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Abstract: A novel transfer bees optimizer for reactive power optimization in a high-power system was
developed in this paper. Q-learning was adopted to construct the learning mode of bees, improving
the intelligence of bees through task division and cooperation. Behavior transfer was introduced, and
prior knowledge of the source task was used to process the new task according to its similarity to the
source task, so as to accelerate the convergence of the transfer bees optimizer. Moreover, the solution
space was decomposed into multiple low-dimensional solution spaces via associated state-action
chains. The transfer bees optimizer performance of reactive power optimization was assessed, while
simulation results showed that the convergence of the proposed algorithm was more stable and faster,
and the algorithm was about 4 to 68 times faster than the traditional artificial intelligence algorithms.

Keywords: transfer bees optimizer; reinforcement learning; behavior transfer; state-action chains;
reactive power optimization

1. Introduction

Nonlinear programming is a very common issue in the operation of power systems, including
reactive power optimization (RPO) [1], unit commitment (UC) [2], economic dispatch (ED) [3].
In order to tackle this issue, several optimization approaches have been adopted, such as the Newton
method [4], quadratic programming [5], interior-point method [6]. However, these methods are
essentially gradient-based mathematic optimization methods, which highly depend on an accurate
system model. When there is nonlinearity, there are discontinuous functions and constraints, and
there usually exist many local minimum upon which the algorithm may be easily fall into one local
optimum [7].

In the past decades, artificial intelligence (AI) [8–18] has been widely used as an effective alternative
because of its high independence from an accurate system model and strong global optimization ability.
Inspired by nectar gathering of bees in wild nature, the artificial bee colony (ABC) [19] has been applied
to optimal distributed generation allocation [8], global maximum power point (GMPP) tracking [20],
multi-objective UC [21], and so on, and has the merits of simple structure, high robustness, strong
universality, and efficient local search.

However, the ABC mainly depends on a simple collective intelligence without self-learning
or knowledge transfer, which is a common weakness of AI algorithms such as genetic algorithm
(GA) [9], particle swarm optimization (PSO) [10], group search optimizer (GSO) [11], ant colony
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system (ACS) [12], interactive teaching–learning optimizer (ITLO) [13], grouped grey wolf optimizer
(GGWO) [14], memetic salp swarm algorithm (MSSA) [15], dynamic leader-based collective intelligence
(DLCI) [16], and evolutionary algorithms (EA) [17]. Thus, a relatively low search efficiency may result,
particularly while considering a new optimization task of a complex industrial system [22], e.g., the
optimization of a large-scale power system with different complex new tasks. In fact, the computational
time of these algorithms can be effectively reduced for RPO or optimal power flow (OPF) via the
external equivalents in some areas (e.g., distribution networks) [23]. This is because the optimization
scale and difficulty are significantly reduced as the number of optimization variables and constraints
decreases. However, the optimization results are highly determined by the accuracy of the external
equivalent model [24], which is usually worse than that obtained by global optimization. Hence, this
paper aims to propose a fast and efficient AI algorithm for global optimization.

Previous studies [25] discovered that bees have evolved an instinct to memorize the beneficial
weather conditions of their favorite flowers, e.g., temperature, air humidity, and illumination intensity,
which may rapidly guide bees to find the best nectar source in a new environment with high probability,
hence, the survival and prosperity of the whole species living in various environments can be
guaranteed via the exploitation of such knowledge. The above natural phenomenon resulted from the
struggle for existence in a harsh and unknown environment can be regarded as a knowledge transfer,
which has been popularly investigated in machine learning and data mining [26]. In practice, prior
knowledge is from the source tasks and then it is applied to a new but analogous assignment, such that
fewer training data can be used to achieve a higher learning efficiency [27], e.g., learn to ride a bike
before starting to ride a motorcycle. In fact, knowledge transfer-based optimization is essentially the
knowledge-based history data-driven method [28], which can accelerate the optimization speed of
a new task according to prior knowledge. Also, reinforcement learning (RL) can be accelerated by
knowledge conversion [29], and agents learn new tasks faster and interact less with the environment.
As a consequence, knowledge transfer reinforcement learning (KTRL) has been developed [30] through
combining AI and behavior psychology [31] and is divided into behavior shift and information shift.

In this paper, behavior shift was used for Q-learning [32] to accelerate the learning of a new task,
which was called Q-value transfer. The Q-value matrix was applied in knowledge learning, storage,
and transfer. However, the practical application of conventional Q-learning was restricted to only
a group of new tasks with small size due to the calculation burden. To deal with this obstacle, an
associated state-action chain was introduced after the solution space was decomposed into several
low-dimensional solution spaces. Therefore, this paper proposes a transfer bee optimizer (TBO) based
on Q-learning and behavior transfer. The main novelties and contributions of this work are given
as follows:

(1) Compared with the traditional mathematic optimization methods, the TBO has a stronger global
search ability by employing the scouts and workers for exploitation and exploration. Besides, it
can approximate the global optimum more closely via global optimization instead of external
equivalent-based local optimization.

