Productivity Models of Infill Complex Structural Wells in Mixed Well Patterns
Abstract
:1. Introduction
2. Productivity Model
2.1. Productivity Model of Mixed Horizontal-Vertical Well Pattern
2.1.1. Reservoir Flow Model
2.1.2. Wellbore Flow Model
2.1.3. Solution Procedure
2.2. Productivity Model of Mixed Multilateral-Vertical Well Pattern
2.2.1. Reservoir Flow Model
2.2.2. Wellbore Flow Model
2.2.3. Solution Procedure
3. Results and Discussion
3.1. Model Validation
3.2. Model Application
3.2.1. Study on Seepage Mechanism of Horizontal Well
3.2.2. Optimization of Infilling Well Location
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adesina, F.; Paul, A.; Oyinkepreye, O.; Adebowale, O. An improved model for estimating productivity of horizontal drain hole. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2 August 2016. [Google Scholar] [CrossRef]
- Ye, S.J. A productivity evaluation model and its application for an infill horizontal well in different types of reservoirs. Pet. Sci. Technol. 2012, 30, 1677–1691. [Google Scholar]
- Liangbiao, O.; Arbabi, S.; Aziz, K. General wellbore flow model for horizontal, vertical and slanted well completions. SPE J. 1998, 3, 124–133. [Google Scholar]
- Merkulov, V.P. The flow of slanted and horizontal well. Neft. Khoz 1958, 6, 51–56. [Google Scholar]
- Borisov, J.P. Oil Production Using Horizontal and Multiple Deviation Wells; Nedra: Moscow, Russia, 1964. [Google Scholar]
- Giger, F.M. Horizontal wells production techniques in heterogeneous reservoirs. In Proceedings of the Middle East Oil Technical Conference and Exhibition, Manama, Bahrain, 14–17 March 1983. [Google Scholar] [CrossRef]
- Joshi, S.D. Augmentation of well productivity using slant and horizontal wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 5 October 1986. [Google Scholar] [CrossRef]
- Raghavan, R.; Joshi, S.D. Productivity of multiple drainholes or fractured horizontal wells. SPE Format. Eval. 1993, 8, 11–16. [Google Scholar] [CrossRef]
- Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G. Horizontal well IPR calculations. SPE Reserv. Eval. Eng. 1998, 1, 392–399. [Google Scholar] [CrossRef]
- Zhang, W.; Han, D. 3D potential distribution and precise productivity equation of horizontal well. Pet. Explor. Dev. 1999, 26, 49–52. [Google Scholar]
- Dikken, B.J. Pressure drop in horizontal wells and its effect on production performance. J. Pet. Technol. 1990, 42, 1426–1433. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.S.; Liu, X.E.; Guo, S. A model to calculate pressure drops of horizontal wellbore variable mass flow coupled with flow in a reservoir. J. Southwest Pet. Inst. 2000, 22, 36–39. [Google Scholar]
- Wang, R.H.; Zhang, Y.Z. A segmentally numerical calculation method for estimating the productivity of perforated horizontal wells. Pet. Explor. Dev. 2006, 33, 630. [Google Scholar]
- Li, X.P.; Guo, C.Z.; Jiang, Z.X.; Liu, X.E.; Guo, S.P. The model coupling fluid flow in the reservoir with flow in the horizontal wellbore. Acta Pet. Sin. 1999, 3, 82–86. [Google Scholar]
- Butler, R.M. Discussion of augmentation of well productivity with slant and horizontal wells. Author’s reply. J. Pet. Technol. 1992, 44, 942–943. [Google Scholar]
