Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of PLA-DEX and PLGA-PEG Nanoparticles (NPs)
2.3. Transmission Electron Microscopy (TEM)
2.4. Ciprofloxacin Encapsulation by PLA-DEX and PLGA-PEG NPs
2.5. Drug Release Study
3. Results and Discussion
3.1. Formation of Ciprofloxacin-Loaded NPs by Block Polymers
3.2. Encapsulation of Ciprofloxacin by NPs
3.3. Ciprofloxacin Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Martín-Banderas, L.; Flores-Mosquera, M.; Riesco-Chueca, P.; Rodríguez-Gil, A.; Cebolla, Á.; Chávez, S.; Gañán-Calvo, A.M. Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles. Small 2005, 1, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Bo, Q.; Zhao, Y. Double-hydrophilic block copolymer for encapsulation and two-way pH change-induced release of metalloporphyrins. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1734–1744. [Google Scholar] [CrossRef]
- Liu, S.; Jones, L.; Gu, F.X. Development of Mucoadhesive Drug Delivery System Using Phenylboronic Acid Functionalized Poly (D,L-lactide)-b-Dextran Nanoparticles. Macromol. Biosci. 2012, 12, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008, 8, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Bilati, U.; Allémann, E.; Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005, 24, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, J.; Wang, F.; Ding, Y.; Wang, T.; Jin, G.; Martz, M.; Gui, Z.; Ouyang, P.; Chen, P. Histidine-Rich Cell-Penetrating Peptide for Cancer Drug Delivery and its Uptake Mechanism. Langmuir 2019, 35, 3513–3523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sheng, Y.; Yazdi, A.Z.; Sarikhani, K.; Wang, F.; Jiang, Y.; Liu, J.; Zheng, T.; Wang, W.; Ouyang, P. Surface-Assisted Assembly of Histidine-Rich Lipidated Peptide for Simultaneous Exfoliation of Graphite and Functionalization of Graphene Nanosheets. Nanoscale 2019, 11, 2999. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Delaney, J.T., Jr.; Schubert, U.S. Nanoprecipitation and nanoformulation of polymers: From history to powerful possibilities beyond poly (lactic acid). Soft Matter 2011, 7, 1581–1588. [Google Scholar] [CrossRef]
- Bilati, U.; Allémann, E.; Doelker, E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. Aaps Pharmscitech 2005, 6, E594–E604. [Google Scholar] [CrossRef] [Green Version]
- Nihant, N.; Schugens, C.; Grandfils, C.; Jérôme, R.; Teyssié, P. Polylactide microparticles prepared by double emulsion/evaporation technique. I. Effect of primary emulsion stability. Pharm. Res. 1994, 11, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Vila, A.; Sánchez, A.; Pérez, C.; Alonso, M.J. PLA-PEG nanospheres: New carriers for transmucosal delivery of proteins and plasmid DNA. Polym. Adv. Technol. 2002, 13, 851–858. [Google Scholar] [CrossRef]
- Huang, X.; Lowe, T.L. Biodegradable Thermoresponsive Hydrogels for Aqueous Encapsulation and Controlled Release of Hydrophilic Model Drugs. Biomacromolecules 2005, 6, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Beck-Broichsitter, M.; Nicolas, J.; Couvreur, P. Solvent selection causes remarkable shifts of the “Ouzo region” for poly (lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale 2015, 7, 9215–9221. [Google Scholar] [CrossRef]
- Pramod, P.S.; Takamura, K.; Chaphekar, S.; Balasubramanian, N.; Jayakannan, M. Dextran Vesicular Carriers for Dual Encapsulation of Hydrophilic and Hydrophobic Molecules and Delivery into Cells. Biomacromolecules 2012, 13, 3627–3640. [Google Scholar] [CrossRef]
- Jeong, Y.-I.; Na, H.-S.; Seo, D.-H.; Kim, D.-G.; Lee, H.-C.; Jang, M.-K.; Na, S.-K.; Roh, S.-H.; Kim, S.-I.; Nah, J.-W. Ciprofloxacin-encapsulated poly (DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int. J. Pharm. 2008, 352, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Hosny, K.M. Ciprofloxacin as ocular liposomal hydrogel. Aaps Pharmscitech 2010, 11, 241–246. [Google Scholar] [CrossRef]
- Szoka, F.; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978, 75, 4194–4198. [Google Scholar] [CrossRef] [PubMed]
- Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release 1999, 57, 171–185. [Google Scholar] [CrossRef]
- Neumann, W.; Sassone-Corsi, M.; Raffatellu, M.; Nolan, E.M. Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin–Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. J. Am. Chem. Soc. 2018, 140, 5193–5201. [Google Scholar] [CrossRef]
