A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies
Abstract
:1. Introduction
1.1. Research Aim and Motivation
1.2. Characteristic Features of Metal Forming Equipment
1.3. Scope of the Review
2. Hierarchical Approach for the Metal Forming Manufacturing System
3. Framework for Energy Saving
4. Energy Monitoring and Modeling for Identifying the Energy Consumption of Metal Forming
4.1. Energy Monitoring and Modeling for Metal Forming Equipment
4.2. Process Energy Analysis of Metal Forming
5. Energy Efficiency and Energy Saving Methods for Metal Forming in Different Hierarchies
5.1. Energy Efficiency Improvement and Energy Saving Methods for Forming Equipment
5.2. Process Optimization for Energy Saving of Metal Forming
5.3. Energy-Efficient Scheduling Management and Use for Manufacturing System
5.3.1. Scheduling Management and Use for Energy Efficiency
5.3.2. Energy-Efficient Scheduling of Multi-Equipment
5.4. Discussions and Challenges
- (1).
- Energy consumption analysis and modeling identifies which element is the main factor influencing energy consumption. Understanding the energy consumption features is most necessary for energy saving goals. Therefore, obtaining accurate data and exact analysis are extremely needed to establish accurate energy models.
- (2).
- Energy analysis of metal forming processes determines the minimum deformation energy and defines the energy efficiency improvement potential. The environmental burdens of the metal forming processes were quantified for some large energy-consuming processes. Further studies on the energy consumption of metal forming processes can focus on applying the current methods to complex profiles in industrial manufacturing. These methods can be extended by integrating with the load profiles of different types of forming equipment.
- (3).
- In addition, robust design of press cannot directly contribute to energy consumption but help allow higher productivity. Similarly, increases in natural frequency and process stability can indirectly contribute to energy efficiency improvement by improving the performance without significant loss of energy. They allow the press to endure high productivity parameters. The effect of lightweight and robust machine tool structure can be small in one cycle run, but the design of the machine tool affects energy efficiency throughout the lifetime of the press. Thus, energy efficiency and environmental concerns must be considered from the initial design stage.
- (4).
- Metal forming processes were optimized through many optimization methods. Nevertheless, the energy consumption and environmental impact should not be neglected in process optimization. In consideration of relevant issues such as low carbon manufacturing and sustainable development, energy consumption must be considered as an optimization objective in further investigations of metal forming optimization. The relevant knowledge within this research field is still lacking at present.
- (5).
- Furthermore, given that energy saving operation can be achieved individually by each strategy, an integration of these strategies under the perspective of manufacturing system hierarchy can be developed to implement energy management and control at the system level. Thus, energy-efficient manufacturing can be further realized.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- BP Statistical Review of World Energy. Available online: https://www.bp.com/zh_cn/china/reports-and-publications/bp_2016.html (accessed on 1 June 2016).
- Cai, W.; Lai, K.; Liu, C.; Wei, F.; Ma, M.; Jia, S.; Jiang, Z.; Lv, L. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci. Total Environ. 2019, 665, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Ingarao, G.; Ambrogio, G.; Gagliardi, F.; Di Lorenzo, R. A sustainability point of view on sheet metal forming operations: Material wasting and energy consumption in incremental forming and stamping processes. J. Clean. Prod. 2012, 29, 255–268. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm (accessed on 12 October 2017).
