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Abstract: Biochemistry has been broadly defined as “chemistry of molecules included or related
to living systems”, but is becoming increasingly hard to be distinguished from other related fields.
Targets of its studies evolve rapidly; some newly emerge, disappear, combine, or resurface themselves
with a fresh viewpoint. Methodologies for biochemistry have been extremely diversified, thanks
particularly to those adopted from molecular biology, synthetic chemistry, and biophysics. Therefore,
this paper adopts topic modeling, a text mining technique, to identify the research topics in the
field of biochemistry over the past twenty years and quantitatively analyze the changes in its trends.
The results of the topic modeling analysis obtained through this study will provide a helpful tool for
researchers, journal editors, publishers, and funding agencies to understand the connections among
the diverse sub-fields in biochemical research and even see how the research topics branch out and
integrate with other fields.
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1. Introduction

Biochemistry is the study of the structure, composition, and chemical reactions of substances in
living systems and includes the sciences of molecular biology, immunochemistry, and neurochemistry,
as well as bioinorganic, bioorganic, and biophysical chemistry [1].

Biochemistry has been broadly defined as “chemistry of molecules included or related to living
systems”, but is becoming increasingly hard to be distinguished from other related fields. Targets of
its studies evolve rapidly; some newly emerge, disappear, combine, or resurface themselves with a
fresh viewpoint. Methodologies for biochemistry have been extremely diversified, thanks particularly
to those adopted from molecular biology, synthetic chemistry, and biophysics. There are sub-fields
that are now regarded to lie within the field of biochemistry but used to be considered otherwise
(e.g., nuclear magnetic resonance spectroscopy and mass spectroscopy for biological systems) [2–5].

Like other research fields these days, the field of biochemistry tends to focus on—and sometimes
adjust itself to—a few high impactful themes, as shown by recent explosions of interest in gene-editing
technologies, liquid–liquid phase separation, cryo-electron microscopy, or synthetic biology. Past topics
similar to these, the so-called “hot” topics, however, sometimes were short-lived, as they matured
rapidly or turned out to be less influential than they initially seemed to be. This is presumably because
general access to research publication from the world-wide community is becoming easier and faster,
so a few good papers published in powerful journals would give much more ramifications than they
used to do [6–10].
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The broad scope, rapidly changing interests, and fast transition of research topics in biochemistry
make it an interesting field for trend studies. So far, the analysis of research trends has mostly been
conducted using qualitative methodologies such as literature review, expert evaluations, and the
Delphi method [11,12]. However, such qualitative techniques tend to require enormous time and costs
to abstract significant results from large amounts of data while also carrying the possibility of bias
depending on the scholars involved, as their subjective values or opinions may be reflected in the study.
Moreover, a completely unbiased and objective evaluation of a field which encompasses a broad scope
of research topics conducted over multiple decades can be a formidable task to even the top experts in
the field. Particularly for biochemical research, whose trends are constantly shifting, a quantitative,
as opposed to intuitive and popularity-driven, long-term trend analysis could provide a more objective
and unbiased interpretation of the changes in research trends [13].

Therefore, this paper adopts topic modeling, a text mining technique, to identify the research
topics in the field of biochemistry over the past twenty years and quantitatively analyze the changes in
its trends. Topic modeling enables us to not only specify research topics so far touched upon by scholars
in biochemistry but to also extract the keywords used in relation to the topics for a more in-depth
analysis. Thus, the results of the topic modeling analysis obtained through this study will provide
a helpful tool for researchers, journal editors, publishers, and funding agencies to understand the
connections among the diverse sub-fields in biochemical research and even see how the research topics
branch out and integrate with other fields. Also, for scholars and students of academic fields outside of
biochemistry, this study will present an effective starting point for approaching biochemical research.

In Section 2 that follows, we summarize the existing literature that analyzes research trends using
the topic modeling technique then explain the methods and application of the technique in Section 3.
Section 4 describes the research data collected for this study and how it was preprocessed for our
purposes. The analysis results are summarized in Section 5. Section 6 presents the conclusions of
the research.

