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Abstract: Decentralized supervisory structure has drawn much attention in recent years to address the
computational complexity in designing supervisory structures for large Petri net model. Many studies
are reported in the paradigm of automata while few can be found in the Petri net paradigm.
The decentralized supervisory structure can address the computational complexity, but it adds
the structural complexity of supervisory structure. This paper proposed a new method of designing
a global controller for decentralized systems of a large Petri net model for flexible manufacturing
systems. The proposed method can both reduce the computational complexity by decomposition
of large Petri net models into several subnets and structural complexity by designing a global
supervisory structure that can greatly reduce the cost at the implementation stage. Two efficient
algorithms are developed in the proposed method. Algorithm 1 is used to compute decentralized
working zones from the given Petri net model for flexible manufacturing systems. Algorithm 2
is used to compute the global controller that enforces the liveness to the decentralized working
zones. The ring assembling method is used to reconnect and controlled the working zones via
a global controller. The proposed method can be applied to large Petri nets size and, in general, it has
less computational and structural complexity. Experimental examples are presented to explore the
applicability of the proposed method.

Keywords: decentralized system; working zone; flexible manufacturing system; Petri nets;
global controller

1. Introduction

Due to the complexity of flexible manufacturing systems in the recent years, decentralized
systems control has drawn much attention worldwide by the researchers in the area of the discrete
event systems. Large-scale discrete event systems (DES) are modeled through the composition of
many smaller subsystems representing shared resources by the concurrent operations. The controlled
of large-size flexible manufacturing systems is tedious and time-consuming, perhaps it required
huge memory space due to a large number of its state space. Moreover, the analysis of complex
systems is very complicated and sometimes remains non-deterministic polynomial time (NP-hard).
To reduce the computational complexity and required memory space for the analysis and control
of large flexible manufacturing systems, we decomposed the systems into several working zones
(i.e., several sub-problems).

Several methods are developed in the literature to analyze the decentralized systems of DES-based
on the system applications. Most of the methods focus on the design of a decentralized controller
(i.e., modular controller) to supervise the operations of the DES. The DES find application in the
areas of automation [1,2], software development [3], computer engineering [4,5], communication
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systems [6], flexible manufacturing system [7,8] and transportation networks [9]. The main challenges
of the study of DES are the occurrence of deadlocks. Deadlocks can occur due to excessive use of shared
resources in the systems, which degrade the system performance of DES [10–17]. Three main tools
exist to design a decentralized supervisory structure for DES, namely, they are; graph theory [2,5,15,16],
automata [18–22] and Petri nets [14,16,23–27]. This paper focuses on the design of a global supervisory
structure for decentralized systems using the Petri nets paradigm.

In a Petri net paradigm, forbidden states are often specified by linear constraints. The concept of
generalized mutual exclusion constraints (GMECs) is often used to analyze and construct a supervisory
structure that enforces the liveness of the DES [25,27,28]. The emergence of large Petri nets model
for flexible manufacturing systems motivates the research to decompose the systems in a systematic
method. The work of Li in [29] developed a divide and conquer method to control the deadlocks.
The developed method is used to decompose the Petri net model into smaller subnets, in such a way
that the decomposition is done via resource transition circuits. Control places are designed using
siphon techniques for the decomposed subnets. This adds the structural complexity to the size of the
supervisory structure. Uzam et al. modified the divide and conquer method in [30] via an iterative
decomposition of the Petri net model. At each iteration, control places are designed for the decomposed
subnets using reachability techniques. The method suffers from the computational complexity since it
involved the computation of the reachability graph at each iteration.

A modular supervisory scheme for modeling and synthesis of supervisory agents using a Petri
net model is developed in [4]. These modular supervisors are conceived as operating independently,
each exercising control to satisfy its own specification. However, when all the modular supervisors
operate concurrently, they may result in conflict. To reduce the computational complexity for the design
of the supervisory structure, the work presented in [31] proposed two methods for the decentralized
supervisory structure. The first method considers the design of decentralized supervisory structure
using communication while assuming that all the transitions in the Petri net model are observable and
controllable. The second method considers the transformation of constraints that is not d-admissible
in the design of the decentralized supervisory structure with no communications. The solution is
obtained by solving integer linear programming (ILPP). The first method allows more reachable states
than the second method due to the advantage of unrestricted communications. Generating and solving
integer linear programming problem (ILPP) is computationally complex [32–35] and can limit the
application of the developed methods.

It is generally known that computation of a reachability graph is computationally complex
and sometimes NP-hard. To avoid the computation of the reachability graph, the authors in [17]
developed a new method of decentralized supervisory control for communication systems using
a Petri nets paradigm. The communication among the decentralized subnets are enforced in
a centralized environment. Ye et al. in [28] extended the works to flexible manufacturing systems that
emphasized the efficiency of the decomposition of Petri nets for flexible manufacturing systems.
The developed method designs a decentralized supervisory structure without transforming the
inadmissible constraints to admissible constraints. The communication constraints are incorporated
between the decentralized subnets. The decentralized supervisory structure is usually associated with
structural complexity, which require huge costs in the implementation stage. The computational and
structural complexity is addressed in the proposed paper. The former is achieved by decomposition of
Petri nets into a several subnets model while the latter is addressed using a global supervisory structure.

The study of [36] proposed a decomposition of a Petri net model through the use of local invariants
(place and transition invariants) computation since it is well-known that the invariants can help
to prove structural properties of Petri nets, i.e., boundedness, reversibility, liveness, and safeness.
This proposed paper utilized the use of P-invariants in the decomposition of a large Petri net model
and the operation for each decentralized subnet can be monitored using the global controller unlike
the work of Bourjij et al. in [36] that the global solution can only be found by the concatenation of the
subnets that has the same coupling power.
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In this paper, we proposed a new method to design a global supervisory structure of the
decentralized systems using Petri nets for flexible manufacturing systems. First, a subnet is computed
from the given Petri net model for a flexible manufacturing system. Second, the subnet model is
split into several decentralized working zones. The main contributions of the proposed paper are
summarized as follows: (i) two efficient algorithms are developed, the first algorithm is used to
compute the decentralized working zones from the subnet model, while the second algorithm is used
to compute the global controller; (ii) the proposed method can reduce the computational and structural
complexity through the use of global supervisory structure and (iii) the proposed method can be
applied to a complex system for the computation of the supervisory structure.