- Dang, L. Analysis of productivity formulae of horizontal well. Pet. Explor. Dev. 1997, 5, 21. [Google Scholar]
- Jiang, H.; Ye, S.; Lei, Z.; Wang, X.; Zhu, G.; Chen, M. The productivity evaluation model and its application for finite conductivity horizontal wells in fault block reservoirs. Pet. Sci. 2010, 7, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.J.; Cheng, L.S.; Zhao, F.L. The productivity evaluation model of the stepped horizontal well in thin interbeded reservoirs. J. Southwest Pet. Univ. 2007, 3, 16. [Google Scholar]
- Борисов, Ю.П.; Табаков, В.П. Расчет взаимoдействия батарей наклoнных и мнoгoзабoйных скважин в слoистoм пласте; НТС пo дoбыче нефти: Оренбургская oбл, г. Оренбург, ул., Рoссия, 1961. [Google Scholar]
- Wang, W.H.; Li, D. Productivity study on branch horizontal wells. Oil Drill. Prod. Technol. 1997, 4, 12. [Google Scholar]
- Li, C.L. Derivation of productivity formulae of a fishbone well. J. Southwest Pet. Inst. 2005, 27, 36. [Google Scholar]
- Cheng, L.S.; Li, C.L.; Lang, Z.X.; Zhang, L.H. The productivity study of branch a horizontal well with multiple branched wells. Acta Pet. Sin. 1995, 16, 49–55. [Google Scholar]
- Zhao, L.X.; Jiang, M.H.; Zhao, X.F. Research on deliverability relationship of complicated horizontal well. J. Univ. Pet. China (Ed. Nat. Sci.) 2006, 30, 77–80. [Google Scholar]
- Johansen, T.E.; James, L.; Cao, J. Analytical coupled axial and radial productivity model for steady-state flow in horizontal wells. IJPE 2015, 1, 290. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Guo, J.; Zhang, L. A semi-analytical model for multilateral horizontal wells in low-permeability naturally fractured reservoirs. J. Pet. Sci. Eng. 2017, 149, 564–578. [Google Scholar] [CrossRef]
- Simonov, M.V.; Akhmetov, A.V.; Roshchektaev, A.P. Semi-analytical model of transient fluid flow to multilateral well. In Proceedings of the SPE Annual Caspian Technical Conference and Exhibition, Baku, Azerbaijan, 1–3 November 2017. [Google Scholar] [CrossRef]
- Hassan, A.; Abdulraheem, A.; Elkatatny, S.; Ahmed, M. New approach to quantify productivity of fishbone multilateral well. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar] [CrossRef]
- Liu, G.; Meng, Z.; Cui, Y.; Wang, L.; Liang, C.; Yang, S. A semi-analytical methodology for multiwell productivity index of well-industry-production-scheme in tight oil reservoirs. Energies 2018, 11, 1054. [Google Scholar] [CrossRef]
- Vodorezov, D.D. Estimation of horizontal-well productivity loss caused by formation damage on the basis of numerical modeling and laboratory-testing data. SPE J. 2018. [Google Scholar] [CrossRef]
- Al-Rbeawi, S.; Artun, E. Fishbone type horizontal wellbore completion: A study for pressure behavior, flow regimes, and productivity index. J. Pet. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Suprunowicz, R.; Butler, R.M. The productivity and optimum pattern shape for horizontal wells arranged in staggered rectangular arrays. J. Can. Pet. Technol. 1992, 31. [Google Scholar] [CrossRef]
- Chunlan, L.; Lingsong, C.; Lihua, Z.; Zhaoxin, L. The Study on Productivity of Horizontal Well 9-spot Patterns. J. Southwest Pet. Inst. 1998, 20, 56–58. [Google Scholar]
- Cheng, L.S.; Zheng, J.Q.; Li, C.L. Productivity study of horizontal wells pattern. Oil Drill. Prod. Technol. 2002, 24, 39–41. [Google Scholar]