2. Literature Review

Topic modeling is an algorithm for locating topics from a large, unstructured collection of texts,
and it is a model that infers topics by clustering words with similar meanings [14–16]. Because of this
feature, topic modeling has been widely used to analyze topics and trends. Grimmer [17] analyzed the
agendas of U.S. senators emphasized in their press releases, using topic modeling to examine how
lawmakers inform their voters about their work. Mann et al. [18] demonstrated that topic modeling
can be applied to measure the impact of research papers by applying topical n-grams (TNG) on
300,000 papers in the field of computer science.

Specific to the use of topic modeling to understand trends over time, Griffiths and Steyvers [15]
used topic modeling to extract topics from abstracts listed on papers published between 1991 and
2001 in the proceedings of the National Academy of Sciences of the United States of America (PNAS),
then identified the cold and hot topics by period [17]. Newman and Block [19] applied topic modeling
to understand early American society and its publishing culture. Their study extracted topics from
the text of newspapers published in the 18th century and analyzed how the topics changed over time.
Gerrish and Blei [20] used the dynamic topic model to identify the changes in the topical contents over
time in the corpus of academic research and to measure the influence of individual documents. Wang
et al. [16] analyzed 17,000 studies published in Science, and Sun and Yin [13] analyzed the research
trends in the transportation sector using topic modeling over time and by country.

As such, topic modeling is being applied to analyze existing literature or, notably, bibliographic
data such as research abstracts, as a way to identify the research trends in diverse fields of study.
Insofar as this present paper adopts the topic modeling technique on biochemical research, it may seem
that what is attempted here lacks novelty. However, at the same time, the fact that topic modeling
is frequently used in the existing literature across fields underscores the importance of identifying
research trends. In particular, the blurry boundaries, the speedy evolution of topics, and the openness
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to convergence studies which are characteristic of the field of biochemistry reinforces the contributions
of this present study.

3. Topic Modeling

Topic modeling is a text mining technique for discovering an abstract ‘subject’ from a set of
documents. A document is generally written on one topic, and as such, the words related to the topic
would appear more often than the other words in the document. For example, in a document on the
subject of dogs, the words “dog” and “bones” would appear more often, while it is assumed that a
document on the topic of cats will more often contain the words “cat” and “meow.” A topic model,
roughly speaking, binds the words “dogs” and “bones” under one topic, and “cat” and “meow” under
another topic. Topic modeling, like the K-means clustering technique, sets the number of topics in
advance and endows the subjects to the words grouped under topics at a later stage.

Latent Dirichlet allocation (LDA), a representative topic modeling technique, is a model based on
procedural probability distribution that finds potentially meaningful topics in multiple documents [21].
LDA analysis calculates the probability that certain words will be included in each topic, assuming
that multiple words can be grouped under different topics, and calculates the probability that those
words will be included in each topic to extract a set of words with high probabilities corresponding to
a topic. That is, LDA analysis finds the latent topic corresponding to the words in any given document.
The schematic of the LDA technique can be visualized as Figure 1.
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Figure 1. Schematic of the topic modeling algorithm. K: Number of topics; α: Dirichlet prior weight of
topic k by document, the parameter which determines the value of θ; η: Dirichlet prior weight of word
w by document, the parameter which determines the value of β; θd: The ratio of topics by document; βk:
The probability that word w will be generated by topic; Zd,n: The topic of the nth word in document d
(index); Wd,n: The nth word in document d (variable observed in document, index).

LDA’s algorithm finds the latent subject of a document by inferring a hidden variable based on
the variables observed in the document, where the observed variables are words (Wd,n). The algorithm
uses hyper parameters α and η and the hidden parameter βk to extract the words. The hidden variables
Zd,n and Wd,n cannot be observed directly in the document but can be inferred through the LDA model.
In the LDA model, Zd,n is generated from θd, which is the ratio of topics by document whose value
follows the Dirichlet prior weight determined by the value α. Likewise, βk, which is the probability
that a word will be generated by topic, is determined by the value η, and the Dirichlet prior weight
of βk is shaped by η. The word Wd,n is thus identified by Zd,n, the value that shows the topic of each
word, and βk, the word-by-topic ratio. The algorithm can be expressed as an equation, as follows:

p(z1, · · · , zN) =

∫
p(θ)