The ring assembling is used to reconnect and control the working zones via a global controller.
The global controller is computed and added to the decentralized working zones. When all the
decentralized working zones are reconnected via a global controller, the resulting Petri net model is live
maximally permissive behavior. Several experimental examples are used to explore the applicability
of the proposed method.

The remainder of this paper is organized as follows. Formal descriptions of Petri nets and notations
used in this paper are presented in Section 2. Section 3 provides the detail ideas for the computation of
decentralized working zones. Design of a global controller is presented in Section 4. Experimental
examples are provided in Section 5. Discussions are presented in Section 6. Finally, Section 7 concludes
this paper.

2. Preliminaries

A Petri net is a four-tuple N = (P, T, F, W), where P and T are finite and non-empty sets. P is
a set of places and T is a set of transitions with P ∩ T = ∅. F ⊆ (P× T) ∪ (T × P) is called a flow
relation of the net, represented by arcs with arrows from places to transitions or from transitions
to places. Places are graphically represented by circles while transitions by bars or square boxes.
W : (P× T) ∪ (T × P) → N is a mapping that assigns a weight to an arc: W(x, y) > 0 if (x, y) ∈ F,
and W(x, y) = 0, otherwise, where (x, y) ∈ (P× T)∪ (T× P) and N is the set of non-negative integers.
N = (P, T, F, W) is said to be ordinary, denoted as N = (P, T, F), if ∀ f ∈ F, W( f ) = 1. Let x ∈ P ∪ T
be a node in N = (P, T, F, W).

A marking of a Petri nets N describes the current state of the system. M(p) denotes the number of
tokens in place p. The presence of token in the Petri net structure makes the system to be dynamic. It is
essential to track the places that are marked at each reachable marking. A place p is said to be marked
at a marking M if M(p) > 0. Usually, we express the markings and vectors as a formal sum notation
or multiset for easy representation i.e., ∑p∈P M(p)p. Let us consider a simple example, assuming we
have a net system with places p1 to p7 formally represented as P = {p1, · · · , p7}. If we have a marking
that has one token in place p3 and two tokens in places p2 and p5, respectively, using multiset notation,
the marking can be written as 2p2 + p3 + 2p5 instead of (0 2 1 0 2 0 0). In summary, a marking (M) of
(N, M0) is a mapping from P to N.

Let us assume t ∈ T to be a transition in the Petri nets N. At any marking M, transition t is
enabled if ∀p ∈ •t, M(p) ≥ W(p, t). For easier representation and without any ambiguity, it can
be denoted as M[t〉. If the enable transition is fired, it leads the system into new reachable marking
M′. Formally, the tokens at each place in the new reachable marking can be tract as ∀p ∈ P, M′(p) =
M(p)−W(p, t) + W(t, p) and this can be denoted as M[t〉M′ in short.

Suppose that x is a node in the Petri net model i.e., x ∈ P ∪ T. The input (preset) of x is expressed
as •x = {y ∈ P ∪ T | (y, x) ∈ F} and its output (postset) is expressed as x• = {y ∈ P ∪ T | (x, y) ∈ F}.
The Petri net structure can be represented in matrix form and is called an incidence matrix. An incidence
matrix is obtained from the input and output matrices. The input incidence matrix is defined as
[D−] = W(p, t) and the output incidence matrix is defined as [D+] = W(t, p). Therefore, the incidence
matrix of the net is expressed as [D] = [D+]− [D−]. The incidence vector for a place p (transition t) in
the raw (column) incidence matrix can be represented as [D](p, ·) ([D](·, t)).
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A Petri net model (N, M0) is said to be in a deadlock state when none of its transitions can be
enabled at a marking M, i.e., @t ∈ T, M[t〉 holds. A Petri net model is deadlock free when some
of the reachable states can not be observed. In other words, a deadlock free is called live-lock and
can be expressed as ∀M ∈ R(N, M0), ∃t ∈ T, M0[t〉. (N, M0) is said to be live if all its reachable
states can return to its initial marking M0. Mathematically, it can be expressed as (N, M0) being live
if ∀M ∈ R(N, M0), ∀t ∈ T, ∃M′ ∈ R(N, M), M′[t〉M0. Let M and M′ be two markings in R(N, M0).
M A-covers M′ if ∀p ∈ PA, M(p) ≥ M′(p), which is denoted as M(p) ≥A M′(p).

Let σ be a transition sequence. The Parikh vector of σ, denoted by −→σ , is a column vector,
represented by −→σ =[#σ(t1), #σ(t2), . . . , #σ(t|T|)]T , where #σ(ti) denotes the number of occurrences of ti
in σ. σ∗ denote the set of all firing sequence in (N, M0). The notation ξ(σ∗) represents the vector firing
sequence σ∗ in (N, M0) mapping from (N, M0) to its decentralized subnet. A P-vector is a column
vector I : P→ Z, indexed by P, where Z = {. . . ,−2,−1, 0, 1, 2, . . .}. A P-vector I is a place invariant
if I 6= 0 and IT [D] = 0T . A T-vector is a column vector H : T → Z indexed by T. A T-vector H is
a transition invariant if [D]H =0 and H 6=0. The support of a place (transition) invariant I(H) is
denoted by ||I|| = {p|I(p) 6= 0} (||H|| = {t|H(t) 6= 0}). Let N+ denote the set of positive integers.

3. Petri Net Model with S3PR

Systems of simple sequential processes with resources (S3PR) are extensively used and adopted
in the analysis of FMSs [27,37,38]. This paper considers an S3PR class of Petri nets for flexible
manufacturing systems.