(2) Compared with the general AI algorithms, the TBO can effectively avoid a blind search in the
initial optimization phase and implement a much faster optimization for a new task by utilizing
prior knowledge from the source tasks.

(3) The optimization performance of the TBO was thoroughly tested by RPO of large-scale power
systems. Because of its high optimization flexibility and superior optimization efficiency, it can
be extended to other complex optimization problems.

The remaining of this paper is arranged as follows: Section 2 presents the basic principles of
the TBO. Section 3 designs the TBO for RPO. Section 4 shows the simulation results, and Section 5
summarizes paper.
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2. Transfer Bees Optimizer

2.1. State-Action Chain

Q-learning typically finds and learns different state-action pairs through a look-up table, i.e.,
Q(s,a), but this is not enough to handle a complex task with multiple controllable variables because of
the curse of dimension, as illustrated in Figure 1a. Suppose the optional operand of the controllable
variable xi is mi, and |A|= m1m2 · · ·mn , n is the sum of the controlled variables, and A is the action set.
If n is dramatically increased, the dimension of Q-value matrix will grow very fast, so the calculation
convergence is slow and may even lead to failure. Hierarchical reinforcement learning (HRL) [33] is
commonly used to avert this obstacle and decomposes the original complex task into several simpler
subtasks, e.g., MAXQ [34]. However, it is easy to fall into a near-optimum for the overall task due to
the fact that it is difficult to design and coordinate all the subtasks.

In contrast, the whole solution space is decomposed into several low-dimensional solution spaces
by the associated state-action chain. In such frame, each controlled variable has a unique memory
matrix Qi, the size of Q-value matrix can be significantly reduced, it has the advantages of convenient
storage and transfer, and the controlled variables are linked, as shown in Figure 1b.

Processes 2019, 7, x FOR PEER REVIEW 3 of 17 

 

2. Transfer Bees Optimizer 

2.1. State-Action Chain 

Q-learning typically finds and learns different state-action pairs through a look-up table, i.e., 
Q(s,a), but this is not enough to handle a complex task with multiple controllable variables because 
of the curse of dimension, as illustrated in table 1a. Suppose the optional operand of the controllable 
variable xi is mi, and 1 2| | nA m m m= L , n is the sum of the controlled variables, and A is the action set. 
If n is dramatically increased, the dimension of Q-value matrix will grow very fast, so the calculation 
convergence is slow and may even lead to failure. Hierarchical reinforcement learning (HRL) [33] is 
commonly used to avert this obstacle and decomposes the original complex task into several simpler 
subtasks, e.g., MAXQ [34]. However, it is easy to fall into a near-optimum for the overall task due to 
the fact that it is difficult to design and coordinate all the subtasks. 

 
(a) The principle of Q-learning 

 
(b) The principle of TBO 

Figure 1. Comparison of Q-learning and transfer bee optimizer (TBO). 

In contrast, the whole solution space is decomposed into several low-dimensional solution 
spaces by the associated state-action chain. In such frame, each controlled variable has a unique 
memory matrix Qi, the size of Q-value matrix can be significantly reduced, it has the advantages of 
convenient storage and transfer, and the controlled variables are linked, as shown in Figure 1b. 

2.2. Knowledge Learning and Behavior Transfer 

2.2.1. Knowledge learning 

Figure 2 shows that all bees search a nectar source according to their prior knowledge (Q-value 
matrix); the obtained knowledge will then be updated after each interaction with the nectar source, 
therefore a cycle of knowledge learning and conscious exploration can be fully completed. As shown 

Figure 1. Comparison of Q-learning and transfer bee optimizer (TBO).

2.2. Knowledge Learning and Behavior Transfer

2.2.1. Knowledge learning

Figure 2 shows that all bees search a nectar source according to their prior knowledge (Q-value
matrix); the obtained knowledge will then be updated after each interaction with the nectar source,
therefore a cycle of knowledge learning and conscious exploration can be fully completed. As shown in
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Figure 1a, a simple RL agent is usually adopted for traditional Q-learning to acquire knowledge [18,35],
which is the cause of inefficient learning. In contrast, the TBO adopts the method of swarm collaborative
exploration for knowledge learning, which can update multiple elements of the Q value matrix at the
same time, thus greatly improving the learning efficiency, which can be described as [32]

Qi
k+1(s

i j
k , ai j

k ) = Qi
k(s

i j
k , ai j

k ) + α[Ri j(si j
k , si j

k+1, ai j
k ) +

γmax
ai∈Ai

Qi
k(s

i j
k+1, a) −Qi

k(s
i j
k , ai j

k )],

j = 1, 2, · · · , J; i = 1, 2, · · · , n

(1)

where α represents the factor of knowledge study; γ is the discount coefficient; the superscripts i and j
signify the ith Q-value matrix (i.e., the ith controlled variable) and the jth bee, respectively; J is the
population size of bees; (sk,ak) means a pair of state-action in the kth iteration; R(sk,sk+1,ak) is the reward
function that transforms from state sk to sk+1 used under an optional operation ak; ai means random
optional action of the ith controlled variable xi; and Ai represents the multiple active result sets of the
ith controlled variable.