 N∏
n=1

p(zn|θ)

dθ (1)

p(w, z) =
∫

p(θ)

 N∏
n=1

p(zn|θ)p(wn|zn)

dθ (2)
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p(θ, z
∣∣∣w, α, β) =

p(θ, z, w
∣∣∣α, β)

p(w
∣∣∣α, β)

(3)

Other than LDA, there are also topic modeling algorithms such as latent semantic analysis (LSA),
probabilitic LSA (pLSA), and Dirichlet multinomial regression (DMR). LSA builds semantic spaces
based on a corpus and compares the similarities between words, sentences, paragraphs, and documents
to form word clusters [22–25]. While LSA measures the similarities and creates clusters based on the
frequency at which words are used in a document, pLSA is a model which looks at the probability that
a specific word will appear in a document. LDA is a Bayesian version of pLSA using the Dirichlet
distribution, which is a conjugate prior. Thus, while pLSA uses only the document-term matrix as
input without consideration of the distribution of topics in a document, LDA considers both the
distribution of topics by document and the distribution of terms by topic [26]. DMR expands on LSA
to assume that the hyper parameter α depends on the document’s metadata (author, year, department,
country) [27,28].

At present, LDA is the most popular topic modeling algorithm used by scholars. Several studies
compare LSA and LDA, but there has been no definite conclusion on whether one method is dominantly
superior to the other [27,29]. Because LSA is based on term frequency, its advantage is that it produces
intuitive results. On the other hand, the strength of LDA is that, because it is a probability-based model,
it can reveal hidden connections which cannot be found by looking only at frequency. As this study
attempts to redefine the topics in biochemistry and analyze their trends, we utilized the LDA model.
Also, because it is difficult to specify the metadata of bibliographical information (e.g., the ‘geographical
area’ of a paper can be difficult to define when there are more than one authors who are of different
affiliations), the DMR model was considered unsuitable for our research.

4. Data Collection and Preprocessing

Among the research papers provided by the American Chemical Society from 1999 to 2018,
this study analyzed 52 journals and 26,422 biochemical papers that fall under the subject of “general
chemistry” on the American Chemical Society’s research database (ACS Publications https://pubs.acs.
org/). The amount of data collected by journal and year are given in Table 1. The journals Biochemistry,
Journal of Physical Chemistry B, Journal of the American Chemical Society, and Langmuir, which
published the largest number of relevant papers, have the impact factors of 2.938, 3.146, 14.357, and
3.789, respectively. As can be seen from Figure 2, there has been a steady increase in the number of
published papers on biochemistry from 1999, with the largest number of studies published in 2012,
followed by a slight decline (It should be mentioned that the significant drop in the number of papers
published in 2018 is because the ACS database has not been fully updated after June 2018, unrelated to
the trends in biochemistry research (Figure 2). Only the articles clearly categorized as biochemistry
research in the ACS database were used as the primary data for this study).
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Table 1. Number of biochemical papers published by journal.

Journal No. Journal No.

Biochemistry 11,218 ACS Chem. Neurosci. 113
J. Phys. Chem. B 5172 J. Med. Chem. 108

J. Am. Chem. Soc. 4915 Org. Lett. 86
Langmuir 2196 ACS Appl. Mater. Interfaces 54

Biomacromolecules 662 ACS Synth. Biol. 48
J. Chem. Theory Comput. 528 Chem. Mater. 43

J. Phys. Chem. A 528 Mol. Pharmaceutics 42
Inorg. Chem. 512 ACS Cent. Sci. 34

J. Phys. Chem. Lett. 426 J. Nat. Prod. 34
ACS Chem. Biol. 338 J. Chem. Inf. Comput. Sci. 31
Acc. Chem. Res. 320 Environ. Sci. Technol. 22