Definition 1. A system of simple sequential processes with resources (S3PR) is a Petri net N = (P, T, F),
satisfying [37]:

1. P = PA ∪ PR ∪ P0 is a partition of places with PA ∩ PR = ∅, PA ∩ P0 = ∅, and PR ∩ P0 = ∅;

(a) p0
i is called the process idle place of Ni. Elements in Pi

A and Pi
R are called operation and resource

places;
(b) Pi

A 6= ∅; Pi
R 6= ∅; p0

i ∈ P0; (Pi
A ∪ {p0

i }) ∩ Pi
R = ∅;

(c) ∀p ∈ Pi
A, ∀t ∈• p, ∀t′ ∈ p•, ∃rp ∈ Pi

R, •t ∩ Pi
R = t′• ∩ Pi

R = {rp};
(d) ∀r ∈ Pi

R, ••r ∩ Pi
A = r•• ∩ Pi

A 6= ∅, •r ∩ r• = ∅;
(e) ••(pi

0) ∩ Pi
R = (pi

0)
•• ∩ Pi

R = ∅;

2. T =
⋃m

i=1 Ti, with Ti ∩ Tj = ∅ for all i 6= j, is a set of transitions;
3. Ni is a strongly connected state machine, where Ni = (Pi

A ∪ {p0
i }, Ti, Fi) is the resulting net after the

places in Pi
R and related arcs are removed from Ni;

4. Any two Ni are composable when they share a set of common places. Every shared place must be
a resource place.

5. For p ∈ PA, ••(p) ∩ PR = {rp} where resource place rp is called the resource used by p.

Definition 2. Let (N, M0) be the Petri net model with N = (P, T, F), where P = PA ∪ PR ∪ P0. (N′, M0)

is said to be a subnet of (N, M0) with N′ = (P′, T′, F′) if P′ = P\P0, T′ = T, F′ = F\Q. Q ⊆ (P0 × T) ∪
(T× P0) is called a flow relation of the net, represented by an arc with an arrow from idle places to transitions
or transitions to idle places.

Definition 3. Resource r is said to be shared if ∃p, p′ ∈ (||Ir|| \ {r}), p ∈ PAi, p′ ∈ PAj, i 6= j. Let the shared
resource place denoted by r in (N, M0).

Definition 4. Let t ∈ T be the transition in (N′, M0). Transition t is said to be source transition if |t•| = 1
and is said to be sink transition if |•t| = 1. Let ts denote the source transition and tc denote the sink transition.
The sets of source and sink transition are denoted as ϑ = {t | t ∈ T, |t•| = 1} and Ψ = {t | t ∈ T, |t•| =
1}, respectively.
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Property 1. Every concurrent process has at least one source and sink transitions in (N, M0).

3.1. Decentralization of FMS into Working Zones

The analysis of a complex Petri net model for a flexible manufacturing system is hard and
time-consuming if it’s not NP-hard. The complex system can be addressed by dividing it into several
decentralized problems (subnet).

Definition 5. A subnet of a Petri net model is called a working zone denoted by Z = (Pq, Tq, Fq) if it satisfies
the following:

• Pq = ‖Ir‖, Pq = Pq
A ∪ Pq

R is a partition of places with Pq
A ∩ Pq

R = ∅. Pq
A and Pq

R is the set of activity and
resource places, respectively;

• Tq = {t | t ∈ T′, •‖Ir‖ ∪ ‖Ir‖•} is the set of transition associated with the minimal P-semiflow;
• ∀t ∈ T′, |•t| = |t•| = 1 is a state machine;
• Fq → (Pq × Tq) ∪ (Tq × Pq) is a flow relation simply represented by directed arcs;
• ∃r ∈ P′R, then M(r) ≥ 1;
• Z is strongly bounded.

Suppose that we have N′ = (P′, T′, F′) as a subnet from (N, M0) with N = (P, T, F). N′ consists
of a set of a decentralized working zone =1 = (Pq

1 , Tq
1 , Fq

1 ), =2 = (Pq
2 , Tq

2 , Fq
2 ), · · · , and =` = (Pq

` , Tq
` , Fq

` )

such that P′ = Pq
1 ∪ Pq

2 ∪ · · · ∪ Pq
` , T′ = Tq

1 ∪ Tq
2 ∪ · · · ∪ Tq

` , and F′ = Fq
1 ∪ Fq

2 ∪ · · · ∪ Fq
` . A transition

t ∈ T′ is a common transition if t belongs to =i and =j in N′, i, j ∈ {1, 2, · · · , `} and i 6= j. Let Td ⊆ T′

denote a set of common transitions from N′. With no ambiguity and easy representation, ∀t ∈ Td, t
can be rewritten as t′ belongs to =i and t′′ belongs to =j, where t′, t′′ s.t. [t〉 condition. Suppose that
=z = (Pq

z , Tq
z , Fq

z ) is a decentralized working zone from N′, where z ∈ {1, · · · , `} and ` is the number
of working zones. Dz is the incidence matrix of =z and each working zone can be represented as:

∀tj ∈ Tq
z , | ∑

1≤i≤n,1≤j≤m
Dz(pi, tj) |≤ 1. (1)

The places of each decentralized working zone form the support of P-invariants and can be
represented as a multiset

‖I‖ =
n

∑
i=1

pi ≥ 1, (2)

where n = |Pq
z | and m = |Tq

z |. Let ti ∈ T′z, i ∈ {1, · · · , m} be the transitions associated with the
places in the P-invariants. All places in the support of P-invariants are connected to its corresponding
transitions as

∀i ∈ {1, · · · , n}, ∀j ∈ {1, · · · , m}, ∃pi ∈ Pq
z , ∃tj ∈ Tq

z , (pi × tj) ∪ (tj × pi). (3)

Let D′ be the incidence matrix of the subnet model, and I be the P-invariant in the decentralized
working zone. Each decentralized working zone should satisfy Equation (4),

•‖I‖ = ‖I‖•, IT [D′] = 0T . (4)

Every working zone should contain at least one token after the decentralization, which implies
that there exists at least one resource place in each decentralized working zone being marked at the
initial marking M0, i.e., for every =z, z ∈ {1, · · · , `}

∃rs ∈ Pq
z , M(rs) 6= 0. (5)
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Theorem 1. Let N′ = {P′, T′, F′} be a subnet of (N, M0). N′ can be decentralized into minimal working
zones via Algorithm 1.