- Zhong, J.; Zhao, K.; Liu, Z.; Li, X. Review of the research on low carbon manufacture of metal-forming equipment and future development. J. Hefei Univ. Technol. (Nat. Sci.) 2012, 35, 1594–1600. [Google Scholar]
- Zhao, K.; Liu, Z.; Yu, S.; Li, X.; Huang, H.; Li, B. Analytical energy dissipation in large and medium-sized hydraulic press. J. Clean. Prod. 2015, 103, 908–915. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Liu, Z.; Li, X.; Triebe, M.J.; Zhao, F. An energy-saving method to solve the mismatch between installed and demanded power in hydraulic press. J. Clean. Prod. 2016, 139, 636–645. [Google Scholar] [CrossRef]
- Cao, H.; Li, H.; Cheng, H.; Luo, Y.; Yin, R.; Chen, Y. A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools. J. Clean. Prod. 2012, 37, 19–28. [Google Scholar] [CrossRef]
- Shen, L.; Sun, Y. Review on carbon emissions, energy consumption and low-carbon economy in China from a perspective of global climate change. J. Geogr. Sci. 2016, 26, 855–870. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Liu, C.; Lai, K.; Li, L.; Cunha, J.; Hu, L. Energy performance certification in mechanical manufacturing industry: A review and analysis. Energy Convers. Manag. 2019, 186, 415–432. [Google Scholar] [CrossRef]
- Napp, T.A.; Gambhir, A.; Hills, T.P.; Florin, N.; Fennell, P.S. A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renew. Sustain. Energy Rev. 2014, 30, 616–640. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Arens, M.; Price, L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review. Renew. Sustain. Energy Rev. 2014, 33, 645–658. [Google Scholar] [CrossRef]
- Yoon, H.S.; Kim, E.S.; Kim, M.S.; Lee, J.Y.; Lee, G.B.; Ahn, S.H. Towards greener machine tools—A review on energy saving strategies and technologies. Renew. Sustain. Energy Rev. 2015, 48, 870–891. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Verda, V.; Sciubba, E. Entropy generation analysis as a design tool—A review. Renew. Sustain. Energy Rev. 2015, 43, 1167–1181. [Google Scholar] [CrossRef]
- Salonitis, K.; Ball, P. Energy Efficient Manufacturing from Machine Tools to Manufacturing Systems. Procedia CIRP 2013, 7, 634–639. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Huang, H.; Liu, Z.; Li, X.; Sutherland, J. Design and Optimization of the Slide Guide System of Hydraulic Press Based on Energy Loss Analysis. Energies 2016, 9, 434. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Li, C. An integrated method for assessing the energy efficiency of machiningworkshop. J. Clean. Prod. 2013, 52, 122–133. [Google Scholar] [CrossRef]
- Vijayaraghavan, A.; Dornfeld, D. Automated energy monitoring of machine tools. CIRP Ann.-Manuf. Technol. 2010, 59, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.; Kellens, K. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Ann.-Manuf. Technol. 2012, 61, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Zein, A.; Li, W.; Herrmann, C.; Kara, S. Energy Efficiency Measures for the Design and Operation of Machine Tools: An Axiomatic Approach. In Glocalized Solutions for Sustainability in Manufacturing; Hesselbach, J., Herrmann, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Dornfeld, D.A. Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.M. A review of high-efficiency motors: Specification, policy, and technology. Renew. Sustain. Energy Rev. 2016, 59, 1–12. [Google Scholar] [CrossRef]
- O’Driscoll, E.; O’Donnell, G.E. Industrial power and energy metering-a state-of-the-art review. J. Clean. Prod. 2013, 41, 53–64. [Google Scholar] [CrossRef]
- Gao, M.; Huang, H.; Li, X.; Liu, Z. A Novel Method to Quickly Acquire the Energy Efficiency for Piston Pumps. J. Dyn. Syst. Meas. Control-Trans. ASME 2016, 138, 101004–101012. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Z.; Wang, Y. A novel method to quick acquire efficiency characteristics for three phase induction motor. China Mech. Eng. 2016, 27, 1755–1759. [Google Scholar]
- Gao, M.; Li, X.; Huang, H.; Liu, Z.; Li, L.; Zhou, D. Energy-saving Methods for Hydraulic Presses Based on Energy Dissipation Analysis. Procedia CIRP 2016, 48, 331–335. [Google Scholar] [CrossRef]