J. Agric. Food Chem. 282 ACS Biomater. Sci. Eng. 19
Nano Lett. 252 Ind. Eng. Chem. Res. 19

J. Phys. Chem. C 246 ACS Med. Chem. Lett. 18
Chem. Rev. 241 ACS Macro Lett. 15

J. Proteome Res. 233 ACS Sustainable Chem. Eng. 8
Bioconjugate Chem. 231 J. Chem. Eng. Data 8

ACS Nano 205 ACS Catal. 6
J. Chem. Inf. Model. 203 ACS Infect. Dis. 6

Macromolecules 191 ACS Sens. 3
Anal. Chem. 186 ACS Appl. Bio Mater. 2

Chem. Res. Toxicol. 164 ACS Comb. Sci. 2
Crystal Growth and Design 140 J. Chem. Educ. 2

J. Org. Chem. 125 J. Comb. Chem. 2
ACS Omega 122 ACS Earth Space Chem. 1

J. Phys. Chem. 120 Org. Process Res. Dev. 1

Data Preprocessing

The abstracts of the 26,422 papers published in the field of biochemistry were collected and
tokenize into units of words. Words that appear after more than 10,000 times, representatively,
verbs such as ‘is’, ‘have’, and ‘be’, and unnecessary stopwords including special characters such as
punctuation marks, were removed from the data prior to analysis. Then, only the words corresponding
to nouns were filtered to be put through the analysis.

5. Results

5.1. Defining the Topics in Biochemical Research

The topic modeling using the preprocessed data proceeded as follows. First, each topic was given
a name based on the words assigned to each topic. The number of topics to be analyzed was set to 15,
and the outcomes and description of each topic are shown in Table 2. The words assigned to each topic
are schematized as Figure 3 using word clouds, and the probability of each topic’s word generation is
summarized in Table 3. Figure 4 shows the ratio each topic holds among the total research data.

Table 2. Topic title and descriptions.

# Title Descriptions

0 Aberrant protein aggregation and diseases Amyloid formation; Amyloidosys
1 Ion channels and receptors Ion channel complexes; Ligands; Drug design

2 Protein folding Kinetics and thermodynamics of protein folding;
Protein denaturation

3 Protein conformation (NMR studies) NMR spectroscopy for conformational dynamics

4 Various helix dimers Dimeric transmembrane domain, Dimerizing
transcription factors, Zinc-finger domain

5 Protein conformation computational studies) Molecular dynamics simulations on protein
dynamics

6 Membrane transporters Membrane fusion proteins; Mechanisms of
membrane transportation

7 Calculation of electron transfer Biological electron transfer; Redox pairs

8 Self-assembly of biomolecules Self-assembled biopolymers; DNA origami;
Crystallization

9 Regulation of cellular functions Signaling pathways; Phosphorylation
10 Biochemistry of lipids Lipid biochemistry; Vesicle formation; Cholesterols

11 Development of chromophores for
biochemistry Fluorescence sensors; Biological chromophores

12 Biochemistry of nucleic acids DNA; RNA; DNA secondary structures
13 Biochemistry of Heme complexes Hemoglobin; Heme complexes
14 Redox chemistry of cytoskeletal dynamics Kinetics of redox enzymes; Oxidation of actins
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Table 3. Probability distribution of words by topic.

Aberrant Protein
Aggregation and

Diseases

Ion Channels and
Receptors Protein Folding Protein Conformation

(NMR Studies) Various Helix Dimers
Protein Conformation

(Computational
Studies)

Membrane
Transporters

Calculation of Electron
Transfer

aggreg 0.028 channel 0.028 fold 0.026 nmr 0.023 helix 0.012 simul 0.024 cell 0.013 energi 0.018
fibril 0.024 ligand 0.022 unfold 0.016 conform 0.018 dimer 0.011 dynam 0.023 transport 0.013 electron 0.015

amyloid 0.016 ca2 0.015 stabil 0.015 spectro-scopi 0.011 sequenc 0.011 model 0.018 membran 0.011 calcul 0.014
form 0.015 receptor 0.012 temperatur 0.014 spectra 0.011 region 0.010 molecular 0.016 function 0.007 charg 0.013
aβ 0.014 site 0.010 increas 0.011 dynam 0.010 helic 0.010 water 0.013 coli 0.006 transfer 0.012