Algorithm 1 Decentralization of an FMS into working zones

Require: Petri net model of an FMS structure suffering from deadlock
Ensure: Decentralized working zones

1: Compute the subnet model (N′, M0) from (N, M0) using Definition 2
2: Compute the minimal P-invariant Ii in (N′, M0)

3: Compute the support of minimal P-invariant ‖Ii‖ from (N′, M0)

4: i ∈ {1, 2, · · · , n}, / ∗ n is the number of ‖Ii‖ in (N′, M0) ∗/
5: while i ≤ n do
6: if (‖I‖ satisfied equ. 1–5) then
7: Compute Tq

i from N′ using Definition 5
8: Compute Ti

d = Tq
i ∩ T′

9: Remove Zi = (Pq
i , Tq

i , Fq
i ) from N′, Pq

i ⊆ ‖Ii‖
10: P′ = P′\‖Ii‖
11: T′ ∪ Ti

d = T′\Tq
i

12: F′ = F′\Fq
i

/∗ Td is the set of common transition between the two successive Zi ∗ /
13: endif
14: N′ = (P′, T′, F′)
15: i = i + 1
16: end
17: Output the decentralized working zones

Proof. According to Definition 5, if P′ \ P′A 6= ∅, at least one share resource place (i.e., ∃r ∈ P′R)
therefore exists in (N′, M0). It is obvious that any shared resource place for a Petri net model of
an FMS forms a minimal P-semiflow ‖Ir‖ such that {r} = ‖Ir‖\P′A, P′A ∈ P′. Therefore, each minimal
P-semiflow can satisfy Equations (1)–(5) of Algorithm 1 and hence the theorem holds.

Theorem 2. Let (N′, M0) be a system with N′ = (P′, T′, F′) and =i be decentralized subnet from N′,
i ∈ {1, · · · , `}, where ` is the number of decentralized working zones. Let σ∗ and σ∗i denote all the transition
firing sequences in N′ and =i, respectively. ξi(σ

∗) = σ∗i if and only if for any two working zones =i and =j
satisfied T′i ∩ T′i 6= ∅, σ∗i |Ti∩Tj= σ∗j |T′i∩T′j

, for i, j ∈ {1, · · · , `} [28].

To minimize space and redundancy, we can refer the reader to the work of [28] for the proof
of Theorem 2. According to Theorem 2, both the structural and dynamic properties of subnet with
that of decentralized systems are preserved and equivalence for any transition firing sequence from
decentralized working zones that can be mapped into a subnet model.

3.2. Demonstrated Example

Let us assume that we consider a flexible manufacturing system shown in Figure 1a that produced
two different part types (goods). Machines M1, M2 and M3 can produce two different types of parts
(P1 and P2) in parallel. A robot R1 can load (unload) parts P1 (P2) from M1 to M2 (M2 to M1),
respectively. Similarly, the robot R2 can load part P2 from M2 to M1 and unload part P1 from M1 to
M2. The machines M1, M2 and M3 can only process one part at a time. Similarly, the robots R1 and
R2 can only process one part at a time. Parts P1 and P2 are considered in the production sequence
for a flexible manufacturing system through input/output buffers I1/O1 and I2/O2. Initially, it is
assumed that there are no parts in the system.
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The layout of flexible manufacturing systems shown in Figure 1b can be equivalently represented
using Petri nets as shown in Figure 2a. Places in the Petri nets shown in Figure 2a are partitioned
as P = P0 ∪ PA ∪ PR, where P0 = {p16, p17}, PR = {p11, · · · , p15} and PA = {p1, · · · , p10}. Places
p1, p2, p3, p4 and p5 represent the operations of M1, R1, M2, R2 and M3 for the production sequence
of part P1, respectively. Similarly, for the production sequence part P2, places p6, p7, p8, p9 and p10

represent the operations of M3, R2, M2, R1 and M1, respectively. Places p16 and p17 represent the I1/O1
and I2/O2 buffers, respectively, while places p11, p12, p13, p14 and p15 represent the shared resources of
M1, R1, M2, R2 and M3, respectively.

Robot 1

R1

Robot 2

R2

(a)

I1 M 1 R1 M 2 R2 M 3 O1

O2 M 1 R1 M 2 R2 M 3 I2

P1:

P2:

Buffer BufferMachine 1 Machine 2 Machine 3

I1/O1 I2/O2

M1 M2 M3

(b)

Figure 1. Flexible manufacturing layout.

p1

p2

p3

p4

p5 p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

M 1

R1

M 2

R2

M 3

t1

t2

t3

t4

t5

t6 t7

t8

t9

t10

t11

t12

(a)

p16 p1755

(a)

p1

p2

p3

p4

p5 p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

M 1

R1

M 2

R2

M 3

t1

t2

t3

t4

t5

t6 t7

t8

t9

t10

t11

t12

(b)

Figure 2. (a) Petri net model (N, M0); (b) a subnet model N = (N′, M0) with N′ = (P′, T′, F′).

The subnet N′ shown in Figure 2b has five minimal P-invariants: I1 = (1 0 0 0 0 0 0 0 0 1 1 0 0 0 0)T ,
I2 = (0 1 0 0 0 0 0 0 1 0 0 1 0 0 0)T , I3 = (0 0 1 0 0 0 0 1 0 0 0 0 1 0 0)T , I4 = (0 0 0 1 0 0 1 0 0 0 0 0 0 1 0)T ,
and I5 = (0 0 0 0 1 1 0 0 0 0 0 0 0 0 1)T . The support of minimal P-invariants are ‖I1‖ = {p1, p10, p11},
‖I2‖ = {p2, p9, p12}, ‖I3‖ = {p3, p8, p13}, ‖I4‖ = {p4, p7, p14} and ‖I5‖ = {p5, p6, p15}. The preset and
posset of P-invariants are •‖I1‖ = ‖I1‖• = {t1, t2, t11, t12}, •‖I2‖ = ‖I2‖• = {t2, t3, t10, t11}, •‖I3‖ =
‖I3‖• = {t3, t4, t9, t10}, •‖I4‖ = ‖I4‖• = {t4, t5, t8, t9} and •‖I5‖ = ‖I5‖• = {t5, t6, t7, t8}. The set of
common transition between P-invariants are T1

d = ‖I1‖• ∩ ‖I2‖• = {t2, t11}, T2
d = ‖I2‖• ∩ ‖I3‖• =

{t3, t10}, T3
d = ‖I3‖• ∩ ‖I4‖• = {t4, t9} and T4

d = ‖I4‖• ∩ ‖I5‖• = {t5, t8}. The working zones are
computed as shown in Figure 3, i.e.,=1 = (Pq

1 , Tq
1 , Fq

1 ) with Pq
1 = {p1, p10, p11} and Tq

1 = {t1, t2, t11, t12},
=2 = (Pq

2 , Tq
2 , Fq

2 ) with Pq
2 = {p2, p9, p12} and Tq

2 = {t2, t3, t10, t11}, =3 = (Pq
3 , Tq

3 , Fq
3 ) with Pq

3 =

{p3, p8, p13} and Tq
3 = {t3, t4, t9, t10}, =4 = (Pq

4 , Tq
4 , Fq

4 ) with Pq
4 = {p4, p7, p14} and Tq

4 = {t4, t5, t8, t9}
and =5 = (Pq

5 , Tq
5 , Fq

5 ) with Pq
5 = {p5, p6, p15} and Tq

5 = {t5, t6, t7, t8}.
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Figure 3. Decentralized working zones.