Processes 2019, 7, x FOR PEER REVIEW 4 of 17 

 

in Figure 1a, a simple RL agent is usually adopted for traditional Q-learning to acquire knowledge 
[18,35], which is the cause of inefficient learning. In contrast, the TBO adopts the method of swarm 
collaborative exploration for knowledge learning, which can update multiple elements of the Q value 
matrix at the same time, thus greatly improving the learning efficiency, which can be described as 
[32] 

1 1

1

( , ) ( , ) [ ( , , )
                       max ( , ) ( , )],  

                                            1,2, , ; 1, 2, ,
A

Q Q
Q Q

α
γ

+ +

+
∈

= + +

−

= =L L

i
i

i ij ij i ij ij ij ij ij ij
k k k k k k k k k

i ij i ij ij
k k k k k

a

s a s a R s s a
s a s a

j J i n

 (1) 

where α represents the factor of knowledge study; γ is the discount coefficient; the superscripts i and 
j signify the ith Q-value matrix (i.e., the ith controlled variable) and the jth bee, respectively; J is the 
population size of bees; (sk,ak) means a pair of state-action in the kth iteration; R(sk,sk+1,ak) is the reward 
function that transforms from state sk to sk+1 used under an optional operation ak; ai means random 
optional action of the ith controlled variable xi; and Ai represents the multiple active result sets of the 
ith controlled variable. 

 
Figure 2. The principle of knowledge learning of the TBO inspired by the nectar gathering of bees. 

2.2.2. Behavior transfer 

In the initial process, the TBO needs to go through a series of source tasks to get the optimal Q-
value matrix, so as to make use of and to prepare prior knowledge for similar new tasks in the future.  
The relevant prior knowledge of source task is shown in Figure 3. According to the similarity of the 
source task, the optimal Q-value matrix of the source task *

SQ  is shifted from the initial Q-value 
matrix to the new task 0

NQ , as 

 
Figure 3. Behavior transfer of the TBO. 

Figure 2. The principle of knowledge learning of the TBO inspired by the nectar gathering of bees.

2.2.2. Behavior transfer

In the initial process, the TBO needs to go through a series of source tasks to get the optimal
Q-value matrix, so as to make use of and to prepare prior knowledge for similar new tasks in the future.
The relevant prior knowledge of source task is shown in Figure 3. According to the similarity of the
source task, the optimal Q-value matrix of the source task Q∗S is shifted from the initial Q-value matrix
to the new task Q0

N, as

Q0
N =



r11 r12 · · · r1h · · ·

r21 r22 · · · r2h · · ·

...
...

. . .
... · · ·

ry1 ry2 · · · ryh · · ·
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... · · ·

...
. . .


Q∗S (2)

with

Q0
N =


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N1 · · · Qn0
N1
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...
...

...
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...
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...

...
...

...
...


, Q∗S =


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S1 · · · Qi∗
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
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where Qi0
Ny is the ith initial Q-value matrix in the yth new task; Qi∗

Sh is the ith optimized Q-value matrix
in the hth source task; and ryh represents the comparability between the hth source task and the yth new
task; here, a large ryh indicates that the yth new task can gain much knowledge from the hth source
task, and 0 ≤ ryh ≤ 1.
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2.3. Exploration and Feedback

2.3.1. Action policy

There are two kinds of bees in Figure 2, e.g., scout and worker, determined by their nectar amounts
(fitness values) [19], which are responsible for global searching and local searching. As a consequence,
a bee colony can balance the exploration and exploitation through different action policies in a nectar
source. In the TBO, 50% of bees with nectar amounts that rank in the half top of all bees are designated
as worker, while the others are scout. On the basis of the ε-Greedy rule [31], the scouts’ actions are
based on the proportion of Q-value in the current status. As for the controlled variable xi, one behavior
of each scout is chosen as

ai j
k+1 =

 argmax
ai∈Ai

Qi
k+1(s

i j
k+1, ai), if ε ≤ ε0

arg, otherwise
(3)

where ε is any value, uniformly distributed between [0, 1]; ε0 represents the exploration rate; and arg

represents any global behavior ascertained by the distribution of the state-action probability matrix Pi,
updated by 

Pi(si, ai) =
ei(si,ai)∑

a′∈Ai

ei(si,a′)

ei(si, ai) = 1
max
a′∈Ai

Qi(si,a′)−βQi(si,ai)