- Gao, M.; Huang, H.; Li, X.; Liu, Z. Carbon emission analysis and reduction for stamping process chain. Int. J. Adv. Manuf. Technol. 2017, 91, 667–678. [Google Scholar] [CrossRef]
- Tao, J.; Li, L.; Yu, S.; Peng, Q. In Modular Modeling Method for Energy Analysis of the Mechanical Servo Press. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; p. V004T05A025. [Google Scholar]
- Li, L.; Yu, S.; Peng, Q. In Energy Modeling Method Based on FBS Framework for Energy Efficiency Analysis. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; p. V004T05A050. [Google Scholar]
- Li, W. Efficiency of Manufacturing Processes; Springer: Berlin, Germany, 2015. [Google Scholar]
- Fereshteh-Saniee, F.; Montazeran, M. A comparative estimation of the forming load in the deep drawing process. J. Mater. Process. Technol. 2003, 140, 555–561. [Google Scholar] [CrossRef]
- Thiruvarudchelvan, S.; Lewis, W. Deep drawing with blank holder force approximately proportional to the punch force. J. Eng. Ind. 1990, 112, 278–285. [Google Scholar] [CrossRef]
- Cooper, D.R.; Rossie, K.E.; Gutowski, T.G. The energy requirements and environmental impacts of sheet metal forming: An analysis of five forming processes. J. Mater. Process. Technol. 2017, 244, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Huang, H.; Wang, Q.; Liu, Z.; Li, X. Energy consumption analysis on sheet metal forming: Focusing on the deep drawing processes. Int. J. Adv. Manuf. Technol. 2018, 96, 3893–3907. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zhao, F.; Zou, X.; Mendis, G.; Luan, X.; Liu, Z.; Sutherland, J. Modeling and Analysis of the Process Energy for Cylindrical Drawing. J. Manuf. Sci. Eng.-Trans. ASME 2018, 141, 021001. [Google Scholar] [CrossRef]
- Ingarao, G.; Lorenzo, R.D.; Micari, F. Sustainability issues in sheet metal forming processes: An overview. J. Clean. Prod. 2011, 19, 337–347. [Google Scholar] [CrossRef]
- Rahimifard, S.; Seow, Y.; Childs, T. Minimising Embodied Product Energy to support energy efficient manufacturing. CIRP Ann.-Manuf. Technol. 2010, 59, 25–28. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Jia, S.; Zhang, M.; Guo, H.; Hu, L.; Jiang, Z. Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environment performance. Energy Convers. Manag. 2018, 177, 176–189. [Google Scholar] [CrossRef]
- Liu, C.; Wei, C.; Zhang, C.; Ma, M.; Rao, W.; Li, W.; Kang, H.; Gao, M. Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development. Energy 2018, 157, 940–948. [Google Scholar]
- Göschel, A.; Sterzing, A.; Schönherr, J. Balancing procedure for energy and material flows in sheet metal forming. CIRP J. Manuf. Sci. Technol. 2011, 4, 170–179. [Google Scholar] [CrossRef]
- Åkerström, P. Modelling and Simulation of Hot Stamping. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2006. [Google Scholar]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Göschel, A.; Schieck, F.; Schönherr, J. Method for energy and resource balancing demonstrated as an example of the hot sheet metal production process. CIRP Ann.-Manuf. Technol. 2012, 61, 399–402. [Google Scholar] [CrossRef]
- Shi, C.W.P.; Rugrungruang, F.; Yeo, Z.; Gwee, K.H.K.; Ng, R.; Song, B. Identifying carbon footprint reduction opportunities through energy measurements in sheet metal part manufacturing. In Glocalized Solutions for Sustainability in Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 389–394. [Google Scholar]
- Camoirano, R.; Dellepiane, G. Variable frequency drives for MSF desalination plant and associated pumping stations. Desalination 2005, 182, 53–65. [Google Scholar] [CrossRef]
- Su, C.L.; Chung, W.L.; Yu, K.T. An Energy-Savings Evaluation Method for Variable-Frequency-Drive Applications on Ship Central Cooling Systems. IEEE Trans. Ind. Appl. 2014, 50, 1286–1294. [Google Scholar]
- Zheng, J.M.; Zhao, S.D.; Wei, S.G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng. Pract. 2009, 17, 1398–1404. [Google Scholar] [CrossRef]
- Pugi, L.; Pagliai, M.; Nocentini, A.; Lutzemberger, G.; Pretto, A. Design of a hydraulic servo-actuation fed by a regenerative braking system. Appl. Energy 2017, 187, 96–115. [Google Scholar] [CrossRef]