4. Design of a Global Controller

The global controller aims to reconnect and controlled the working zones of an FMS such that
it can enforce the liveness of the decentralized working zones. Moreover, the proposed method can
provide the liveness of the Petri net model while preserving more reachable states of the system.

4.1. Global Controller Using Ring Assembling

The decentralized working zones can be reconnected and controlled through the global controller
in a ring manner and we called such a process ring assembling. Ring assembling consists of a single
global controller that oversees the operations of all the working zones in an FMS. The controller can
perform the following functions: (i) it reconnects the working zones after decentralization, and (ii)
it enforces liveness to the overall working zones in an FMS. The global controller connecting the
working zones of an FMS decreases the structural complexity of the supervisory structure. The block
diagram for the supervisory control using ring assembling is shown in Figure 4, and its equivalent
representation using a Petri net model is depicted as shown in Figure 5.

Controller 

(Coordinator)

Working Zone (n-2)

Working Zone (n-1) Working Zone 3

Working Zone 2Working Zone n

Working Zone 1

Figure 4. Block diagram of global controllers using ring assembling.
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Figure 5. Petri net model with a global controller.

Let us consider the design of a global controller that controlled all the decentralized working
zones. Let =i = (P′i , T′i , F′i ), i ∈ {1, · · · , `} be decentralized working zones from N′ = (P′, T′, F′).
Let P′R be the set of resource places in N′ and P′i be the set of place for the decentralized system =i.
Let λi denote the characteristic activity place for each decentralized zone and can be represented as

∀i ∈ {1, · · · , `}, λi =
x

∑
j=1

M(pj)pj\M(rj)rj ≤ βG, (6)

where pj ∈ Pq
i and rj ∈ PR be the activity and resource place associated with the working zones =i,

i.e., i ∈ {1, · · · , `} respectively. βi is the initial marking of the decentralized zones. x = |Pq
i | is the

number of the activity places in =i. The overall characteristic activity place of the global controller is

`

∑
i=1

λi ≤ βi. (7)

Let Li be the marking of places in the characteristic activity place of =i and DLi denote the
incidence matrix of =i. Let C denote the global controller connected between the working zones
(i.e., =1, · · · ,=`) and DCi be the incidence matrix of =1 connected to the global controller. DCi can be
computed as

DCi = −LiDLi . (8)

The initial number of tokens in the controller can be determined by the initial number of tokens
in the characteristic activity place of the working zones associated with a decentralized controller i.e.,
if βi represents the initial marking of the decentralized working zone for i ∈ {1, · · · , `}, and βC denote
the initial marking of C, then the initial marking of the decentralized controller is

βC =
`

∑
i=1

βi. (9)

Finally, let D′C be the incidence matrix of the global controller. The incidence matrix of the global
controller connecting all the decentralized working zones is

D′C =
[

DC1 ] + · · ·+ [DC`
]

, (10)

where D′C has a dimension of 1× (2 ∗ |T′| − ∗|Ψ| − ∗|ϑ|), and |T′| is the number of transitions in the
subnet N′, while |Ψ| and |ϑ| are the number of sink and source transition, respectively.
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Theorem 3. The decentralized controller computed using Algorithm 2 can enforce liveness of the Petri net
model (Nc, Mc

0).

Algorithm 2 Computation of decentralized controller

Require: Petri net model (N, M0) of FMS structure suffering from deadlock
Ensure: Controlled Petri nets (Nc, Mc

0)

1: compute the subnet N′ of the Petri net model
2: compute the decentralized working zones using Algorithm 1 i.e., =i using Algorithm 1
3: for (1, `, i ++) do
4: compute λi
5: compute βi
6: end
7: computes the overall characteristic activity place for the global controller
8: computes the overall incidence matrix of the global controller D′C using Equation (10)
9: computes the initial marking of the global controller βC using Equation (9)

10: add the global controller to the working zones =i
11: Output the controlled Petri net model (Nc, Mc

0)

Proof. Since all the working zones forming a minimal P-semiflow with the global controller C exist,
and the places in the working zones constitute a minimal P-semiflow in (Nc, Mc

0), at each reachable
marking of (Nc, Mc

0), each working is marked and can’t lead the system into a deadlock region.

Proposition 1. Let ϑ and ϑ′ be the set of source transitions in (N′, M0) and (Nc, Mc
0), respectively. The set of

sink transition in (N′, M0) is equal to the set of sink transition in (Nc, Mc
0) i.e., ϑ = ϑ′.

Proof. Since the source transitions from (N′, M0) that are part of the common transition of the
decentralized working zones exist, i.e., ∃t ∈ ϑ, t /∈ Td. Moreover, both the P-invariants in (N′, M0)

and that of (Nc, Mc
0) are preserved, which lead the systems to have equal firing condition at the initial

markings. Perhaps, all of the transitions that can be enabled at the initial marking are source transitions.
Hence, we conclude that ϑ ⊆ ϑ′ or ϑ′ ⊆ ϑ holds.

Theorem 4. Let =i and =j be the decentralized working zones from N′ with =i = (Pq
i , Tq

i , Fq
i ) and =j =

(Pq
j , Tq

j , Fq
j ), ∀i, j ∈ {1, · · · , `}. Assume t is a common transition between the working zones =i and =j; t can

be expressed as t′i and t′′j belongs to =i and =j, respectively, if [t〉 ≡ [t′i〉, Tq
i ∩ Tq

j 6= ∅.