format 0.014 affin 0.009 chang 0.010 shift 0.009 amino 0.009 conform 0.010 express 0.006 group 0.011
diseas 0.011 complex 0.009 transit 0.010 reson 0.009 mutat 0.009 experiment 0.010 complex 0.006 hydrogen 0.010
oligom 0.009 select 0.009 effect 0.009 relax 0.008 two 0.009 energi 0.010 substrat 0.006 proton 0.009
studi 0.008 cation 0.008 denatur 0.009 backbon 0.008 stabil 0.008 forc 0.008 studi 0.006 base 0.009

monom 0.007 na 0.008 kinet 0.008 measur 0.008 form 0.008 differ 0.007 fusion 0.005 effect 0.008
β-sheet 0.007 mg2 0.007 solut 0.008 indic 0.007 conform 0.008 molecul 0.007 suggest 0.005 pair 0.007
assembl 0.007 bound 0.006 conform 0.007 observ 0.007 c-termin 0.008 mechan 0.007 result 0.005 model 0.007
dimer 0.006 pore 0.006 nativ 0.007 solut 0.007 posit 0.007 result 0.007 human 0.005 result 0.007
show 0.006 none 0.006 thermo-dynam 0.007 chain 0.007 chain 0.007 studi 0.006 show 0.004 mechan 0.006
result 0.005 studi 0.006 studi 0.007 data 0.007 n-termin 0.007 time 0.006 escherichia 0.004 studi 0.006
associ 0.005 transport 0.006 mol 0.007 chang 0.007 loop 0.007 calcul 0.005 two 0.004 complex 0.006

suggest 0.005 conduct 0.005 result 0.006 amid 0.007 fold 0.007 md 0.005 apo 0.004 mol 0.006
mechan 0.005 differ 0.005 rate 0.006 chemic 0.007 result 0.006 system 0.005 transloc 0.004 experiment 0.006
conform 0.005 show 0.005 depend 0.006 15n 0.007 motif 0.005 free 0.005 ribosom 0.004 function 0.005
oligomer 0.005 two 0.005 measur 0.005 label 0.006 show 0.005 field 0.005 site 0.004 densiti 0.005

Self-Assembly of
Biomolecules Regulation of Cellular Functions Biochemistry of Lipids

Develoment of
Chromophores for

Biochemistry

Biochemistry of
Nucleic Acids

Biochemistry of Heme
Complexes

Redox Chemistry of Cytoskeletal
Dynamics

dna 0.009 function 0.013 membran 0.045 fluoresc 0.020 dna 0.064 heme 0.022 reaction 0.022
adsorpt 0.009 cell 0.012 lipid 0.042 chromophor 0.014 rna 0.020 ii 0.017 oxid 0.018

solut 0.008 regul 0.008 bilay 0.025 excit 0.012 base 0.019 ligand 0.014 rate 0.014
self-assembl 0.008 complex 0.008 phase 0.014 proton 0.010 sequenc 0.015 metal 0.014 radic 0.009

assembl 0.008 signal 0.007 vesicl 0.012 chang 0.009 pair 0.014 complex 0.010 actin 0.008
form 0.007 phosphoryl 0.007 cholesterol 0.009 absorpt 0.009 duplex 0.013 iron 0.010 product 0.008

polym 0.007 role 0.006 phospholipid 0.009 nm 0.008 strand 0.008 site 0.010 format 0.008
charg 0.006 studi 0.006 studi 0.007 rhodopsin 0.007 form 0.007 cytochrom 0.010 form 0.007

molecul 0.006 target 0.006 monolay 0.007 observ 0.006 stabil 0.007 fe 0.009 kinet 0.007
complex 0.006 specif 0.006 chain 0.006 light 0.006 loop 0.007 cu 0.009 complex 0.007
crystal 0.006 biolog 0.006 increas 0.006 time 0.006 complex 0.006 coordin 0.009 re 0.006
result 0.006 mechan 0.005 interfac 0.006 retin 0.006 contain 0.006 co 0.008 atp 0.006