- Zheng, J.M.; Zhao, S.d.; Wei, S.G. Fuzzy iterative learning control of electrohydraulic servo system for SRM direct-drive volume control hydraulic press. J. Cent. South Univ. (Engl. Ed.) 2010, 17, 316–322. [Google Scholar] [CrossRef]
- Lovrec, D.; Kastrevc, M.; Ulaga, S. Electro-hydraulic load sensing with a speed-controlled hydraulic supply system on forming-machines. Int. J. Adv. Manuf. Technol. 2009, 41, 1066–1075. [Google Scholar] [CrossRef]
- Wang, L.; Book, W.J.; Huggins, J.D. Application of Singular Perturbation Theory to Hydraulic Pump Controlled Systems. IEEE/ASME Trans. Mechatron. 2012, 17, 251–259. [Google Scholar] [CrossRef]
- Du, C.; Plummer, A.R.; Johnston, D.N. Performance analysis of an energy-efficient variable supply pressure electro-hydraulic motion control system. Control Eng. Pract. 2016, 48, 10–21. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, Y.; Burton, R. Modeling and Robust Discrete-Time Sliding-Mode Control Design for a Fluid Power Electrohydraulic Actuator (EHA) System. IEEE/ASME Trans. Mechatron. 2013, 18, 1–10. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liu, L.Q.; Cheng, C.C.; Chiu, T.C. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system. Control Eng. Pract. 2008, 16, 658–673. [Google Scholar] [CrossRef]
- Locateli, C.C.; Teixeira, P.L.; Pieri, E.R.D.; Krus, P.; Negri, V.J.D. Digital hydraulic system using pumps and on/off valves controlling the actuator. In Proceedings of the 8th FPNI Ph.D. Symposium on Fluid Power, Lappeenranta, Finland, 11–13 June 2014; p. V001T01A009. [Google Scholar]
- Scheidl, R.; Linjama, M.; Schmidt, S. Is the future of fluid power digital? Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2012, 226, 721–723. [Google Scholar] [CrossRef]
- Huova, M.; Laamanen, A. Control of three-chamber cylinder with digital valve system. In Proceedings of the Second Workshop on Digital Fluid Power, Linz, Austria, 12–13 November 2009. [Google Scholar]
- Heybroek, K.; Sahlman, M. A hydraulic hybrid excavator based on multi-chamber cylinders and secondary control—Design and experimental validation. Int. J. Fluid Power 2018, 19, 91–105. [Google Scholar] [CrossRef]
- Heitzig, S.; Sgro, S.; Theissen, H. Energy Efficiency of Hydraulic Systems with Shared Digital Pumps. Int. J. Fluid Power 2012, 13, 49–57. [Google Scholar] [CrossRef]
- Axin, M.; Eriksson, B.; Krus, P. Flow versus pressure control of pumps in mobile hydraulic systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2014, 228, 245–256. [Google Scholar] [CrossRef]
- Xu, B.; Cheng, M.; Yang, H.; Zhang, J.; Sun, C. A Hybrid Displacement/Pressure Control Scheme for an Electrohydraulic Flow Matching System. IEEE/ASME Trans. Mechatron. 2015, 20, 2771–2782. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.H.; Zhao, F.; Liu, Z.F. A coordinate method applied to partitioned energy-saving control for grouped hydraulic presses. J. Manuf. Syst. 2016, 41, 102–110. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zhao, F.; Sutherland, J.W.; Liu, Z. An Energy-Saving Method by Balancing the Load of Operations for Hydraulic Press. IEEE/ASME Trans. Mechatron. 2017, 22, 2673–2683. [Google Scholar] [CrossRef]
- Triet, H.H.; Ahn, K.K. Comparison and assessment of a hydraulic energy-saving system for hydrostatic drives. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2011, 225, 21–34. [Google Scholar] [CrossRef]
- Ho, T.H.; Ahn, K.K. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator. J. Mech. Sci. Technol. 2010, 24, 1163–1175. [Google Scholar] [CrossRef]
- Abdel-Baqi, O.; Nasiri, A.; Miller, P. Dynamic Performance Improvement and Peak Power Limiting Using Ultracapacitor Storage System for Hydraulic Mining Shovels. IEEE Trans. Ind. Electron. 2015, 62, 3173–3181. [Google Scholar] [CrossRef]
- Abdel-Baqi, O.J.; Nasiri, A.; Miller, P.J. Energy Management for an 8000 hp Hybrid Hydraulic Mining Shovel. IEEE Trans. Ind. Appl. 2016, 52, 5041–5050. [Google Scholar] [CrossRef]
- Minav, T.; Immonen, P.; Laurila, L.; Vtorov, V. Electric energy recovery system for a hydraulic forklift-theoretical and experimental evaluation. IET Electr. Power Appl. 2011, 5, 377–385. [Google Scholar] [CrossRef]