Proof. Suppose M∗ and M∗∗ are the markings generated from (Nc, Mc
0) at markings Mi and Mj by

firing transitions t′ and t′′, respectively. Let M′∗ be a marking after transition t fired from a marking
M′ of (N′, M0). We prove that M∗ ≥A M∗∗ is true.

Let M0 be the initial marking in (N′, M0) with N′ = (P′, T′, F′) and Mc
0 be the initial marking

of (Nc, Mc
0) with Nc = (PA ∪ PR ∪ {P0} ∪ C, T, F). Since at their initial markings ∑(pi∈P) M0(pi) ≡

∑(pi∈P) Mc
0(pi)\M(C), from Proposition 1, we know that the controlled Petri net model (Nc, Mc

0) and
the subnet model (N′, M0) contain the same set of sink (ϑ) and source (φ) transitions. It implies that
M0[ts〉M′ = Mc

0[t
s〉Mi is true. Similarly, it is also true for M0[ts〉M′ = Mc

0[t
s〉Mj.

We proceed to show that it can also be true at a certain marking by firing a sequence of transitions
for (N′, M0) that is mapped in (Nc, Mc

0). Let σ be the set of a transition sequence that is mapped from
(N′, M0) to (Nc, Mc

0). The firing of σ from the initial markings can lead to M0[ts〉Mi[σ〉 · · · [t〉M∗ and
Mc

0[t
s〉M′[σ〉 · · · [t〉M′∗, since all the minimal P-invariants of (N′, M0) and (Nc, Mc

0) are preserved and
are equal. This implies that the entire transition firing sequence σ of (N′, M0) can be traced in (Nc, Mc

0),
and subsequently leads M′∗ ≥A M∗ to hold. Similarly, it is true for M′∗ ≥A M∗∗. Consequently,
if M′∗ ≥A M∗ and M′∗ ≥A M∗∗ is true, it is definitely true for M∗ ≥A M∗∗.



Processes 2019, 7, 595 11 of 21

Let us consider the Petri net model of FMS shown in Figure 2. The Petri net model of FMS
consists of five working zones as computed by Algorithm 1. The characteristic activity places in =1

is p1 + p10 ≤ 1. Similarly, the characteristic activity places in =2, =3, =4 and =5 are p2 + p9 ≤ 1,
p3 + p8 ≤ 1, p4 + p7 ≤ 1 and p5 + p6 ≤ 1, respectively. The overall characteristic activity place for the
global controller is p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 ≤ 5. The incidence matrix of the
decentralized working zones are:

DC1 = −
p1 p10[ ]
1 1

t1 t′2 t′11 t12[ ]
1 −1 0 0 p1

0 0 1 −1 p10,

DC2 = −
p2 p9[ ]
1 1

t′′2 t′3 t′10 t′′11[ ]
1 −1 0 0 p2

0 0 1 −1 p9,

DC3 = −
p3 p8[ ]
1 1

t′′3 t′4 t′9 t′′10[ ]
1 −1 0 0 p3

0 0 1 −1 p8,

DC4 = −
p4 p7[ ]
1 1

t′′4 t′5 t′8 t′′9[ ]
1 −1 0 0 p4

0 0 1 −1 p7,

DC5 = −
p5 p6[ ]
1 1

t′′5 t6 t7 t′′8[ ]
1 −1 0 0 p5

0 0 1 −1 p6.

The constraints of the global controller connecting all the working zones are summarized as
shown in Table 1. The global controller C is responsible for connecting and controlled the operations of
the working zones =i. When all the decentralized working zones are connected via a global controller,
the overall Petri net model is live with maximally permissive behaviour. The advantage of the proposed
method is that it can be applied to complex systems. The complex systems can be easily addressed by
dividing the system into various subproblems. The overall controlled systems are shown in Figure 6.

Table 1. Overall decentralized controllers for the Petri net model are shown in Figure 2.

Characteristic Activity Place Ci Pre Post βC

p1 + p2 + p3 + p4 + p5 + p6+ C t′2, t′3, t′4, t′5, t6, t1, t′′2 , t′′3 , t′′4 , t′′5 5
p7 + p8 + p9 + p10 ≤ 5 t′′8 , t′′9 , t′′11, t12 t7, t′8, t′9, t′10, t′11

4.2. Computational Complexity

Algorithm 1 computes the decentralized working zones from (N′, M0) with N = (P′, T′, F′).
The algorithm is used to search and split up the P-invariant from (N, M0). Obviously, each P-invariant
is associated with the resource place in (N, M0). Let the number of resource places be n i.e., |PR| = n.
The “While” loop is executed n times to search for the P-invariants in (N, M0). Since the number
of resource places is less than the number of activity places in (N′, M0), therefore, in the worst case
scenario, we have n times to search the P-invariants that satisfy Equations (1)–(5). The complexity of
Algorithm 1 to decentralize the working zones from (N′, M0) in the worst case is O(n).
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Algorithm 2 is used to compute the global controller for all the decentralized zones of the
subnet model. The “For loop” is executed ` times to compute the characteristic activity places for the
decentralized working zones. Based on the fact that each decentralized working zone is associated
with the resource place of the Petri net model, the computational complexity of Algorithm 2 in the
worst case is therefore O(n`). In general, the computational complexity of the proposed method has
polynomial time complexity.
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Figure 6. Controlled Petri net model.

5. Experimental Examples

This section presents some experimental examples to show the applicability of the proposed
method. In each experimental example, the global controller can enforce the liveness of the Petri net
model with maximally permissive behavior.

Example 1. Let us consider the Petri net model of a flexible manufacturing system (FMS) shown in Figure 7.
The FMS consists of two concurrent processes. The places in the Petri net model are partitioned into three sets
as P = PA ∪ PR ∪ P0, where P0 = {p1, p8}, PR = {p13, · · · , p16} and PA = {p2, · · · , p7, p9, · · · , p12}.
Places p2, p3, p4, p5, p6 and p7 represent the operations of the production sequence of part P1, respectively.
Similarly, places p9, p10, p11 and p12 represent that of P2. Places p13, p14, p15 and p16 represent the shared
resources of the FMS. The Petri net model for an FMS shown in Figure 7 is prompt with deadlocks.