(4)

where β is the discrepancy factor, and ei is an evaluation matrix of the pairs of the state-action.
On the other hand, the workers keep exploring new nectar sources at nearby nectar sources, which

can be written as [8]  ai j
new = ai j + Rnd(0, 1)(ai j

− ai j
rand)

ai j
rand = ai

min + Rnd(0, 1)(ai
max − ai

min)
(5)

where ai j
new, aij, and ai j

rand denote the new action, current action, and random action of the ith controlled
variable selected by the jth worker; ai

max and ai
min are the maximum and minimum behavior, respectively,

in the ith controlled variable.
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2.3.2. Reward function

After each exploration, each bee will get an instant reward based on its fitness value. Because
it is the goal of the TBO to maximize the expected long-term rewards for each state [28], the reward
function is designed as

Ri j(si j
k , si j

k+1, ai j
k ) =

C

f j
k

(6)

where C is a positive multiplicator, and fkj represents the fitness function of the jth bee in the kth
iteration. This is closely related to the target function.

After each bee obtains its new reward, the scouts and workers will swap their roles according to
the obtained reward rank, precisely, 50% of bees who had a larger reward will become workers. As a
result, a compromise is reached between exploration and development to ensure a global search for
the TBO.

3. Design of the TBO for RPO

3.1. Mathematical Model of RPO

As the subproblem of OPF, the conventional RPO aims to lower the active power losses or other
appropriate target functions via optimizing the different types of controlled variables (e.g., transformer
tap ratio) under multiple equality constraints and inequality constraints [35]. In this article, the
integrated target function of the active power loss and the deviation of supply voltage were used as
follows [18]

min f (x) = µPloss + (1− µ)Vd (7)

subject to 

PGi − PDi −Vi
∑

j∈Ni

V j(gi j cosθi j + bi j sinθi j) = 0, i ∈ N0

QGi −QDi −Vi
∑

j∈Ni

V j(gi j sinθi j − bi j cosθi j) = 0, i ∈ NPQ

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ Ni

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i ∈ NC

Tmin
k ≤ Tk ≤ Tmax

k , k ∈ NT

|Sl| ≤ Smax
l , l ∈ NL

(8)

where x = [VG, Tk, QC, VL, QG] represents the variable vector, VG represents the terminal voltage of
generator; Tk means the transformer tapping ping ratio; QC is the reactive power of the shunt capacitor;
VL is the load-bus voltage; QG is the reactive power of the generator; Ploss is the power loss; Vd is the
deviation of supply voltage; 0 ≤ µ ≤ 1 is the weight coefficient; PGi and QGi are the generated active
power; PDi and QDi are the demanded active and reactive power, respectively; QCi represents the
reactive power compensation; Vi and Vj are the voltage magnitude of the ith and jth node, respectively;
θij is the phase difference of voltage; gij represents the conductance in the transmission line i-j; bij
represents the susceptance of the transmission line i-j; Sl is the apparent power of the transmission line
l; Ni is the node set; N0 is the set of the slack bus; NPQ is the set of active/reactive power (PQ) buses;
NG is the unit set; NC is the compensation equipment; NT is the set of transformer taps; and NL is the
branch set. In addition, the active power loss and the deviation of supply voltage can be computed
by [18]

Ploss =
∑

i, j∈NL

gi j[V2
i + V2

j − 2ViV j cosθi j] (9)
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Vd =
∑
i∈Ni

∣∣∣∣∣∣∣2Vi −Vmax
i −Vmin

i

Vmax
i −Vmin

i

∣∣∣∣∣∣∣ (10)

3.2. Design of the TBO

3.2.1. Design of state and action

The terminal voltage of generator, transformer tapping ratio, and d shunt capacitor reactive power
compensation were chosen as the controlled variables of RPO, in which each controlled variable had
its own Q-value matrix Qi and action set Ai, as shown in Figure 1. In addition, the operation sets for
every controlled variable were the state sets for the next controlled variable, i.e., Si+1 = Ai, where the
initial controlled variable depends on different tasks of RPO, thus each task can be considered as a
specific state of x1.

3.2.2. Design of the reward function

It can be found from (6) that the fitness function determines the reward function that represents
the overall target function (7) and needs to satisfy all constraints (8). Hence, the fitness function is
designed as

f j = µP j
loss + (1− µ)V j

d + ηq j (11)

where q represents the sum of inequalities that violate the constraints, and η represents the
regularization factor.

