A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency
Abstract
:1. Introduction
2. Overview of AD Process and Applications
2.1. AD Process Chemistry
2.1.1. Hydrolysis
2.1.2. Acidogenesis
2.1.3. Acetogenesis
2.1.4. Methanogenesis
2.2. The Percentage Composition of CH4 from AD
3. Overview of Previous Research on AD
4. Brief Synopsis of Issues Hitherto Addressed in AD Research
5. The Concepts of IHT and HPP
6. Methods of Accelerating and Optimizing AD
6.1. Use of Non-Biological Conductive Materials to Stimulate IHT and HPP in AD
6.2. Combining MES with AD to Improve Microbial Interaction
7. Recent Advances in the AD Technology
8. Future Directions and Opportunities
9. Discussion
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pantaleo, A.; Gennaro, B.D.; Shah, N. Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy). Renew. Sustain. Energy Rev. 2013, 20, 57–70. [Google Scholar] [CrossRef]
- Lansing, S.; Botero, R.B.; Martin, J.F. Waste treatment and biogas quality in small-scale agricultural digesters. Bioresour. Technol. 2008, 99, 5881–5890. [Google Scholar] [CrossRef] [PubMed]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health. Part A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, J.; Simula, M. Deforestation: Causes and symptoms. In The Future of the World’s Forests: Ideas vs. Ideologies; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010; pp. 81–104. [Google Scholar]
- Katuwal, H.; Bohara, A.K. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Niles, J.O.; Brown, S.; Pretty, J.; Ball, A.S.; Fay, J. Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2002, 360, 1621–1639. [Google Scholar] [CrossRef] [PubMed]
- Antweiler, R.C.; Goolsby, D.A.; Taylor, H.E. Nutrients in the Mississippi River. A Technical Report Prepared for the U.S. Geological Survey; Report No. 1133; USGS Publications Warehouse: Reston, VA, USA, 1995.
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Mihelcic, J.R.; Fry, L.M.; Myre, E.A.; Phillips, L.D.; Barkdoll, B.D. Field Guide to Environmental Engineering for Development Workers: Water, Sanitation, and Indoor Air; American Society of Civil Engineers: Reston, VA, USA, 2009.
- Smith-Sivertsen, T.; Díaz, E.; Bruce, N.; Díaz, A.; Khalakdina, A.; Schei, M.A.; Smith, K.R. Reducing indoor air pollution with a randomized intervention design—A presentation of the stove intervention study in the Guatemalan Highlands-Fuel. Nor. Epidemiol. 2004, 14, 137–143. [Google Scholar]
- Jonsson, H.; Stintzing, A.R.; Vinneras, B.; Salomon, E. Guidelines on the Use of Urine and Faeces in Crop Production. A Technical Report Prepared for the Stockholm Environment Institute Sweden; Report No. 2004–2; Stockholm Environment Institute: Stockholm, Sweeden, 2004. [Google Scholar]
- Mara, D.; Cairncross, S. Guidelines for the Safe Use of Wastewater and Excreta in Agriculture and Aquaculture: Measures for Public Health Protection; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Hulme, F. The Facts about Fertilizer Raw Materials, Availability and Pricing: Greenhouse Products News. Available online: https://gpnmag.com/article/facts-about-fertilizer-raw-materials-availability-and-pricing-0/ (accessed on 19 October 2018).
- World Health Organization. Environmental Health Criteria 8: Sulfur Oxides and Suspended Particulate Matter; World Health Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Smith, K.R. Fuel combustion, air pollution exposure, and health: The situation in developing countries. Annu. Rev. Energy Environ. 1993, 18, 529–566. [Google Scholar] [CrossRef]
- McCarty, P.L. Anaerobic waste treatment fundamentals. Public Work 1964, 95, 107–112. [Google Scholar]
- World Health Organization. Health Statistics and Health Information Systems: Global Burden of Disease. Available online: http://www.who.int/healthinfo/global_burden_disease/en/ (accessed on 11 August 2018).