microscopi 0.006 cellular 0.005 effect 0.006 differ 0.006 two 0.006 copper 0.007 constant 0.006
studi 0.005 import 0.005 result 0.006 intermedi 0.005 g-quadruplex 0.005 two 0.007 cluster 0.006
forc 0.005 provid 0.005 water 0.005 band 0.005 result 0.005 electron 0.007 cross-link 0.006

format 0.005 receptor 0.005 differ 0.005 spectroscopi 0.005 studi 0.005 redox 0.006 mechan 0.006
adsorb 0.005 identifi 0.004 liposom 0.004 form 0.005 oligonucleotid 0.005 iii 0.005 hydrolysi 0.005

poli 0.005 process 0.004 form 0.004 decay 0.005 site 0.005 form 0.005 presenc 0.005
nm 0.005 modul 0.004 hydrophob 0.004 spectra 0.005 groov 0.005 histidin 0.005 dissoci 0.005
film 0.005 demonstr 0.004 show 0.004 base 0.005 nucleotid 0.005 oxid 0.005 result 0.005
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Topic modeling intuitively assigns research fields and topics based on the composition of the
words that are assigned to the topic. For example, the words assigned to the first topic are “aggreg, fibril,
amyloid, format, diseas”, based on which it becomes possible to induce the research topic, “Aberrant
protein aggregation and diseases”. The second topic, “Ion channels and receptors”, was induced based
on the words “channel, ligand, receptor, affin, complex” which were assigned to the topic.

Although the topics showed little difference in their ratios among the total research data, the topic
that accounted for the highest ratio were “5. Protein conformation (computational studies), 9. Regulation
of cellular functions, 10. Biochemistry of lipids”, while those which took up comparatively lower
portions were “3. Protein folding, 11. Development of chromophores for biochemistry, 14. Redox
chemistry of cytoskeletal dynamics”.
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5.2. Analysis of Yearly Trends

Using the topic modeling analysis results for the research conducted in the field of biochemistry
from 1999 to 2018, the changes in research trends over time were identified. As research in 2019 is
ongoing, this year was excluded from the trend analysis. The overall trend was determined by plotting
the ratio of research papers by topic for all years on a graph (Figure 5), and then the data was analyzed
quantitatively using the linear regression model (Table 4).

Sun and Yin [13] collected the data on transportation research from 1991 to 2015 for topic modeling
analysis and, to analyze the trends in research, defined the rk index using the ratio of topic k by journal,
θt

k, following the equation below. Based on the equation, topics whose rk value is less than 1 were
classified as hot topics, and those above 1 as cold topics.

rk =

∑1995
t=1991 θ

t
k∑2015

t=2011 θ
t
k

(4)

However, this method of analysis is limited in reflecting the overall trends as it is based on simple
arithmetic averages, such as rk. As such, in this study, a linear regression model was constructed by
the method proposed by Griffiths and Steyvers [15], and hot and cold topics were classified based on
the significance of the regression coefficient. The independent variables were set as the 20 years from
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1999 to 2018, and the dependent variables as the share of each topic by year. Topics with regression
coefficients under them were considered significant, and whether they were hot or cold topics were
judged depending on the direction of the regression coefficient, that is, if (+) was assumed as indicating
a hot topic, and (−) as indicating a cold topic.

According to the trend analysis based on linear regression, “0. Aberrant protein aggregation
and diseases, 5. Protein conformation (computational studies), 9. Regulation of cellular functions, 10.
Biochemistry of lipids” were the topics that showed consisted upward trends. “3. Protein conformation
(NMR studies), 4. Various helix dimers, 12. Biochemistry of nucleic acids, 13. Biochemistry of
Heme complexes, 14. Redox chemistry of cytoskeletal dynamics” were the topics that exhibited clear
downward trends over time throughout the whole period examined in this research.