First, the set of sink and source transitions from the Petri net model shown in Figure 7 are
Ψ = {t8, t13} and ϑ = {t1, t4, t9}, respectively. The subnet model is computed by removing all the I/O
places in the Petri net model as shown in Figure 8 and then by applying Algorithm 1 to the subnet
model shown in Figure 8. The minimal place invariants in the subnet model shown in Figure 8 are
I1 = (0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0), I2 = (0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0), I3 = (0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0)
and I4 = (0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1)
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Figure 7. Petri net model for an FMS.

With their support, ‖I1‖ = {p2, p4, p12, p13}, ‖I2‖ = {p3, p5, p11, p14}, ‖I3‖ = {p6, p10},
and ‖I4‖ = {p7, p9, p16}, respectively. Using Equations (1)–(5), the working zones are =1 = (Pq

1 , Tq
1 , Fq

1 )

with Pq
1 = {p2, p4, p12, p13}, Tq

1 = {t1, t2, t4, t5}, Fq
1 ⊆ (Pq

1 × Tq
1 ) ∪ (Tq

1 × Pq
1 ); =2 = (Pq

2 , Tq
2 , Fq

2 ) with
Pq

2 = {p3, p5, p11, p14}, Tq
2 = {t2, t3, t5, t6}, Fq

2 ⊆ (Pq
2 × Tq

2 ) ∪ (Tq
2 × Pq

2 ); =3 = (Pq
3 , Tq

3 , Fq
3 ) with

Pq
3 = {p6, p10, p15}, Tq

3 = {t3, t6, t7, t10, t11}, Fq
3 ⊆ (Pq

3 × Tq
3 ) ∪ (Tq

3 × Pq
3 ) and =4 = (Pq

4 , Tq
4 , Fq

4 ) with
Pq

4 = {p7, p9, p16}, Tq
4 = {t7, t8, t9, t10}, Fq

4 ⊆ (Pq
4 × Tq

4 ) ∪ (Tq
4 × Pq

4 ). The decentralized working zones
are shown in Figure 9.

p7

p6

p3

p2 p4

p5

p10

p11

p12

t8

t7

t3

t2

t4

t5

t6
t11

t12

t13

p16

t9

t10

p15

p9

p13

p14

t1

Figure 8. A subnet model (N′, M0) for an FMS.

Third, the characteristic activity place for the working zones =1,=2,=3 and =4 are λ1 = p2 + p4 +

p12 ≤ 2, λ2 = p3 + p11 + p14 ≤ 1, λ3 = p6 + p10 + p15 ≤ 1 and λ4 = p7 + p9 + p16 ≤ 1, respectively.
The global controller is designed using the characteristic activity place for the working zones.

When the decentralized systems are connected to the global controller, the resultant Petri net
model shown in Figure 10 is live with maximally permissive behavior of 360 states as shown
in Table 2. Table 3 provides a comparison between the proposed method with the previous
methods in the literature. From the comparison Table 3, our proposed method can obtain minimal
supervisory structure.
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Figure 10. A controlled Petri net model (Nc, Mc
0).

Table 2. Behavior of the controlled Petri net model from the minimal to maximum initial marking.

k Reachable States Is It Optimal? Is It Live?

1 11 No Yes
βC = 5 2 54 No Yes

1 ≤ k ≤ βC 3 156 No Yes
4 288 No Yes
5 360 Yes Yes
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Table 3. Performance comparison of the proposed method with some of the available methods in
the literature.

Methods No. of Controllers No. of Control Arcs No. of Reachable States

[29] 5 28 151
[27] 5 28 151
[26] 6 30 360

Proposed method 1 32 360

Example 2. Suppose we consider a Petri net model for a flexible manufacturing system (FMS) shown in
Figure 11. The FMS consists of three concurrent processes. The places in the Petri net model can be represented as
P = PA ∪ PR ∪ P0, where P0 = {p1, p13, p14}, PR = {p20, · · · , p27} and PA = {p2, · · · , p12, p15, · · · , p19}.
Places p2, p3, and p4 represent the operations of the production sequence of part P1, respectively. Similarly,
places p5, p6, p7, p8, p9, p10, p11 and p12 represent that of P2. The places p15, p16, p17, p18 and p19 represent
the operations of the production sequence of part P3, respectively. Places p20, p21, p22, p23, p24, p25, p26 and p27

represent the shared resources. The Petri net model for an FMS shown in Figure 11 is prompt with deadlocks.
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Figure 11. Petri net model for an FMS.

First, the set of the sink and source transition from the Petri net model shown in Figure 11 are
Ψ = {t1, t5, t20} and ϑ = {t4, t10, t11, t15}, respectively. The subnet model is computed by removing all
the I/O places from the sink and source transitions in the Petri net model as shown in Figure 11 and
then, by applying Algorithm 1 on the Petri net model shown in Figure 12, the subnet model has eight
minimal place invariants.

The support of the minimal P-invariants are ‖I1‖ = {p2, p9, p20}, ‖I2‖ = {p3, p8, p21}, ‖I3‖ =

{p4, p7, p22}, ‖I4‖ = {p6, p16, p26}, ‖I5‖ = {p5, p15, p27}, ‖I6‖ = {p12, p17, p25}, ‖I7‖ = {p11, p18, p24}
and ‖I8‖ = {p10, p19, p23}. Using Equations (1)–(5), the working zones are =1 = (Pq

1 , Tq
1 , Fq

1 )

with Pq
1 = {p4, p7, p22}, Tq

1 = {t1, t2, t9, t10, }, Fq
1 ⊆ (Pq

1 × Tq
1 )∪(T

q
1 × Pq

1 ); =2 = (Pq
2 , Tq

2 , Fq
2 ) with

Pq
2 = {p3, p8, p21}, Tq

2 = {t2, t3, t8, t9}, Fq
2 ⊆ (Pq

2 × Tq
2 )∪(T

q
2 × Pq

2 ); =3 = (Pq
3 , Tq

3 , Fq
3 ) with Pq

3 =

{p4, p7, p22}, Tq
3 = {t3, t4, t7, t8}, Fq

3 ⊆ (Pq
3 × Tq

3 )∪(T
q
3 × Pq

3 ); =4 = (Pq
4 , Tq

4 , Fq
4 ) with Pq

4 = {p6, p16, p26},
Tq

4 = {t6, t7, t14, t16, t17}, Fq
4 ⊆ (Pq

4 × Tq
4 )∪(T

q
4 × Pq

4 ); =5 = (Pq
5 , Tq

5 , Fq
5 ) with Pq

5 = {p5, p15, p27},
Tq

5 = {t5, t6, t15, t16}, Fq
5 ⊆ (Pq

5 × Tq
5 )∪(T

q
5 × Pq

5 ); =6 = (Pq
6 , Tq

6 , Fq
6 ) with Pq

6 = {p12, p17, p25},
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Tq
6 = {t13, t14, t17, t18}, Fq