- Verma, M.S.; Liu, S.; Chen, Y.Y.; Meerasa, A.; Gu, F.X. Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications. Nano Res. 2012, 5, 49–61. [Google Scholar] [CrossRef]
- Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci. 2011, 354, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Wan, Y.; Bei, J.; Wang, S. Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials 2003, 24, 3555–3562. [Google Scholar] [CrossRef]
- Ma, T.Y.; Hollander, D.; Krugliak, P.; Katz, K. PEG 400, a hydrophilic molecular probe for measuring intestinal permeability. Gastroenterology 1990, 98, 39–46. [Google Scholar] [CrossRef]
- Li, L.; Ding, S.; Zhou, C. Preparation and degradation of PLA/chitosan composite materials. J. Appl. Polym. Sci. 2004, 91, 274–277. [Google Scholar] [CrossRef]
- Lee, S.J.; Han, B.R.; Park, S.Y.; Han, D.K.; Kim, S.C. Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 888–899. [Google Scholar] [CrossRef]
- Shen, J.; Deng, Y.; Jin, X.; Ping, Q.; Su, Z.; Li, L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution. Int. J. Pharm. 2010, 402, 248–253. [Google Scholar] [CrossRef]
- Cohen, S.; Lobel, E.; Trevgoda, A.; Peled, Y. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J. Control. Release 1997, 44, 201–208. [Google Scholar] [CrossRef]
- Capretto, L.; Cheng, W.; Carugo, D.; Katsamenis, O.L.; Hill, M.; Zhang, X. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment. Nanotechnology 2012, 23, 375602. [Google Scholar] [CrossRef]
- Salorinne, K.; Man, R.W.; Li, C.H.; Taki, M.; Nambo, M.; Crudden, C.M. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties. Angew. Chem. Int. Ed. 2017, 56, 6198–6202. [Google Scholar] [CrossRef]
- Magenheim, B.; Levy, M.Y.; Benita, S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers—ultrafiltration technique at low pressure. Int. J. Pharm. 1993, 94, 115–123. [Google Scholar] [CrossRef]
- Gref, R.; Domb, A.; Quellec, P.; Blunk, T.; Müller, R.H.; Verbavatz, J.M.; Langer, R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 1995, 16, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhao, L.; Ouyang, P.-K.; Chen, P. Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study. Front. Chem. Sci. Eng. 2019, 13, 98–107. [Google Scholar] [CrossRef]
- Zhang, L.; Bennett, W.F.D.; Zheng, T.; Ouyang, P.K.; Ouyang, X.P.; Qiu, X.Q.; Luo, A.Q.; Karttunen, M.; Chen, P. Effect of Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. J. Phys. Chem. B 2016, 120, 3148–3156. [Google Scholar] [CrossRef] [PubMed]
Polymer | C of Cipro (mg/mL) | Size of NPs (nm) | PDI | Encapsulation Efficiency | Mass Loading Ability (%) |
---|---|---|---|---|---|
PLA-DEX | 0.5 | 82 ± 8 | 0.137 ± 0.011 | 1.52 ± 0.23 | 1.52 ± 0.23 |
1.0 | 89 ± 3 | 0.129 ± 0.015 | 1.67 ± 0.42 | 3.33 ± 0.84 | |
2.0 | 89 ± 7 | 0.124 ± 0.029 | 1.42 ± 0.15 | 5.68 ± 0.74 | |
4.0 | 93 ± 7 | 0.141 ± 0.020 | 1.1 ± 0.04 | 8.45 ± 0.31 | |
5.0 | 95 ± 9 | 0.138 ± 0.026 | 1.0 ± 0.20 | 10.25 ± 1.99 | |
6.0 | 94 ± 9 | 0.133 ± 0.014 | 1.0 ± 0.32 | 12.06 ± 1.90 | |
8.0 | 98 ± 11 | 0.133 ± 0.034 | 1.17 ± 0.16 | 18.64 ± 2.60 | |
PLGA-PEG | 0.5 | 174 ± 1 | 0.125 ± 0.014 | 3.29 ± 1.00 | 3.29 ± 1.00 |
1.0 | 175 ± 1 | 0.123 ± 0.002 | 2.38 ± 0.38 | 4.76 ± 0.75 | |
2.0 | 178 ± 8 | 0.123 ± 0.007 | 1.49 ± 0.40 | 5.97 ± 1.60 | |
4.0 | 179 ± 2 | 0.098 ± 0.005 | 1.35 ± 0.07 | 10.79 ± 0.59 | |
5.0 | 183 ± 5 | 0.124 ± 0.007 | 1.37 ± 0.13 | 13.71 ± 1.25 | |
6.0 | 188 ± 5 | 0.103 ± 0.015 | 1.49 ± 0.25 | 17.84 ± 3.04 | |
8.0 | 205 ± 15 | 0.112 ± 0.022 | 1.70 ± 0.30 | 27.24 ± 4.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Chen, Y.; Jiang, X.; Gui, Z.; Zhang, L. Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method. Processes 2019, 7, 331. https://doi.org/10.3390/pr7060331
Xu J, Chen Y, Jiang X, Gui Z, Zhang L. Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method. Processes. 2019; 7(6):331. https://doi.org/10.3390/pr7060331
Chicago/Turabian StyleXu, Jiang, Yuyan Chen, Xizhi Jiang, Zhongzheng Gui, and Lei Zhang. 2019. "Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method" Processes 7, no. 6: 331. https://doi.org/10.3390/pr7060331
APA StyleXu, J., Chen, Y., Jiang, X., Gui, Z., & Zhang, L. (2019). Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method. Processes, 7(6), 331. https://doi.org/10.3390/pr7060331