- Lin, T.; Wang, Q.; Hu, B.; Gong, W. Research on the energy regeneration systems for hybrid hydraulic excavators. Autom. Constr. 2010, 19, 1016–1026. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Lin, T. Improvement of boom control performance for hybrid hydraulic excavator with potential energy recovery. Autom. Constr. 2013, 30, 161–169. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q. An Energy-Saving Pressure-Compensated Hydraulic System with Electrical Approach. IEEE/ASME Trans. Mechatron. 2014, 19, 570–578. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Li, X.; Liu, Z. An Improved Energy Matching Method to Utilize the Potential Energy of Large-sized Hydraulic Press at Multi-system Level. Procedia CIRP 2017, 61, 547–552. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zhao, F.; Triebe, M.J.; Liu, Z. Analysis of a novel energy-efficient system with double-actuator for hydraulic press. Mechatronics 2017, 47, 77–87. [Google Scholar] [CrossRef]
- Wei, W. Structural Optimization for Upper Beam of Isothermal Hydraulic Press. Appl. Mech. Mater. 2013, 423, 1936–1939. [Google Scholar] [CrossRef]
- Wei, W. Lightweight Design for Lower Beam of NC Isothermal Hydraulic Press. Appl. Mech. Mater. 2013, 470, 463–466. [Google Scholar] [CrossRef]
- Li, B.; Hong, J.; Wang, Z.; Liu, Z. An Innovative Layout Design Methodology for Stiffened Plate/Shell Structures by Material Increasing Criterion. J. Eng. Mater. Technol. 2013, 135, 203–214. [Google Scholar] [CrossRef]
- Li, B.; Hong, J.; Liu, Z. Stiffness design of machine tool structures by a biologically inspired topology optimization method. Int. J. Mach. Tools Manuf. 2014, 84, 33–44. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, B.C.; Fan, G.; Chong, M. Lightweight Design Optimization of Large-Tonnage Hydraulic Press Body Structure. Adv. Mater. Res. 2013, 748, 406–410. [Google Scholar] [CrossRef]
- Hou, B.; Wang, W.; Li, S.; Lin, Z.; Xia, Z.C. Stochastic analysis and robust optimization for a deck lid inner panel stamping. Mater. Des. 2010, 31, 1191–1199. [Google Scholar] [CrossRef]
- Gantar, G.; Kuzman, K. Optimization of stamping processes aiming at maximal process stability. J. Mater. Process. Technol. 1999, 167, 237–243. [Google Scholar] [CrossRef]
- Sun, G.; Li, G.; Gong, Z.; Cui, X.; Yang, X.; Li, Q. Multiobjective robust optimization method for drawbead design in sheet metal forming. Mater. Des. 2010, 31, 1917–1929. [Google Scholar] [CrossRef]
- Gantar, G.; Pepelnjak, T.; Kuzman, K. Optimization of sheet metal forming processes by the use of numerical simulations. J. Mater. Process. Technol. 2002, 130, 54–59. [Google Scholar] [CrossRef]
- Zhang, K.; Yong-Chao, X.U.; Zhang, S.H.; Wang, Z.T. Deep-drawing of Magnesium Alloy Sheets at Warm Temperatures. J. Mater. Process. Technol. 2004, 185, 147–151. [Google Scholar] [CrossRef]
- Marumo, Y.; Saiki, H.; Ruan, L. Effect of sheet thickness on deep drawing of metal foils. J. Achiev. Mater. Manuf. Eng. 2007, 20, 479–482. [Google Scholar]
- Agrawal, A.; Reddy, N.V.; Dixit, P.M. Determination of optimum process parameters for wrinkle free products in deep drawing process. J. Mater. Process. Technol. 2007, 191, 51–54. [Google Scholar] [CrossRef]
- Zein, H.; Sherbiny, M.E.; Abd-Rabou, M.; Shazly, M.E. Thinning and spring back prediction of sheet metal in the deep drawing process. Mater. Des. 2014, 53, 797–808. [Google Scholar] [CrossRef]
- Liu, P.; Ku, T.; Kim, J.; Kang, B.; Liu, P. AIP Conference Proceedings [AIP NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers-Melbourne, Australia, 6–10 January 2014)],-Investigation on process parameters of flexible stretch forming process using orthogonal experiment design. AIP Conf. Proc. 2013, 1567, 1093–1097. [Google Scholar]
- Padmanabhan, R.; Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Influence of process parameters on the deep drawing of stainless steel. Finite Elem. Anal. Des. 2007, 43, 1062–1067. [Google Scholar] [CrossRef]
- Chen, X.; Dongwon, J.; Youngki, S. Evaluation Influence of Process Parameters on Wheel Disk Forming Process Using Orthogonal Design Method. Adv. Technol. Plast. 2008, 9, 398. [Google Scholar]