- Dupla, M.; Conte, T.; Bouvier, J.C.; Bernet, N.; Steyer, J.P. Dynamic evaluation of a fixed bed anaerobic digestion process in response to organic overloads and toxicant shock loads. Water Sci. Technol. 2004, 49, 61–68. [Google Scholar] [CrossRef]
- Shanmugam, P.; Horan, N.J. Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 2009, 100, 4117–4120. [Google Scholar] [CrossRef] [PubMed]
- Thauer, R.K. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. Marjory Stephenson prize lecture. Microbiology 1998, 144, 2377–2406. [Google Scholar] [CrossRef] [PubMed]
- De Bok, F.A.M.; Plugge, C.M.; Stams, A.J.M. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 2004, 38, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.G.; Han, G.; Lim, J.; Lee, C.; Hwang, S. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res. 2010, 44, 4838–4849. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Dhar, B.R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 244, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.E.; Shrestha, P.M.; Liu, F.; Markovaite, B.; Chen, S.; Nevin, K.P.; Lovley, D.R. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 2014, 80, 4599–4605. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Dang, Y.; Holmes, D.E.; Zhao, Z.; Woodard, T.L.; Zhang, Y.; Sun, D.; Wang, L.Y.; Nevin, K.P.; Lovley, D.R. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 2016, 220, 516–522. [Google Scholar] [CrossRef]
- Liu, F.; Rotaru, A.E.; Shrestha, P.M.; Malvankar, N.S.; Nevin, K.P.; Lovley, D.R. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 2012, 5, 8982–8989. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Rotaru, A.E.; Shrestha, P.M.; Malvankar, N.S.; Liu, F.; Fan, W.; Nevin, K.P.; Lovley, D.R. Promoting interspecies electron transfer with biochar. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S. More about anaerobic digestion (AD). In Biogas Handbook; Al Seadi, T., Ed.; University of Southern Denmark: Esbjerg, Denmark, 2008; pp. 16–28. [Google Scholar]
- Zupančič, G.D.; Grilc, V. Anaerobic treatment and biogas production from organic waste. In Management of Organic Waste; Kumar, S., Ed.; Intechopen: London, UK, 2012; pp. 1–28. [Google Scholar]
- E Instruments International. Biomass to Biogas-anaerobic Digestion. Available online: http://www.e-inst.com/biomass-to-biogas (accessed on 15 November 2018).
- Ostrem, K. Greening Waste: Anaerobic Digestion for Treating the Organic Reaction of Municipal Solid Wastes. Master’s Thesis, Columbia University, New York, NY, USA, 2004. [Google Scholar]
- Van Haandel, A.; van der Lubbe, J. Handbook Biological Wastewater 2007. Available online: http://www.wastewaterhandbook.com/documents/sludge_treatment/831_anaerobic_digestion_theory.pdf (accessed on 18 May 2018).
- Yadvika, S.; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of biogas production from solid substrates using different techniques—A review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Broughton, A.D. Hydrolysis and Acidogenesis of Farm Dairy Effluent for Biogas Production at Ambient Temperatures. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2009. [Google Scholar]
- Parawira, W. Anaerobic Treatment of Agricultural Residues and Wastewater. Ph.D. Thesis, Lund University, Lund, Sweden, 2004. [Google Scholar]
- Gerardi, M.H. Wastewater Microbiology Series: The Microbiology of Anaerobic Digesters; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Bajpai, P. Basics of anaerobic digestion process. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 7–12. [Google Scholar]
- Kosaric, N.; Blaszczyk, R. Industrial effluent processing. In Encyclopedia of Microbiology; Lederberg, J., Ed.; Academic Press Inc: New York, NY, USA, 1992; pp. 473–491. [Google Scholar]
- Chen, Y.; Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997, 61, 262–280. [Google Scholar]
- De Bok, F.A.; Harmsen, H.J.; Plugge, C.M.; de Vries, M.C.; Akkermans, A.D.; de Vos, W.M.; Stams, A.J. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 2005, 55, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Singleton, P. Acetogenesis. In Dictionary of Microbiology and Molecular Biology, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-470-03545-0. [Google Scholar]
- Food and Agriculture Organization (United Nations). Chapter 4: Methane Production. Available online: http://www.fao.org/3/w7241e/w7241e0f.htm#4.1.2%20acetogenesis%20and%20dehydrogenation (accessed on 24 July 2019).