3.2.3. Behavior transfer for RPO

Based on eq (2), the transfer efficiency of TBO mainly depends on getting the comparability
between the source tasks and the new tasks [30]. In fact, the distribution of power flow principally
determines the RPO in the power system, thus it is principally influenced by the power demand,
because the topological structure of the power system cannot be changed much daily. Therefore, the
active power demand was divided into several load intervals as follows{[

P1
D, P2

D

)
,
[
P2

D, P3
D

)
, · · · ,

[
Ph

D, Ph+1
D

)
, · · · ,

[
PH−1

D , PH
D

]}
(12)

where Ph
D represents the demand of active power in the hth source task for RPO, P1

D < P2
D < · · · < Ph

D <
· · · < PH

D.
Suppose the active power required in the yth new task is Py

D, P1
D < Py

D < PH
D, then the comparability

between two tasks will be computed by

ryh =

[
W + ∆Pmax

D

]
−

∣∣∣Ph
D − Py

D

∣∣∣
H∑

h=1

{[
W + ∆Pmax

D

]
−

∣∣∣Ph
D − Py

D

∣∣∣} (13)

∆Pmax
D = max

h=1,2,··· ,H

(∣∣∣Ph
D − Py

D

∣∣∣) (14)

where W represents the transfer factor, and ∆Pmax
D represents the ultimate error of active power demand,

where
H∑

h=1
ryh = 1.

Note that a smaller deviation
∣∣∣Ph

D − Py
D

∣∣∣ brings in a larger similarity ryh, therefore the new yth task
can develop more knowledge.

Therefore, the overall process of TBO behavior transfer is generalized as follows:

Step 1. Determine the source tasks according to a typical load curve in a day by Equation (12);
Step 2. Complete the source tasks in the initial study process and store their optimal Q-value matrices;
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Step 3. Calculate the comparability between original tasks and new task according to the deviation of
power demand according to Equations (13) and (14);

Step 4. Obtain the original Q-value matrices in the new task by Equation (2).

3.2.4. Parameters setting

For the TBO, eight parameters, α, γ, J, ε0, β, C, η, and W are important and need to be set following
the general guidelines below [18,26,32,35].

Of these, α represents the knowledge learning factor, with 0 < α < 1, a determines the rate of
knowledge acquisition of the bees. A larger α will accelerate knowledge learning, which may bring
about a local optimization, while a smaller value can improve the algorithm stability [35].

The discount factor is defined to exponentially discount the rewards obtained by the Q-value
matrix in the future, and its value is 0 < γ < 1. Since the future return on RPO is insignificant, it is
required assume a value close to zero [18].

J is the number of bees, with J ≥ 1; it determines the rate of convergence and the rate of solution.
A large J makes the algorithm approximate a more accurate global optimization solution but results in
a larger computational burden [26].

The exploration rate, 0 < ε0 < 1, balances the exploration and development of a nectar resource by
the scouts. The scouts are encouraged to pick a voracious action instead of any action according to the
state-action probability matrix by a larger ε0.

The discrepancy factor, 0 < β < 1, increases the differences among the elements of each row in
Q-value matrices.

The positive multiplicator, C > 0, distributes the weight and fitness functions of the reward
function. The bees are encouraged to get more rewards by the fitness function with a large C, while the
difference in rewards is smaller among all bees.

The penalty factor, η > 0, makes sure to satisfy the restrain of inequality. Solution infeasibility may
arise because of a smaller η [18]. Here, W is the shift factor, with W ≥ 0, that identifies the comparability
among two tasks.

The parameters were selected through trial and error, as shown in Table 1.

Table 1. Parameters used in TBO.

Parameter Range
IEEE 118-Bus System IEEE 300-Bus System

Pre-Learning Online
Optimization Pre-Learning Online

Optimization

α 0 < α < 1 0.95 0.99 0.9 0.95
γ 0 < γ < 1 0.2 0.2 0.3 0.3
J J ≥ 1 15 5 30 10
ε0 0 < ε0 <1 0.9 0.98 0.95 0.98
β 0 < β < 1 0.95 0.95 0.98 0.98
C C > 0 1 1 1 1
η η > 0 10 10 50 50
W W ≥ 0 — 50 — 100

3.2.5. Execution Procedure of the TBO for RPO

At last, the overall implementation process of TBO is shown in Figure 4, and
∣∣∣∣∣∣∣∣Qi

k+1 −Qi
k

∣∣∣∣∣∣∣∣2 < σ is
the memory value difference of matrix 2-norm, with the precision factor σ = 0.001.
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Figure 4. Flowchart of TBO for reactive power optimization (RPO).

4. Case Studies

The TBO for RPO was assessed by the IEEE 118-bus system and the IEEE 300-bus system and
compared with those of ABC [8], GSO [11], ACS [12], PSO [10], GA [9], quantum genetic algorithm
(QGA) [36], and ant colony based Q-learning (Ant-Q) [37]. Furthermore, the main parameters of other
algorithms were obtained through trial and error and were set according to reference [38], while the
weight coefficient µ applied to eq (7) assigned the active power loss and the deviation of the output
voltage. The simulation is executed on Matlab 7.10 by a personal computer with Intel(R) Xeon (R)
E5-2670 v3 CPU at 2.3 GHz with 64 GB of RAM.