- Hu, W.; Yao, L.G.; Hua, Z.Z. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J. Mater. Process. Technol. 2008, 197, 77–88. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D. Optimization of Sheet Metal Forming Process Parameters by Artificial Neural Network and Orthogonal Test Method. In International Conference on Electrical, Mechanical and Industrial Engineering; Atlantis Press: Paris, France, 2016. [Google Scholar] [Green Version]
- Kitayama, S.; Huang, S.; Yamazaki, K. Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network. Struct. Multidiscip. Optim. 2013, 47, 289–300. [Google Scholar] [CrossRef]
- Costa, N.R.; Pereira, Z.L. Multiple response optimization: A global criterion-based method. J. Chemom. 2010, 24, 333–342. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y. Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm. J. Mater. Process. Technol. 2008, 208, 499–506. [Google Scholar]
- Zhou, J.; Wang, B.; Lin, J.; Fu, L. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Arch. Civ. Mech. Eng. 2013, 13, 401–411. [Google Scholar] [CrossRef]
- Zhou, J. A Method to Optimize Aluminum Alloy Door Impact Beam Stamping Process Using NSGA-II. Mater. Sci. Forum 2013, 773–774, 89–94. [Google Scholar] [CrossRef]
- Ingarao, G.; Lorenzo, R.D.; Micari, F. Analysis of stamping performances of dual phase steels: A multi-objective approach to reduce springback and thinning failure. Mater. Des. 2009, 30, 4421–4433. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zhou, J.; Ma, W.; Yang, L. Optimization of aluminium sheet hot stamping process using a multi-objective stochastic approach. Eng. Optim. 2016, 48, 2173–2189. [Google Scholar] [CrossRef]
- Marretta, L.; Ingarao, G.; Lorenzo, R.D. Design of sheet stamping operations to control springback and thinning: A multi-objective stochastic optimization approach. Int. J. Mech. Sci. 2010, 52, 914–927. [Google Scholar] [CrossRef]
- Maravelias, C.T. General framework and modeling approach classification for chemical production scheduling. Aiche J. 2012, 58, 1812–1828. [Google Scholar] [CrossRef]
- Tian, G.; Zhou, M.C.; Li, P.; Tian, G.; Zhou, M.C.; Li, P.; Tian, G.; Zhou, M.C.; Li, P.; Tian, G. Disassembly Sequence Planning Considering Fuzzy Component Quality and Varying Operational Cost. IEEE Trans. Autom. Sci. Eng. 2017, 15, 748–760. [Google Scholar] [CrossRef]
- Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur. J. Oper. Res. 2015, 248, 744–757. [Google Scholar] [CrossRef]
- Garetti, M.; Taisch, M. Sustainable manufacturing: Trends and research challenges. Prod. Plan. Control 2012, 23, 83–104. [Google Scholar] [CrossRef]
- Merkert, L.; Harjunkoski, I.; Isaksson, A.; Säynevirta, S.; Saarela, A.; Sand, G. Scheduling and energy—Industrial challenges and opportunities. Comput. Chem. Eng. 2015, 72, 183–198. [Google Scholar] [CrossRef]
- Castro, P.M.; Grossmann, I.E.; Zhang, Q. Expanding Scope and Computational Challenges in Process Scheduling. Comput. Chem. Eng. 2018, 114, 14–42. [Google Scholar] [CrossRef]
- Harjunkoski, I.; Maravelias, C.T.; Castro, P.M.; Engell, S.; Grossmann, I.E.; Hooker, J.; Méndez, C.; Sand, G.; Wassick, J.; Bongers, P. Scope for industrial applications of production scheduling models and solution methods. Comput. Chem. Eng. 2014, 62, 161–193. [Google Scholar] [CrossRef] [Green Version]
- Duflou, J. ICT and Energy Efficiency the Case for Manufacturing; European Communities: Luxembourg, 2009. [Google Scholar]
- Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational methods for minimization of energy consumption of manufacturing equipment. Int. J. Prod. Res. 2007, 45, 4247–4271. [Google Scholar] [CrossRef] [Green Version]
- Mashaei, M.; Lennartson, B. Energy Reduction in a Pallet-Constrained Flow Shop through On-Off Control of Idle Machines. IEEE Trans. Autom. Sci. Eng. 2013, 10, 45–56. [Google Scholar] [CrossRef]
- Luo, H.; Du, B.; Huang, G.Q.; Chen, H.; Li, X. Hybrid flow shop scheduling considering machine electricity consumption cost. Int. J. Prod. Econ. 2013, 146, 423–439. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Li, X.; Pan, Q.; Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J. Clean. Prod. 2017, 144, 228–238. [Google Scholar] [CrossRef]
- May, G.K.; Stahl, B.; Taisch, M.; Prabhu, V. Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int. J. Prod. Res. 2015, 53, 7071–7089. [Google Scholar] [CrossRef]