- Verma, S. Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes. Master’s Thesis, Columbia University, New York, NY, USA, 2002. [Google Scholar]
- Paul, E.; Liu, Y. Biological Sludge Minimization and Biomaterials/Bioenergy Recovery Technologies; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S.N.; Chakraborty, A.K.; Mathew, A.K.; Chaudhury, S. An overview of physico-chemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management. 3 Biotech 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Slonczewski, J.L.; Foster, J.W. Microbiology: An Evolving Science 3; W.W. Norton and Company: New York, NY, USA, 2014. [Google Scholar]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiason, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 2004, 29, 1811–1823. [Google Scholar] [CrossRef]
- Dobre, P.; Nicolae, F.; Matei, F. Main factors affecting biogas production–an overview. Rom. Biotech. Lett. 2014, 19, 9283–9296. [Google Scholar]
- Zeb, B.S.; Mahmood, Q.; Pervez, A. Characteristics and performance of anaerobic wastewater treatment: A review. J. Chem. Soc. Pak. 2013, 35, 217–232. [Google Scholar]
- Monnet, F. An Introduction to Anaerobic Digestion of Organic Wastes; Final Report; Remade: Glasgow, UK, 2003. [Google Scholar]
- Vintila, T.; Neo, S.; Vintila, C. Biogas production potential from waste in Timis County, Scientific Papers. Anim. Sci. Biotechnol. 2012, 45, 366–733. [Google Scholar]
- Hutňan, M.; Špalková, V.; Bodík, I.; Kolesárová, N.; Lazor, M. Biogas production from maize grains and maize silage. Pol. J. Environ. Stud. 2010, 19, 323–329. [Google Scholar]
- Mussoline, W. Enhancing the Methane Production from Untreated Rice Straw Using an Anaerobic Co-digestion Approach with Piggery Wastewater and Pulp and Paper Mill Sludge to Optimize Energy Conversion in Farm-scale Biogas Plants. Earth Sciences. Ph.D. Thesis, Université Paris-Est, Paris, France, 2013. [Google Scholar]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources—An Introduction; Deublein, D., Steinhauser, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 57–112. [Google Scholar]
- Internet Archive Wayback Machine. Basic Information on Biogas. Available online: https://web.archive.org/web/20100106022729/http://www.kolumbus.fi/suomen.biokaasukeskus/en/enperus.html (accessed on 4 November 2018).
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I.; Makaka, G.; Simon, M. Microbial anaerobic digestion (Bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int. J. Environ. Res. Public Health 2013, 10, 4390–4417. [Google Scholar] [CrossRef] [PubMed]
- Hagelqvist, A.; Granström, K. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions. Environ. Technol. 2016, 37, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.L. Co-digestion of Organic Waste Products with Wastewater Solids—Final Report with Economic Model; Water Environment Research Foundation (WERF): Alexandria, VA, USA, 2010. [Google Scholar]
- Amani, T.; Nosrati, M.; Sreekrishnan, T.R. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—A review. Environ. Rev. 2010, 18, 255–278. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Lily, B.; Wang, L.B. A review of the processes, parameters, and optimization of anaerobic digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, T.; Mei, Z.; Li, J.; Qiu, K.; Ge, Y. Dry Anaerobic digestion technologies for agricultural straw and acceptability in China. Sustainability 2018, 10, 4588. [Google Scholar] [CrossRef]
- Bergland, W.H.; Dinamarca, C.; Bakke, R. Temperature effects in anaerobic digestion modeling. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), Linköping, Sweden, 7–9 October 2015; Buffoni, L., Pop, A., Thiele, B., Eds.; Scandinavian Simulation Society and Linköping University Electronic Press: Linköping, Sweden, 2015; pp. 261–269. [Google Scholar]
- Ahlberg-Eliasson, K.; Nadeau, E.; Levén, L.; Schnürer, A. Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenergy 2017, 97, 27–37. [Google Scholar] [CrossRef]
