of the control
strategy for VESs is to control the switching state mainly based on the sequence of VSOC values, that is,
the unit with higher VSOC is shut down preferentially. The main objective function is to meet the
power shortage in each time step. The marginal limit conditions are that the discharge time is longer
than the time step and VES do not overcharge or overdischarge.

The specific control function at time t are
Pt

s ≤ min
∑
Q

Pt
disc( jn)

0 ≤ VSOCt( jn) ≤ 1

t j
off ≥ ∆t

(22)

where Pt
s represents the power shortage at time t; Q represents the set arranged from large to small

according to VSOC; jn is an element of set Q, and n represents the order of j in the new set.

4.2. Simulation of the Strategy

MATLAB is used as the simulation platform to verify the control effect of trunked dispatching of
the electric heating loads with different parameters and working states. The program mainly includes
the following steps: data refreshment, dealing with VSOC off-limit problem, generating control queue
Q based on VSOC values, calculating whether the power shortage is satisfied, handling the switch
state of controlled energy storage and updating the states of VES iteratively. The parameters of the
example are: the amount of electric water heaters under control is 100; the initial value of VSOC is
uniformly distributed from 0 to 1; the switching function is 0~1 integer distributed; the time step is
1min; the rated power of the equipment is uniformly distributed from 1.5 to 2.5 kW. For each water
heater, the maximum charge and discharge time are 15~25 min and 30~50 min uniformly distributed,
respectively; the protocol minimum and maximum temperature are 45~55 ◦C and 55~65 ◦C uniformly
distributed, respectively.

Suppose the power shortage in the power system is 30 kW and the protocol control time is 30 min,
and the control result is shown in Figure 8. After analysis, it can be found that the response power can
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satisfy the power shortage well in a short time, but there is an excessive response at 23 min, as shown
in Figure 8a. At the same time, a large number of VSOC values reach the limit in Figure 8b, which
shows that there is a certain relationship between the excessive response of power and a large number
of VESs reaching the limits simultaneously.

Processes 2019, 7, x FOR PEER REVIEW  3 of 9 

 

 

Figure 8. The response variation of power and VSOC in 30 min. 

  

Figure 8. The response variation of power and VSOC in 30 min.

Suppose the power shortage is 30 kW and the protocol control time is 180 min. The control result
is shown in Figure 9. It is found that the response power basically satisfies the power shortage in a long
time, but at the same time there are more excessive responses and insufficient responses. By comparing
Figure 9a,b, we come to the same conclusion as Figure 8: when a large number of VSOC values are
concentrated and near the limit value, they will lead to excessive or insufficient response. Especially
starting at 135 min, since most VESs are close to the limit of VSOC = 0, and in order to maintain the
marginal condition VSOC > 0, a large number of VESs are forced to open and charge, resulting in
insufficient response over a period of time.

Above all, the control strategy based on the VSOC priority list can achieve a relatively stable
power response in a short time. However, limited by the state of VES, the control results over a long
period of time are yet to be adjusted and optimized.
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Figure 9. The response variation of power and VSOC in 180 min.

4.3. Discussion

After observing Figures 8 and 9, it would be found that when the power response is excessive,
more electric water heaters are forced to close and their equivalent VESs discharge in advance because
their VSOC values reach the upper limit, which leads to load peak of excessive response. When the
response is inadequate, more electric water heaters are in uncontrolled state, namely, the relevant
equipment is closed and there is inadequate load capacity for respond. At the same time, we found that
before insufficient response of VES, there is always a large excessive response. The excessive response
power is so large that the state of charge and discharge is changed in advance, causing insufficient
discharge capacity and insufficient response.

By analyzing Figure 8 and the first 30 min of Figure 9, it is found that the control effect is better
when the control right is transferred for a short time than that for a long period of time. By comparison,
it is found that the states of the VESs are more dispersed in a short period of time, while more
concentrated after long-term control.

As shown below, the control effect is affected by the diversity of VES.
The degree of distribution of virtual state of charge of virtual energy storage is defined. It is

expressed by the standard deviation of VSOC. It reflects the diversity of virtual VES. The greater the
standard deviation, the higher diversity of related VES.

By applying the relevant parameters in 4.2, the variation of VES diversity in 180 min can be
obtained, as shown in Figure 10. It is obvious that with the increasing of transfer time of control right,
the diversity of VES converges to a smaller value oscillatorily. The histograms of VES distribution
at special time points 10 min, 55 min, 95 min and 115 min are shown in Figure 11. At 10 min,
the distribution of VES is relatively uniform, but at 55 min, 95 min, and 115 min, it is relatively
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concentrated and the diversity is lower. Compared with Figure 9, 55 min, 95 min, and 115 min are the
time points when excessive or insufficient response occurs.
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With increasing control time, VES diversity of electric water heaters is decreased, and that is
before excessive response or insufficient response is low. Obviously, the diversity state of VES leads to
excessive and insufficient response in the transfer process of control right.

In summary, in the response process, the above VSOC-priority VES control strategy makes the
state of VESs convergent and thus reduces its diversity, which leads to worse results than expected,
namely, excessive or insufficient response occurs frequently after long-term control right transfer.