- Shrouf, F.; Ordieres-Meré, J.; García-Sánchez, A.; Ortega-Mier, M. Optimizing the production scheduling of a single machine to minimize total energy consumption costs. J. Clean. Prod. 2014, 67, 197–207. [Google Scholar] [CrossRef]
- B€ahre, D.; Swat, M.; Steuer, P.; Trapp, K. Energy consumption: One criterion for the sustainable design of process chains. In Sustainable Manufacturing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 163–168. [Google Scholar]
- Tian, G.; Ren, Y.; Feng, Y.; Zhou, M.; Zhang, H.; Tan, J. Modeling and Planning for Dual-objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony. IEEE Trans. Ind. Inform. 2019, 15, 2456–2468. [Google Scholar] [CrossRef]
- Bruzzone, A.A.G.; Anghinolfi, D.; Paolucci, M.; Tonelli, F. Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Ann.-Manuf. Technol. 2012, 61, 459–462. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Fang, K.; Sutherland, J.W. Energy-conscious flow shop scheduling under time-of-use electricity tariffs. CIRP Ann.-Manuf. Technol. 2014, 63, 37–40. [Google Scholar] [CrossRef]
- Yildirim, M.B.; Mouzon, G. Single-Machine Sustainable Production Planning to Minimize Total Energy Consumption and Total Completion Time Using a Multiple Objective Genetic Algorithm. IEEE Trans. Eng. Manag. 2012, 59, 585–597. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Gao, L.; Zhang, G. Dynamic rescheduling in FMS that is simultaneously considering energy consumption and schedule efficiency. Int. J. Adv. Manuf. Technol. 2016, 87, 1387–1399. [Google Scholar] [CrossRef]
- Tang, D.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput. Ind. 2015, 30, 223–232. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Z.; Wang, Y.; Zhang, H.; Wang, Y. A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. J. Clean. Prod. 2018, 188, 575–588. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liu, Y. Game theory based real-time multi-objective flexible job shop scheduling considering environmental impact. J. Clean. Prod. 2017, 167, 665–679. [Google Scholar] [CrossRef]
- Mokhtari, H.; Hasani, A. An Energy-Efficient Multi-Objective Optimization for Flexible Job-Shop Scheduling Problem. Comput. Chem. Eng. 2017, 104, 339–352. [Google Scholar] [CrossRef]
- Gutowski, T.; Dahmus, J.; Thiriez, A. Electrical energy requirements for manufacturing processes. In 13th CIRP International Conference on Life Cycle Engineering; CIRP International Leuven: Leuven, Belgium, 2006. [Google Scholar]
- Ding, J.Y.; Song, S.; Wu, C. Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J. Oper. Res. 2015, 248, 758–771. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Sutherland, J.W. Scheduling of a Single Flow Shop for Minimal Energy Cost under Real-time Electricity Pricing. J. Manuf. Sci. Eng. 2017, 139, 014502. [Google Scholar] [CrossRef]
- Paolucci, M.; Anghinolfi, D.; Tonelli, F. Facing energy-aware scheduling: A multi-objective extension of a scheduling support system for improving energy efficiency in a moulding industry. Soft Comput. 2017, 21, 3687–3698. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S.; Gindy, N. An Investigation into Minimising Total Energy Consumption and Total Weighted Tardiness in Job Shops. J. Clean. Prod. 2013, 65, 87–96. [Google Scholar] [CrossRef]
- Nonaka, Y.; Erdős, G.; Kis, T.; Nakano, T.; Váncza, J. Scheduling with alternative routings in CNC workshops. CIRP Ann.-Manuf. Technol. 2012, 61, 449–454. [Google Scholar] [CrossRef]
- Ji, M.; Wang, J.Y.; Lee, W.C. Minimizing resource consumption on uniform parallel machines with a bound on makespan. Comput. Oper. Res. 2013, 40, 2970–2974. [Google Scholar] [CrossRef]
- Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [Google Scholar] [CrossRef]
- Yin, L.; Li, X.; Gao, L.; Lu, C.; Zhang, Z. A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem, considering productivity, energy efficiency and noise reduction. Sustain. Comput. Inform. Syst. 2017, 13, 15–30. [Google Scholar]
- Fox, K.; Im, S.; Moseley, B. Energy efficient scheduling of parallelizable jobs. Theor. Comput. Sci. 2018, 726, 30–40. [Google Scholar] [CrossRef]