- Chen, C.R. The state of the art review on the application of anaerobic digestion. Conserv. Recycl. 1984, 7, 191–198. [Google Scholar] [CrossRef]
- Al-mashhadani, M.K.H.; Wilkinson, S.J.; Zimmerman, W.B. Carbon dioxide rich microbubble acceleration of biogas production in anaerobic digestion. Chem. Eng. Sci. 2016, 156, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Zealand, A.M.; Roskilly, A.P.; Grahama, D.W. Effect of feeding frequency and organic loading rate on bio-methane production in the anaerobic digestion of rice straw. Appl. Energy 2017, 207, 156–165. [Google Scholar] [CrossRef]
- Ganidi, N.; Tyrrel, S.; Cartmell, E. Anaerobic digestion foaming causes—A review. Bioresour. Technol. 2009, 100, 5546–5554. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Yenigun, O.; Onay, T.T. Anaerobic treatment of dairy wastewaters: A review. Process. Biochem. 2005, 40, 2583–2595. [Google Scholar] [CrossRef]
- Lesteur, M.; Bellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J.M.; Junqua, G.; Steyer, J.P. Alternative methods for determining anaerobic biodegradability: A review. Process. Biochem. 2010, 45, 431–440. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fòlino, A.; Tamburino, V.; Zappia, G.; Zema, D.A. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 2018, 172, 19–28. [Google Scholar] [CrossRef]
- Wen-biao, H.; Yu-zhu, Z.; Hao, C. Study on biogas production of joint anaerobic digestion with excess sludge and kitchen waste. Proc. Environ. Sci. 2016, 35, 756–762. [Google Scholar]
- Aiyuk, S.; Forrez, I.; Lieven, K.; van Haandel, A.; Verstraete, W. Anaerobic and complementary treatment of domestic sewage in regions with hot climates—A review. Bioresour. Technol. 2006, 97, 2225–2241. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Cho, S.K.; Lee, J.; Hwang, K.; Chung, J.W.; Jang, H.N.; Shin, S.G. Performance and microbial community dynamics in anaerobic digestion of waste activated sludge: Impact of immigration. Energies 2019, 12, 573. [Google Scholar] [CrossRef]
- Liu, C.; Tong, Q.; Li, Y.; Wang, N.; Liu, B.; Zhang, X. Biogas production and metal passivation analysis during anaerobic digestion of pig manure: Effects of a magnetic Fe3O4/FA composite supplement. RSC Adv. 2019, 9, 4488–4498. [Google Scholar] [CrossRef]
- Mi-Sun, K.; Dong-Hoon, K.; Yeo-Myeong, Y. Effect of operation temperature on anaerobic digestion of food waste: Performance and microbial analysis. Fuel 2017, 209, 598–605. [Google Scholar]
- Latif, M.A.; Mehta, C.M.; Batstone, D.J. Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 2017, 113, 42–49. [Google Scholar] [CrossRef]
- Xiaohu, D.; Chongliang, H.; Dong, Z.; Yinguang, C. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2017, 243, 914–921. [Google Scholar]
- Wittmann, C.; Zeng, A.P.; Deckwer, W.D. Growth inhibition by ammonia and use of pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Appl. Microbiol. Biotechnol. 1995, 44, 519–525. [Google Scholar] [CrossRef]
- Ye, J.; Hu, A.; Ren, G.; Zhou, T.; Zhang, G.; Zhou, S. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity. Bioresour. Technol. 2018, 247, 131–137. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Hassan, M.; Han, L.; Xie, B. Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: Variations and effects of microbial community structures. Bioresour. Technol. 2017, 243, 1149–1158. [Google Scholar] [CrossRef]
- Harris, P.W.; Schmidt, T.; McCabe, B.K. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste. Bioresour. Technol. 2017, 244, 605–610. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Perera, K.U.C. Investigation of Operating Conditions for Optimum Biogas Production in Plug Flow Type Reactor. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2011. [Google Scholar]
- Mendoza, A.M.; Martínez, T.M.; Montañana, V.F.; Jiménez, P.A.L. Modeling flow inside an anaerobic digester by CFD techniques. Int. J. Energy Environ. 2011, 2, 963–974. [Google Scholar]
- Vesvikar, M.; Al-Dahhan, M. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnol. Bioeng. 2005, 89, 719–732. [Google Scholar] [CrossRef]