The IEEE 118-bus system consists of 54 generators and 186 branches and is divided into three
voltage levels, i.e., 138 kV, 161 kV, and 345 kV. The IEEE 300-bus system is constituted by 69 generators
and 411 branches, with 13 voltage levels, i.e., 0.6 kV, 2.3 kV, 6.6 kV, 13.8 kV, 16.5 kV, 20 kV, 27 kV,
66 kV, 86 kV, 115 kV, 138 kV, 230 kV, and 345 kV [39–41]. The number of controlled variables in IEEE
118-bus system was 25, and the number of controlled variables in IEEE 300-bus system was 111. More
specifically, reactive power compensation is divided into five levels from rated level [−40%, −20%,
0%, 20%, 40%], the transformer tapping is divided into three levels [0.98, 1.00, 1.02], and the terminal
voltage of generator is uniformly discretized into [1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06].

According to the given typical daily load curves shown in Figure 5, the active power demand
was discretized into 20 and 22 load intervals, respectively, where every interval was 125 MW and
500 MW, respectively, i.e., {[3500, 3625), [3625, 3750), . . . , [5875, 6000]} MW and {[19,000, 19,500), [19,500,
20,000), . . . , [28,500, 29,000]} MW. Moreover, the implementation time of RPO was set at 15 min. Hence,
the number of new tasks per day was 96, while the source tasks of the IEEE 118-bus system was 21,
and the original tasks of the IEEE 300-bus system was 23.
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4.1. Study of the Pre-Learning Process

The TBO required a preliminary study to gain the optimal Q-value matrices for all source tasks,
and then convert them to an initial Q-value. Figures 6 and 7 illustrate that the TBO will astringe to
the optimal Q-value matrices of the source tasks while the optimal objective function can be obtained.
Furthermore, the convergence of all Q-value matrices was consistent, as the same feedback rewards
were used from the same bees to update the Q-value matrices at each iteration.
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4.2. Study of Online Optimization

4.2.1. Study of behavior transfer

Through the preliminary study process, the TBO was ready for online optimization of RPO under
different scenarios (different new tasks) with prior knowledge. The convergence of the target functions
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gained by different algorithms in online optimization is given in Figures 8 and 9. Compared to the
preliminary study process, the convergence of the TBO was approximately 10 to 20 times that of other
algorithms in online optimization, which verified the effectiveness of knowledge transfer. Furthermore,
the convergence rate of the TBO algorithm was much faster than that of other algorithms due to
transcendental knowledge exploitation.Processes 2019, 7, x FOR PEER REVIEW 12 of 17 
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Figure 8. Convergence of the second new task of the IEEE 118-bus system obtained in the
online optimization.
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Figure 9. Convergence of the fourth new task of the IEEE 300-bus system obtained in the
online optimization.

4.2.2. Comparative results and discussion

Tables 2 and 3 provide the performance and the statistical results gained by these algorithms
in 10 runs, in which the convergence time was the average time of each scene, and the others were
the average time of one day. The variance, standard deviation (Std. Dev.), and relative standard
deviation (Rel. Std. Dev.) [42–44] were introduced in order to assess the stability. One can easily find
that the convergence rate of the TBO was faster compared with that of other algorithms, as illustrated
in Figure 10. Compared with that of other algorithms, the convergence rate of the TBO was about
4 to 68 times, indicating the benefit of cooperative exploration and action transfer. In addition, the
optimization target function from the TBO was much smaller than that of other algorithms, which
verified the advantageous effect of self-learning and global search. Note that the TBO would gain a
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better solution which is closer to the global optimum with respect to other algorithms with a smaller
optimal objective function in most new tasks (72.92% of new tasks on the IEEE 118-bus system and
89.58% of new tasks on the IEEE 300-bus system), as shown in Figures 11 and 12.

Processes 2019, 7, x FOR PEER REVIEW 13 of 17 

 

gotten from the IEEE 118-bus system. This was due to the exploitation of prior knowledge by scouts 
and workers, which beneficially avoids the randomness of global search, thus a higher search 
efficiency can be achieved. 

 
(a) IEEE 118-bus system 

 
(b) IEEE 300-bus system 

Figure 10. Comparison of performance of different algorithms obtained in 10 runs. 

Table 2. Performance indices results of different algorithms on the IEEE 118-bus system obtained in 
10 runs. ABC: artificial bee colony, GSO: group search optimizer, ACS: ant colony system, PSO: 
particle swarm optimization, GA: genetic algorithm, QGA: quantum genetic algorithm, Ant-Q: ant 
colony based Q-learning 

Algorithm Index ABC GSO ACS PSO GA QGA Ant-Q TBO 
Convergence time (s) 15 35.5 30.9 29.1 10.8 3.99 4.16 0.94 

Ploss (MW) 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.10 × 104 
Vd (%) 1.51 × 103 1.49 × 103 1.44 × 103 1.48 × 103 1.50 × 103 1.51 × 103 1.50 × 103 1.48 × 103 

f 6.31 × 103 6.30 × 103 6.25 × 103 6.29 × 103 6.31 × 103 6.30 × 103 6.31 × 103 6.25 × 103 
Best 6.30 × 103 6.30 × 103 6.24 × 103 6.28 × 103 6.31 × 103 6.30 × 103 6.30 × 103 6.24 × 103 