6 ⊆ (Pq
6 × Tq

6 )∪(T
q
6 × Pq

6 ); =7 = (Pq
7 , Tq

7 , Fq
7 ) with Pq

7 = {p11, p18, p24},
Tq

7 = {t12, t13, t18, t19}, Fq
7 ⊆ (Pq

7 × Tq
7 )∪(T

q
7 × Pq

7 ) and =8 = (Pq
8 , Tq

8 , Fq
8 ) with Pq

8 = {p10, p19, p23},
Tq

8 = {t11, t12, t19, t20}, Fq
8 ⊆ (Pq

8 × Tq
8 )∪(T

q
8 × Pq

8 ). The working zones are shown in Figure 13.
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Figure 12. A subnet model for (N′, M0).

Third, the characteristic activity place associated with the working zones =1, =2, =3, =4, =5, =6,
=7 and =8, respectively, are p2 + p9 + p20 ≤ 1, p3 + p8 + p21 ≤ 2, p4 + p7 + p22 ≤ 1, p6 + p16 + p26 ≤ 1,
p5 + p15 + p27 ≤ 1, p12 + p17 + p25 ≤ 2, p11 + p18 + p24 ≤ 2 and p10 + p19 + p23 ≤ 1. The global
controller is computed using the characteristic activity places, and its detailed behaviour of the global
controller is presented in Table 4.
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Figure 13. Decentralized subnets of Petri net model for FMS.
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Table 4. Behaviour of the controlled Petri net model from the minimal to maximum initial marking.

k Reachable States Is It Optimal? Is It Live?

1 17 No Yes
2 138 No Yes

βC = 11 3 712 No Yes
4 2615 No Yes

1 ≤ k ≤ βC 5 7251 No Yes
6 15,730 No Yes
7 27,392 No Yes
8 39,240 No Yes
9 47,736 No Yes

10 51,624 No Yes
11 52,488 Yes Yes

When the decentralized systems are connected to the global controller, the resultant Petri net
model shown in Figure 12 is live with maximally permissive behavior of 52,488 states. Table 5 provides
a comparison between our proposed method with the previous methods in the literature. According to
the table shown in 5, our proposed method can obtain only one controlled place to enforce the liveness
of the Petri net model shown in Figure 12. The controlled Petri nets are presented in Figure 14.
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Figure 14. Controlled Petri net (Nc, Mc
0) model using a global controller.
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Table 5. Performance comparison of the proposed method with some of the available methods in
the literature.

Methods No. of Controllers No. of Control Arcs No. Reachable States

[27] 15 45 35,254
[29] 12 56 35,254
[26] 6 56 52,488

Proposed method 1 54 52,488

6. Discussion

The proposed method reduces the computational complexity when compared with the traditional
method available in the literature as it avoids the computation of the reachability graph that leads to
state explosion problems. Our proposed method utilized the structural analysis to decompose the Petri
net model into working zones and later design a global controller for the decentralized working zones
without solving integer linear programming problems (ILLPs) as adopted mostly in the literature.
The ILLP method cannot solve the large sized Petri nets because it generates a lot of variables and it
is NP-hard.

A supervisor is said to have less structural complexity when it has less control places that can
be added to the uncontrolled Petri net model. From Table 3 and 5 of our proposed manuscript, our
proposed method only has one control place with 32 and 54 control arcs, respectively, when compared
with the existing policy in the literature. It shows that our proposed method has less structural
complexity. The advantage derived from having a single controller is to reduce the structural complexity
and henceforth reduce the cost of the implementation and maintenance when validated. The proposed
method can work on an S3PR Petri net for flexible manufacturing systems more specifically for the
robotic assembling line cell and transportation systems.

An assembling line cell manufacturing usually processed parts in different work zones. Parts are
added through the input/output (buffer) to the first work zone in the concurrent process to add
a semi-finished good (processed the part) and then move it to the next immediate next working zone
for further processing. Similarly, this procedure continues until all the work zones have processed the
parts in sequence along the concurrent process of the Petri net model. However, a system with multiple
concurrent processes exists in real assembling cells such as the one we model in this proposed paper.
The activity places from different processes of the Petri net model can process parts simultaneously
from the first work zone to the last working zone in the assembling line cell.

Our proposed method can work on intelligent transportation systems such as an automatic guided
vehicle (AGV), modern railways, traffic signal control systems, and parking guidance and information
systems. The AGVs work based on working zone areas to avoid collision and deadlocks and to enhance
the effectiveness of the systems. In a system of multiple AGVs, each AGV has its assigned working
zones that can move to deliver goods to the specified station freely without coincidence to another AGV
in the systems. Modern railway stations have multiple railway lines with various trains in the systems.
To avoid deadlocks in the systems, each train has assigned working zone areas that can operate from
one station to the next available station until it reaches a final destination. Similarly, traffic signal
control systems and parking guidance systems work based on working zone areas. In traffic control,
the working zones are the lanes of the road control by the traffic lamp while, in the car parking systems,
the working zones are on the floor level of the systems.

7. Conclusions

This paper presents a new method for designing a global supervisory structure for decentralized
systems using a Petri net model with an S3PR structure. The proposed method developed two
algorithms. First, Algorithm 1 is used to compute the decentralized working zones from the subnet
model N′. Algorithm 2 is used to design the global controller for the decentralized working zones
computed by Algorithm 1. A ring assembling method is presented to design the global controller for
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the decentralized working zones that are responsible for reconnecting and controlling the operations
of all the decentralized systems. The proposed method has these advantages: (i) it can be applied
to a complex Petri net model for flexible manufacturing systems based on the fact that the proposed
method can divide the system into several sub-problems; (ii) it has less computational complexity for
the computation of the global controller; and (iii) the proposed method can obtain a minimal number
of decentralized controllers to enforce liveness of the uncontrolled Petri net model.
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