- Meister, M.; Rezavand, M.; Ebner, C.; Pümpel, T.; Rauch, W. Mixing non-Newtonian flows in anaerobic digesters by impellers and pumped recirculation. Adv. Eng. Softw. 2018, 115, 194–203. [Google Scholar] [CrossRef]
- Abdelgadir, A.; Chen, X.; Liu, J.; Xie, X.; Zhang, J.; Zhang, K.; Wang, H.; Liu, N. Characteristics, process parameters, and inner components of anaerobic bioreactors. BioMed. Res. Int. 2014, 1–10. [Google Scholar] [CrossRef]
- Ogbonna, E.C. A Multi-parameter Empirical Model for Mesophilic Anaerobic Digestion. Ph.D. Thesis, University of Hertfordshire, Hatfield, London, 2016. [Google Scholar]
- Ghanimeh, S.; Khalil, C.A.; Ibrahim, E. Anaerobic digestion of food waste with aerobic post-treatment: Effect of fruit and vegetable content. Waste Manag. Res. 2018, 36, 965–974. [Google Scholar] [CrossRef]
- McCarty, P.L. One hundred years of anaerobic treatment. In Anaerobic Digestion; Hughes, P.E., Stafford, D.A., Wheatley, B.I., Baader, W., Lettinga, G., Nyns, E.J., Verstraete, W., Wentworth, R.L., Eds.; Elsevier Biomedical Press BV: Amsterdam, The Netherlands, 1982; pp. 3–22. [Google Scholar]
- Brynt, M.P.; Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 1976, 59, 20–31. [Google Scholar] [CrossRef]
- Singh, K.J.; Sooch, S.S. Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Convers. Manag. 2004, 45, 1329–1341. [Google Scholar] [CrossRef]
- Werner, J.J.; Knights, D.; Garcia, M.L.; Scalfone, N.B.; Smith, S.; Yarasheski, K.; Cummings, T.A.; Beers, A.R.; Knight, R.; Angenent, L.T. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 2011, 108, 4158–4163. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Han, H.J. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater. Bioresour. Technol. 2012, 103, 95–100. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Bashir, M.J.K. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. J. Hazard. Mater. 2011, 189, 404–413. [Google Scholar] [CrossRef]
- Premier, G.C.; Kim, J.R.; Massanet-Nicolau, J.; Kyazze, G.; Esteves SR, R.; Penumathsa, B.K.; Guwy, A.J. Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew. Energy 2013, 49, 188–192. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Y.; Li, D.; Zhou, X.; Feng, Y. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community. Bioresour. Technol. 2015, 195, 89–95. [Google Scholar] [CrossRef]
- Liu, B.; Williams, I.; Li, Y.; Wang, L.; Bagtzoglou, A.; McCutcheon, J.; Li, B. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors. Biosens. Bioelectron. 2016, 79, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Kumar, G.; Sarathi, V.S.; Nahm, K.S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 2013, 43, 461–475. [Google Scholar] [CrossRef]
- Li, W.W.; Yu, H.Q. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering 2016, 2, 438–446. [Google Scholar] [CrossRef]
- Larrosa-Guerrero, A.; Scott, K.; Head, I.M.; Mateo, F.; Ginesta, A.; Godinez, C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89, 3985–3994. [Google Scholar] [CrossRef]
- Gavala, H.N.; Angelidaki, I.; Ahring, B.K. Kinetics and modelling of anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 2003, 81, 57–93. [Google Scholar]
- Bohn, I.; Bjarnsson, L.; Mattiasson, B. Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor. Environ. Technol. 2007, 28, 943–952. [Google Scholar] [CrossRef]
- Li, W.; Yu, H.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells–centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar] [CrossRef]
- Rabaey, K.; Rozendal, R.A. Microbial electrosynthesis–revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706–716. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental analysis of producing biochar and energy recovery from biosludge pulp and paper mill. J. Ind. Ecol. 2019, 1–13. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production. Energy 2019, 182, 594–605. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Digested Slurry: The Profit Lies in the Use of the Effluent. Available online: http://www.fao.org/docrep/t0541e/T0541E0c.htm (accessed on 15 November 2018).