- Liu, Y.T.; Zhang, J.C. Stable permeating flow and productivity analysis for anisotropic reservoir in horizontal well networks. Pet. Explor. Dev. 2004, 31, 94–96. [Google Scholar]
- Yin, G.F.; Xu, H.M.; Ye, S.J.; Li, Y.R.; Qiu, J.P. Productivity evaluation model for infill horizontal well in horizontal injection and production pattern. J. China Univ. Pet. (Ed. Nat. Sci.) 2011, 4, 18. [Google Scholar]
- Ye, S.J.; Jiang, H.Q.; Li, J.J. Productivity calculation of infill horizontal wells in mixed well pattern. Chin. J. Comput. Phys. 2011, 28, 693–697. [Google Scholar]
- Huang, S.J.; Cheng, L.S.; Zhao, F.L.; Li, C.L. The flow model coupling reservoir percolation and variable mass pipe flow in production section of the stepped horizontal well. J. Hydrodyn. 2005, 20, 463–471. [Google Scholar]
- Tabatabaei, M.; Ghalambor, A. A new method to predict performance of horizontal and multilateral wells. SPE Prod. Oper. 2011, 26, 75–87. [Google Scholar] [CrossRef]
Parameters (Unit) | Value |
---|---|
Net thickness (m) | 6.0 |
Porosity (%) | 15.3 |
Permeability (10−3 µm2) | 88.5 |
Reservoir pressure (MPa) | 38.6 |
Oil viscosity (mPa·s) | 8.1 |
Horizontal length of P1new (m) | 335 |
Wellbore radius of P1new (m) | 0.1 |
Bottom hole flowing pressure (MPa) | 36.6 |
Production rate of P11 (m3/d) | 18.5 |
Production rate of P12 (m3/d) | 21.6 |
Production rate of P13 (m3/d) | 24.3 |
Production rate of P14 (m3/d) | 56.8 |
Injection rate of I11 (m3/d) | 68.5 |
Injection rate of I12 (m3/d) | 79.2 |
Parameters (Unit) | Value |
---|---|
Net thickness-the 1st branch of P2new (m) | 5.1 |
Net thickness-the 2nd branch of P2new (m) | 9.4 |
Porosity (%) | 22.1 |
Ratio of vertical to horizontal permeability (-) | 0.1 |
Reservoir pressure (MPa) | 20.3 |
Oil viscosity (mPa·s) | 6.2 |
Length of the 1st branch of P2new (m) | 200 |
Length of the 2nd branch of P2new (m) | 140 |
Bottom hole flowing pressure (MPa) | 10.0 |
Production rate of P21 (m3/d) | 52.9 |
Production rate of P22 (m3/d) | 67.8 |
Injection rate of I21 (m3/d) | 125.5 |
Well Name | Actual Productivity (m3/d) | The Semi-Analytical Model | The Eclipse Simulator | |||
---|---|---|---|---|---|---|
Productivity (m3/d) | Relative Error (%) | Productivity (m3/d) | Relative Error (%) | |||
P1new | 25.0 | 27.3 | 9.1 | 27.2 | 8.8 | |
P2new | 1st branch | 197.7 | 220.7 | 11.7 | 221.3 | 11.9 |
2nd branch | 147.1 | 166.5 | 13.2 | 168.0 | 14.2 | |
Total | 344.7 | 387.2 | 12.3 | 389.3 | 12.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Li, B.; Li, Y. Productivity Models of Infill Complex Structural Wells in Mixed Well Patterns. Processes 2019, 7, 324. https://doi.org/10.3390/pr7060324
Sun L, Li B, Li Y. Productivity Models of Infill Complex Structural Wells in Mixed Well Patterns. Processes. 2019; 7(6):324. https://doi.org/10.3390/pr7060324
Chicago/Turabian StyleSun, Liang, Baozhu Li, and Yong Li. 2019. "Productivity Models of Infill Complex Structural Wells in Mixed Well Patterns" Processes 7, no. 6: 324. https://doi.org/10.3390/pr7060324
APA StyleSun, L., Li, B., & Li, Y. (2019). Productivity Models of Infill Complex Structural Wells in Mixed Well Patterns. Processes, 7(6), 324. https://doi.org/10.3390/pr7060324