These trends indicate that biochemical research has gradually broadened its scope from its past
focus on the understanding of specific biomolecules (proteins, nucleic acids, etc.) to examining all
proteins or lipids, then to explaining globally-occurring phenomena. Interestingly though, the research
on lipids has become even more active, which may be a reflection of the recent spotlight on autophagy
and lipid droplets leading to a growth in research. Also, the decline in research on the biochemistry
of nucleic acids despite the large number of papers published on genome editing technology can be
attributed to the research focus on the use of genome editing to control cell or protein functions, rather
than nucleic acids themselves. Also notable is that in the case of protein conformational dynamics,
computational study (topic 5) is a hot topic, while NMR study (topic 3) is a cold topic. One reason
for this can be found in the developments in computational power, both in terms of hardware and
software, which has enabled analysis of areas that were out of reach using nuclear magnetic resonance
(NMR) technology, leading to a growth trend.

Analysis of Topics by Period

Topic modeling creates word clusters from a given document data set based on probability,
then attributes topics to each cluster afterwards. Thus, naturally, a change in the data set results in a
change in the word clusters. The topics listed in Table 2 are based on the full data set collected for this
study for the twenty year period from 1999 to 2018, which means that dividing this data set by period
and applying topic modeling to each periodic set individually will extract topics that are specific to the
period, as opposed to the general topics found for the twenty year timeframe. To do this, we divided
the data set into four specific timeframes and performed topic modeling separately on each of the four
data sets (Table 5). The four timeframes were from 1999 to 2006, 2007 to 2011, 2012 to 2017, and the
one-year timeframe of 2018 to identify the latest topics in biochemical research. The number of topics
was set to five.

The results showed that regardless of the period, a large number of research has been consistently
conducted on topics such as “membran, lipid” and “DNA.” On the other hand, “heme” appeared as
one of the major topics before 2011 but was not seen thereafter, while “fibril,” and “dynam, simul”
emerged as a popular topic from 2007. All of these topics are among the fifteen major topics extracted
for the full twenty-year period, however, their inclusion in the major topics by period differed by
topic and period in a way that matched the trends shown in Figure 5. Also, the topics extracted for
2018 confirmed the appearance of “water, hydrogen, charg” as new topics. The emergence of “energy
production in biosystems” as a new topic around 2018 can be tied to the wider implementation of
policies in many countries toward accelerating the development of biomass energy.
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Table 4. Hot/Cold topics.

Topic No. Coefficient p-Value Hot/Cold

0 5.525 0.0000 hot
1 −2.538 0.0055 -
2 −0.552 0.4843 -
3 −2.838 0.0000 cold
4 −3.934 0.0000 cold
5 11.023 0.0000 hot
6 −2.133 0.0072 -
7 −0.672 0.5599 -
8 0.860 0.5855 -
9 7.128 0.0000 hot

10 2.361 0.0029 hot
11 −0.495 0.4312 -
12 −2.733 0.0041 cold
13 −3.083 0.0012 cold
14 −2.704 0.0000 cold

Table 5. Topics and Words by Timeframe.

Year Title Words

1999~2006

Biochemistry of Heme complexes heme, rate, oxid, reaction, electron
Biochemistry of lipids lipid, membran, bilay, phase, water

Biochemistry of nucleic acids dna, base, structure, energi, complex
Membrane transporters cell, complex, site, function, receptor

Protein conformation (NMR studies) structur, fold, conform, nmr, helix

2007~2011

Membrane transporters cell, function, complex, receptor
Aberrant protein aggregation and diseases form, fibril, aggreg, complex, heme

Biochemistry of nucleic acids dna, dynam, conform, simul, fold
Biochemistry of lipids membran, lipid, bilay, water, phase

Calculation of electron transfer base, proton, eletron, energi, transfer

2012~2017

Calculation of electron transfer eletron, proton, reaction, transfer, complex
Biochemistry of nucleic acids dna, rna, base, sequenc, complex

Aberrant protein aggregation and diseases aggreg, fibril, conform, cell, amyloid
Biochemistry of lipids membran, lipid, bilay, phase