- Ni, P.; Lyu, T.; Sun, H.; Dong, R.; Wu, S. Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization. Energy 2017, 141, 1695–1704. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; He, P.; Wang, Y.; Shao, L.; Lü, F. Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Manag. Res. 2016, 34, 409–416. [Google Scholar] [CrossRef]
- Cotana, F.; Petrozzi, A.; Pisello, A.L.; Coccia, V.; Cavalaglio, G.; Moretti, E. An innovative small sized anaerobic digester integrated in historic building. Energy Proc. 2014, 45, 333–3341. [Google Scholar] [CrossRef]
- Al Seadi, T. Quality Management of AD Residues from Biogas Production. IEA Bioenergy, Task 24-Energy from Biological Conversion of Organic Waste. Available online: http://task37.ieabioenergy.com/ (accessed on 15 November 2018).
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Mang, H.P.; Huba, E.M.; Gao, R.; Wang, X. Development and application of prefabricated biogas digesters in developing countries. Renew. Sustain. Energy Rev. 2014, 34, 387–400. [Google Scholar] [CrossRef]
- Migliori, M.M.; Catizzone, E.; Giordano, G.; Le Pera, A.; Sellaro, M.; Lista, A.; Zanardi, G.; Zoia, L. Pilot plant data assessment in anaerobic digestion of organic fraction of municipal waste solids. Processes 2019, 7, 54. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Feng, R.; Malik, A.; Khan, S.Z.; Shi, Y.; Bhutta, A.J.; Shah, A.H. Combining Microwave Pretreatment with iron oxide nanoparticles enhanced biogas and hydrogen yield from green algae. Processes 2019, 7, 24. [Google Scholar] [CrossRef]
- Freitas, R.X.A.; Borges, L.A.; Fernandes de Souza, H.; Colen, F.; Cangussu, A.S.R.; Sobrinho, E.M.; Fonseca, F.S.A.; Santos, S.H.S.; de Carvalho, B.M.A.; Brandi, I.V. Characterization of the primary sludge from pharmaceutical industry effluents and final disposition. Processes 2019, 7, 231. [Google Scholar] [CrossRef]
- Moeller, L.; Zehnsdorf, A. Process upsets in a full-scale anaerobic digestion bioreactor: Over-acidification and foam formation during biogas production. Energy Sustain. Soc. 2016, 6, 1–10. [Google Scholar] [CrossRef]
Advantages | Remarks | Reference |
---|---|---|
Provision of alternative to unsustainable deforestation | A major cause of deforestation is the use of wood as fuel for cooking and lighting. The use of household biogas digesters offers the advantage of using methane produced from the process for household cooking, which will ultimately mitigate the act of deforestation | [4,5,6] |
Serve as a means to treat human/animal wastes | This prevents environmental issues that would have been caused by the wastes when allowed to runoff water basins and drain into the oceans. The spread of pathogens is also prevented. | [7,8] |
Serve as a source of energy production in the form of biogas, which can be used as fuel for household cooking | The biogas from this process is similar to natural gas. When combusted, it produces minimal air pollution hence this type of energy production process is a net–energy type of production process. | [9,10] |
Effluents from digestion processes are rich in nutrients and can be used as crop fertilizers | The process of manufacturing commercial fertilizers is inconsistent with pricing, which has been blamed on rising oil prices and increasing demand for fertilizers in the global market. Effluents from anaerobic digestion are rich in nitrogen and phosphorus, rendering them useful as fertilizers for agricultural crops. | [8,11,12,13,14] |
Improves indoor air quality | Combustion of solid biomass fuels results in particulate matter emissions in indoor microenvironment, which causes respiratory infections and chronic lung diseases. | [9,15,16] |
The amount of bio solids to be deposited is much smaller than the amount resulting from the treatment process of anaerobic digestion | Most of the anaerobic digestion input feedstock is converted to CH4 and CO2. A relatively negligible amount of energy goes to cell growth. | [8,17] |
Serve as a means to empower local people, particularly women and girls | Small scale biogas digesters can empower local people, particularly women and girls who spend more time indoors cooking, and therefore, become disproportionately exposed to indoor air pollution from combustion of solid biomass fuels. They are more prone to develop chronic health issues that can be linked to exposure to particulate matter. | [9,18] |
Products | Composition (%) |
---|---|
CH4 | 50–57 |
CO2 | 25–50 |
N2 | 0–10 |
H2 | 0–1 |