5. Optimized Control Strategy of Electric Heating Loads Based on VSOC Priority List

5.1. Proposal of the Optimized Control Strategy

Based on the above analysis, the diversity of VES states directly affects the control results.
In (22), the switching state of set Q is refreshed within each communication time step in the

original control strategy, which will inevitably lead to the discharge of VES with higher VSOC and
charge of VES with lower VSOC, making the states of VESs synchronised, resulting in the reduction
of the diversity of VESs and directly affecting the control effect.

In order to make the charge and discharge of each VES more complete, the improved control
strategy is to reduce the switching times of VES, trying to change the active control to passive control
according to limit value. To this end, the improved restrictive conditions are:

Pt
s ≤ min

∑
A

Pt
disc( jn)

Pt
s −
∑
A

Pt
disc( jn) ≤ min

∑
{QA

Pt
disc( jn)

0 ≤ VSOCt( jn) ≤ 1
t j

off ≥ ∆t

(23)
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where A represents the set of controlled VESs arranged from large to small according to VSOC; CQA
represents the complement set of A with Q as the complete set. The new restriction condition indicates
that the VES discharging during the last time step is preferentially controlled to continue discharging,
and then the power shortage is supplemented based on the order of VSOC values.

5.2. Simulations of the Optimized Strategy

The example parameters in Section 4 and the optimized control strategy based on VSOC priority
list for electric water heaters are used to draw the VES diversity variation curve as shown in Figure 12.
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Through quantitative calculation and comparison with Figure 10, it can be found that the diversity
of VES obtained by the optimized control strategy is maintained well, the standard deviation oscillates
within a stable range, and the amplitude is much smaller than that of the original control strategy.
The histograms of VES distribution at 45 min, 90 min, 135 min and 180 min are shown in Figure 13.
Obviously, the distribution of VES is more uniform and the diversity is better.
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The control effect is shown in Figure 14. The simulation result shows that the optimized control
strategy has better control effect because long-term transfer of control rights does not result in
insufficient or excessive response. The VSOC values of VESs are relatively uniform in the whole
process, and there is no convergence of the states of VES. The power shortage can be reduced steadily
by using the optimized control strategy to control electric heating loads.
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The control effect of the optimized control strategy based on a VSOC priority list for electric
water heaters under fluctuating power shortage is shown in Figure 15. As can be seen from the figure,
the response power still tracks power shortage well, which shows that the control strategy proposed in
this paper is also applicable to power grid with power shortage fluctuations.
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6. Conclusions

In this paper, we establish a complete VES index system and propose a VES model which can
reflect the practical electro-thermal exchange. The model is mainly divided into two parts: electrical
parameters and thermal parameters, reflecting the impact of electric heating loads scheduling variation
on the distribution network. The model is discretized to reduce communications traffic and linearized
to simplify calculation. Taking the electric water heater as an example, a control strategy based on
VSOC priority list is proposed, and simulation results show that this method can reduce the power
shortage of the grid to a certain extent. By analyzing the insufficiency of the strategy, the optimized
VSOC priority list control strategy, which optimizes the control effect of long-time scheduling, is put
forward. The optimized control strategy can maintain the diversity of VES well and make it possible for
the electric water heater to track the power shortage of the grid for a long time. Simulation examples
are designed to verify the superiority and effectiveness of the proposed optimized control strategy.

The control strategy proposed in this paper is not only applicable to the electric water heater,
but also to other electric heating loads that maintains the temperature of the room (chamber) in a
specific temperature range by controlling the on-off mode of the resistance wire. For other types of
electric heating loads, it is only necessary to modify the electrical parameters of the VES model and
propose its control strategy in a targeted manner. The research in this paper is helpful to build a
multi-VES system which can participate in the trunked dispatching of the power grid and promote the
development of demand side response. The cost, benefit and pricing mechanism of demand response
can be analyzed in the following studies.
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Abbreviation

Pele electric power
η refrigeration or heating efficiency
Tout ambient temperature
Tin room (chamber) temperature
Ce heat capacity of medium

R1
heat transfer resistance of energy between the interior and the exterior environment of the
room (chamber)

Pheat VES power supply
Pleakage leakage current
Pbase electric power before control right transfering
Pdisc discharging power
Pchar charging power
S(t) switching state at time t
ton charge time
toff discharge time
Qcapacity maximum capacitance of VES
Tmax protocol maximum temperature
Tmin protocol minimum temperature
Q(t) charge capacity at time t
Pheat1 heating power
S(t−1) switching state at the last time step
Prated rated electric power of electric water heater
∆t time step
Tin

t+1 internal temperature of the room(chamber) at time t + 1
RMSE root mean square error of two curves,
(Symbol)j (Symbol) of jth VES
tj

off remaining discharge time of jth VES at time t
tj

h_on remaining charge time of jth VES at time t
tj

off_max maximum discharge time of jth VES
tj

on_max maximum charge time of jth VES
Pt

s power shortage at time t
Q the set arranged from large to small according to VSOC
jn the order of j in the new set
CQA the complement set of A with Q as the complete set
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