Worst 6.31 × 103 6.31 × 103 6.25 × 103 6.30 × 103 6.32 × 103 6.30 × 103 6.31 × 103 6.25 × 103 
Variance 4.02 19.3 6.43 16.3 12 6.37 8.57 2.27 
Std. Dev. 2.01 4.39 2.54 4.03 3.46 2.52 2.93 1.51 

Rel. Std. Dev 3.18 × 10−4 6.96 × 10−4 4.06 × 10−4 6.41 × 10−4 5.49 × 10−4 4.01 × 10−4 4.64 × 10−4 2.41 × 10−4 

 

  

Figure 10. Comparison of performance of different algorithms obtained in 10 runs.

Processes 2019, 7, x FOR PEER REVIEW 14 of 17 

 

Table 3. Performance indices results of different algorithms on the IEEE 300-bus system obtained in 
10 runs. 

Algorithm Index ABC GSO ACS PSO GA QGA Ant-Q TBO 
Convergence time (s) 72.3 63.4 228 102 48.3 47.8 115 3.37 

Ploss (MW) 3.82 × 104 3.86 × 104 3.83 × 104 3.81 × 104 3.77 × 104 3.76 × 104 3.74 × 104 3.75 × 104 
Vd (%) 8.34 × 103 8.87 × 103 7.36 × 103 8.07 × 103 7.78 × 103 7.56 × 103 7.14 × 103 6.94 × 103 

f 2.33 × 104 2.38 × 104 2.28 × 104 2.31 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104 
Best 2.32 × 104 2.37 × 104 2.28 × 104 2.30 × 104 2.27 × 104 2.26 × 104 2.23 × 104 2.22 × 104 

Worst 2.33 × 104 2.38 × 104 2.28 × 104 2.32 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104 
Variance 381 1.29 × 103 228 2.37× 103 178 194 221 66.4 
Std. Dev. 19.5 36 15.1 48.7 13.4 13.9 14.9 8.15 

Rel. Std. Dev 8.39 × 10−4 1.51 × 10−3 6.61 × 10−4 2.11 × 10−3 5.87 × 10−4 6.16× 10−4 6.67 × 10−4 3.67 × 10−4 

 
Figure 11. Optimal objective function of the IEEE 118-bus system obtained by different algorithms in 
10 runs. 

 
Figure 12. Optimal objective function of the IEEE 300-bus system obtained by different algorithms in 
10 runs. 

5. Conclusions 

In this article, a novel TBO incorporating behavior conversion was obtained for RPO. Like other 
AI algorithms, the TBO is highly independent from the accurate system model and has a much 
stronger global search ability and a higher application flexibility compared with the traditional 
mathematical optimization methods. Compared with network simplified model (e.g., external 
equivalent model) -based methods, the TBO also can rapidly converge to an optimum for RPO but it 
can obtain a higher quality optimum via global optimization. By introducing the Q-learning-based 
optimization, the TBO can learn, store, and transfer knowledge between different optimization tasks, 
in which the state-action chain can significantly reduce the size of the Q-value matrix, and the 
cooperative exploration between scouts and workers can dramatically accelerate knowledge learning. 

Figure 11. Optimal objective function of the IEEE 118-bus system obtained by different algorithms in
10 runs.



Processes 2019, 7, 321 14 of 17

Processes 2019, 7, x FOR PEER REVIEW 14 of 17 

 

Table 3. Performance indices results of different algorithms on the IEEE 300-bus system obtained in 
10 runs. 

Algorithm Index ABC GSO ACS PSO GA QGA Ant-Q TBO 
Convergence time (s) 72.3 63.4 228 102 48.3 47.8 115 3.37 

Ploss (MW) 3.82 × 104 3.86 × 104 3.83 × 104 3.81 × 104 3.77 × 104 3.76 × 104 3.74 × 104 3.75 × 104 
Vd (%) 8.34 × 103 8.87 × 103 7.36 × 103 8.07 × 103 7.78 × 103 7.56 × 103 7.14 × 103 6.94 × 103 

f 2.33 × 104 2.38 × 104 2.28 × 104 2.31 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104 
Best 2.32 × 104 2.37 × 104 2.28 × 104 2.30 × 104 2.27 × 104 2.26 × 104 2.23 × 104 2.22 × 104 

Worst 2.33 × 104 2.38 × 104 2.28 × 104 2.32 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104 
Variance 381 1.29 × 103 228 2.37× 103 178 194 221 66.4 
Std. Dev. 19.5 36 15.1 48.7 13.4 13.9 14.9 8.15 

Rel. Std. Dev 8.39 × 10−4 1.51 × 10−3 6.61 × 10−4 2.11 × 10−3 5.87 × 10−4 6.16× 10−4 6.67 × 10−4 3.67 × 10−4 

 
Figure 11. Optimal objective function of the IEEE 118-bus system obtained by different algorithms in 
10 runs. 