Protein conformation (computational studies) dynam, simul, conform, water, fold

2018

Ion channels and receptors cell, function, receptor, rna, ligand
Biochemistry of lipids membran, lipid, bilay, phase, system

Biochemistry of nucleic acids dynam, conform, dna, fold, simul
Energy production in biosystems water, energi, hydrogen, chain, charg

Aberrant protein aggregation and diseases aggreg, form, fibril, cell, diseas

6. Discussion and Conclusions

Since its establishment as a separate field of study, biochemistry has been continuously expanding
in its research scope, and the related industries have also shown steady growth which is expected
to continue in the future [10]. Today, the biochemical industry continues to be of great attraction
not only to existing biotech and chemical firms but also inviting new challengers including global
companies such as Coca-Cola, IKEA, Dell, and LEGO, who are also preparing to try their hands in the
research and development of biochemical products. Meanwhile, countries have also been actively
supporting the research and development of biochemistry through national policies. The United States
(US) plans to replace 30% of its current oil consumption with green carbon by 2030 and is supporting
the wider use of bio-derived products policy-wise by expanding its Biopreferred Program to 97 items
and 10,000 types. The European Union, which accounts for 60% of the global bioplastics market,
has been developing the biochemical industry as one of its six leading industries, and in Japan, national
efforts are being made to promote the biochemical industry through the country’s “Biomass Japan
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Comprehensive Strategy” [30]. This close connection between research and industry has been a driver
for biochemistry to develop at greater speed as well as embrace new areas and topics, which is why
the present study’s application of topic modeling, which is often attempted in other studies in diverse
fields, for the analysis of biochemical research trends can contribute to existing literature [2–5].

This study used topic modeling, a text mining technique, based on LDA to define the research
topics in biochemical research over the past twenty years and quantitatively analyze their trends.
The abstracts of 26,422 papers published in 52 journals from 1999 to 2018 were collected through the
American Chemical Society and used as the data for analysis. Based on the results, we identified the
fifteen major topics of biochemistry over the past 20 years and, using linear regression, analyzed the
amount of research conducted over time. Further, the research data was divided into four periods
to repeat the topic modeling analysis for the specific timeframes to see which topics decreased or
increased in weight over time and to pinpoint newly-emerging topics.

Our analysis results were in line with the recent trends of the biochemical industry. As recent
movements in the industry—such as the 1300-PDO production plant with a capacity of 450,000 tons
per year constructed by Dupont and Tate and Lyle to produce PTT(Polytrimethylene terephthalate)
to be used as fiber material for the Sorona brand and the joint venture for Propylene glycol (PG)
production established by ADM(Archer Deniels Miland) and Cargill—the attention of the industry is
pointed at biofiber and biofuels. The latest trends revealed by our study lists “energy production in
biosystems” and “aberrant protein aggregation and diseases” as two of the top five topics, indicating
that our analysis closely reflects the latest industrial interests. Therefore, applying the analysis method
used in this study with continuously updated data will provide a helpful decision-making tool for
practitioners and researchers in the industry and academia.

Most researchers, of course, do not seek to follow the trend of the moment, nor should they.
The goal of this study is not to argue that researchers should follow academic trends but to contribute
to future research by sharing information on trends and opening up possibilities of new and diverse
research. It is important to study classic topics to gain an understanding of the fundamentals of a field,
but it is also equally necessary to bring together different research fields or to broaden boundaries and
uncover new topics according to changing trends or technological development, thereby breathing in
new vitality to traditional research topics.

In addition to the papers published by the ACS in this study, there exists a number of journals,
including Nature, which publish articles that can be categorized under the field of biochemistry.
However, we used only the papers clearly categorized as biochemistry by the ACS to avoid the
subjective judgment of what research belongs to the field. Our decision here is both a limitation and a
contribution of this study. We put aside research articles which were unspecified as to whether they
fall under biochemistry, however, this also means the topics extracted by our analysis can become a
base-point from which further trend analyses can be performed with additional data. In particular,
further studies may expand our present study by conducting a more in-depth analysis of sub-categories
to uncover more specific trends in the wide scope of biochemical research.
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