- Wang, S.; Lu, X.; Li, X.X.; Li, W.D. A systematic approach of process planning and scheduling optimization for sustainable machining. J. Clean. Prod. 2015, 87, 914–929. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Zhou, Y. Integrated optimization of cutting parameters and scheduling for reducing carbon emissions. J. Mech. Eng. 2017, 53, 24. [Google Scholar] [CrossRef]
- Zeng, Z.; Hong, M.; Li, J.; Man, Y.; Liu, H.; Li, Z.; Zhang, H. Integrating process optimization with energy-efficiency scheduling to save energy for paper mills. Appl. Energy 2018, 225, 542–558. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Giannakakis, M.; Georgiadis, M.C. Optimal Energy Planning and Scheduling of Microgrids. Chem. Eng. Res. Des. 2018, 131, 318–323. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zhao, F.; Liu, Z. Operation scheduling of multi-hydraulic press system for energy consumption reduction. J. Clean. Prod. 2017, 165, 1407–1419. [Google Scholar] [CrossRef]
Operation | Function Feature |
---|---|
Fast falling (FF) | Slide moves downward at a high speed to reach the workpiece |
Slow falling and pressing (SP) | Workpiece is formed at a given lower speed |
Pressure-maintaining (PM) | High pressure is maintained for a given time to avoid the springback of the parts |
Unloading (UL) | Pressure is released before moving upward |
Fast returning (FR) | Slide moves upward at high speed |
Slow returning (SR) | Slide moves back to the original position at low speed |
Classification | Detailed Strategy |
---|---|
Energy consumption models and energy efficiency improvement of a single press | Monitoring and modeling, identification of energy consumption |
Improving the energy efficiency of the component/unit within the press | |
Reducing idle production time | |
Waste recovery within a press | |
Lightweight design of presses | |
Optimization and control for energy reduction of metal forming processes | Process energy modeling |
Optimized process parameters | |
Process improvement | |
Energy-efficient scheduling management and use for multi-presses | Identified and structured decision problems |
Energy modeling at multi-press level | |
Solution selection method |
Keyword 1 | Keyword 2 |
---|---|
energy consumption, energy efficiency, energy-efficient, carbon emissions, light weight | metal forming process, press, hydraulic press, scheduling |
Energy Conversion | Energy Elements | Input Parameters | Output Parameters | Energy Dissipation Model |
---|---|---|---|---|
Electrical—mechanical energy | Motors | Electric voltage | Torque | |
Electric current | Angular velocity | |||
Mechanical—hydraulic energy | Pumps | Torque | Pressure | [24] |
Angular velocity | Quantity of flow | |||
Hydraulic—hydraulic energy | Valves, Auxiliaries, Pipes | Pressure | Pressure | |
Quantity of flow | Quantity of flow | |||
Hydraulic—mechanical energy | Hydraulic cylinders | Pressure Quantity of flow | Pressure | |
Quantity of flow | ||||
Force | ||||
Moving speed | ||||
Mechanical—deformation energy | Moved cross beam | Force | Stress | |
Dies | Moving speed | Strain | ||
Thermal—thermal energy | Heat exchanger | Temperature | Temperature | |
Oil tank | Entropy flow | Entropy flow |
Energy Efficiency and Energy Saving Methods and Technologies | Potential for Energy Efficiency Improvement and Energy Saving | Deficiencies |
---|---|---|
Equipment design and control | Considerable large |
|
Process optimization for energy saving | Relatively small |
|
Scheduling management and use | Very large |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; He, K.; Li, L.; Wang, Q.; Liu, C. A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies. Processes 2019, 7, 357. https://doi.org/10.3390/pr7060357
Gao M, He K, Li L, Wang Q, Liu C. A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies. Processes. 2019; 7(6):357. https://doi.org/10.3390/pr7060357
Chicago/Turabian StyleGao, Mengdi, Kang He, Lei Li, Qingyang Wang, and Conghu Liu. 2019. "A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies" Processes 7, no. 6: 357. https://doi.org/10.3390/pr7060357
APA StyleGao, M., He, K., Li, L., Wang, Q., & Liu, C. (2019). A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies. Processes, 7(6), 357. https://doi.org/10.3390/pr7060357