 
Figure 12. Optimal objective function of the IEEE 300-bus system obtained by different algorithms in 
10 runs. 

5. Conclusions 

In this article, a novel TBO incorporating behavior conversion was obtained for RPO. Like other 
AI algorithms, the TBO is highly independent from the accurate system model and has a much 
stronger global search ability and a higher application flexibility compared with the traditional 
mathematical optimization methods. Compared with network simplified model (e.g., external 
equivalent model) -based methods, the TBO also can rapidly converge to an optimum for RPO but it 
can obtain a higher quality optimum via global optimization. By introducing the Q-learning-based 
optimization, the TBO can learn, store, and transfer knowledge between different optimization tasks, 
in which the state-action chain can significantly reduce the size of the Q-value matrix, and the 
cooperative exploration between scouts and workers can dramatically accelerate knowledge learning. 

Figure 12. Optimal objective function of the IEEE 300-bus system obtained by different algorithms in
10 runs.

Table 2. Performance indices results of different algorithms on the IEEE 118-bus system obtained in
10 runs. ABC: artificial bee colony, GSO: group search optimizer, ACS: ant colony system, PSO: particle
swarm optimization, GA: genetic algorithm, QGA: quantum genetic algorithm, Ant-Q: ant colony
based Q-learning

Algorithm Index ABC GSO ACS PSO GA QGA Ant-Q TBO

Convergence time (s) 15 35.5 30.9 29.1 10.8 3.99 4.16 0.94
Ploss (MW) 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104 1.10 × 104
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Table 3. Performance indices results of different algorithms on the IEEE 300-bus system obtained in
10 runs.

Algorithm Index ABC GSO ACS PSO GA QGA Ant-Q TBO

Convergence time (s) 72.3 63.4 228 102 48.3 47.8 115 3.37
Ploss (MW) 3.82 × 104 3.86 × 104 3.83 × 104 3.81 × 104 3.77 × 104 3.76 × 104 3.74 × 104 3.75 × 104

Vd (%) 8.34 × 103 8.87 × 103 7.36 × 103 8.07 × 103 7.78 × 103 7.56 × 103 7.14 × 103 6.94 × 103

f 2.33 × 104 2.38 × 104 2.28 × 104 2.31 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104

Best 2.32 × 104 2.37 × 104 2.28 × 104 2.30 × 104 2.27 × 104 2.26 × 104 2.23 × 104 2.22 × 104

Worst 2.33 × 104 2.38 × 104 2.28 × 104 2.32 × 104 2.28 × 104 2.26 × 104 2.23 × 104 2.22 × 104

Variance 381 1.29 × 103 228 2.37× 103 178 194 221 66.4
Std. Dev. 19.5 36 15.1 48.7 13.4 13.9 14.9 8.15

Rel. Std. Dev 8.39 × 10−4 1.51 × 10−3 6.61 × 10−4 2.11 × 10−3 5.87 × 10−4 6.16× 10−4 6.67 × 10−4 3.67 × 10−4

On the other hand, Table 3 shows that the convergence stability of the TBO was the highest as
the values of all of its indices were the lowest, and Rel. Std. Dev. of the TBO was only 17.39% with
respect to that of PSO gotten from the IEEE 300-bus system and was up to 75.79% of that of ABC gotten
from the IEEE 118-bus system. This was due to the exploitation of prior knowledge by scouts and
workers, which beneficially avoids the randomness of global search, thus a higher search efficiency can
be achieved.

5. Conclusions

In this article, a novel TBO incorporating behavior conversion was obtained for RPO. Like other
AI algorithms, the TBO is highly independent from the accurate system model and has a much stronger
global search ability and a higher application flexibility compared with the traditional mathematical
optimization methods. Compared with network simplified model (e.g., external equivalent model)
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-based methods, the TBO also can rapidly converge to an optimum for RPO but it can obtain a higher
quality optimum via global optimization. By introducing the Q-learning-based optimization, the TBO
can learn, store, and transfer knowledge between different optimization tasks, in which the state-action
chain can significantly reduce the size of the Q-value matrix, and the cooperative exploration between
scouts and workers can dramatically accelerate knowledge learning. Compared with the general AI
algorithms, the greatest advantage of the TBO is that it can significantly accelerate the convergence rate
for a new task via re-using prior knowledge from the source tasks. Through simulation comparisons
on the IEEE 118-bus system and IEEE 300-bus system, the convergence rate of the TBO was 4 to 68
times faster than that of existing AI algorithms for RPO, while ensuring the quality and convergence
stability of the optimal solutions. Thanks to its superior optimization performance, the TBO can be
readily applied to other cases of nonlinear programming of large-scale power systems.
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