H2S | 0–3 |
O2 | 0–2 |
Feedstock | CH4 Composition (%) |
---|---|
Cattle manure | 50–60 |
Pig manure | 60 |
Poultry waste | 68 |
Sheep dung | 65 |
Horse dung | 66 |
Grass | 84 |
Wheat straw | 78.5 |
Dried leaves | 58 |
Barley straw | 77 |
Beet leaves | 84.8 |
Corn silage | 54.5 |
Subject | Parameters Investigated | Remarks | Reference |
---|---|---|---|
AD inhibition | Reviewed state of research on AD inhibition | A wide variety of inhibitory substances like ammonia, heavy metals, sulfides, etc. are responsible for AD failure | [31] |
CH4 production from AD of solid substrates | Presented a detailed view of various methods for improvement of CH4 production | The methods included the use of additives, recycling of slurry and variation in operational parameters | [37] |
Temperature effects in AD modeling | Temperature effects on steady state gas generation levels | The net energy gain of sludge bed AD can peak at T < 35 °C | [66] |
Production efficiency of AD | Examined factors that could influence rise in overall biogas production and nutrient content of digestate | Addition of co-substrate influenced nutrient content of digestate, resulting in higher gas production than the use of sole substrate | [67] |
Applications of AD | Compared applications of AD with other techniques involving wastewater treatment plants | Found AD more useful for the treatment of soluble wastes than other techniques | [68] |
Acceleration of biogas production in AD | Determined how anaerobic bacteria can be used to convert CO2 to biomethane through biodegradation of organic waste in a sparged and an unsparged digester | The digester sparged with CO2 produced more CH4 than the unsparged digester. The sparging system facilitated the stripping of the CH4 produced by anaerobic bacteria | [69] |
AD of rice straw | Determined the effect of feeding and organic loading rates on CH4 production | Highest CH4 production was at one feed per 21 days at low organic loading rate | [70] |
AD foaming | Reviewed current issues related to AD foaming | Identified knowledge gaps with respect to the theory of foaming in AD processes | [71] |
Anaerobic treatment of dairy wastewater | Reviewed general features of dairy wastewater and degradation mechanisms of primary components as well as various treatments of dairy wastewater for enhanced AD process efficiency | Noted that high concentrations of suspended solids in dairy waste streams could adversely affect the performance of conventional anaerobic treatment processes | [72] |
Determination of anaerobic biodegradability of solid waste | Assessed various strategies and analytical methods for prediction of CH4 production and digestion kinetics | Concluded that spectrometry techniques such as UV-Vis remains the most promising analytical technique used for accurate prediction of CH4 production and kinetic parameters of forage digestibility | [73] |
AD of wastewater from olive oil mill | Evaluated olive oil mill wastewater valorization via AD for increased methane production and determined process kinetics | Concentrations of polyphenols up to 2 g L−1 will totally inhibit the AD process of olive oil mill wastewater but will increase CH4 yield by about 70% at low concentrations of polyphenol < 1 g L−1 | [74] |
AD of sludge and kitchen waste | Investigated the digestion process of excess sludge from wastewater treatment plants and kitchen wastes to determine process efficiency of co-digestion | Efficiency of co-digestions is higher than pure substrates at total solids ratio of 1: 4 (sludge: kitchen waste) | [75] |
AD of domestic sewage | Reviewed treatment of domestic sewage under hot climatic conditions and highlighted pre- and post-treatment steps to ensure efficient discharge and recycling/re-use/recovery | Integrating different treatment steps provides a sustainable technology for domestic sewage treatment under hot climatic conditions | [76] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. https://doi.org/10.3390/pr7080504
Anukam A, Mohammadi A, Naqvi M, Granström K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes. 2019; 7(8):504. https://doi.org/10.3390/pr7080504
Chicago/Turabian StyleAnukam, Anthony, Ali Mohammadi, Muhammad Naqvi, and Karin Granström. 2019. "A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency" Processes 7, no. 8: 504. https://doi.org/10.3390/pr7080504
APA StyleAnukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes, 7(8), 504. https://doi.org/10.3390/pr7080504