Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics
Abstract
:1. Introduction
2. Components of NEs (NEs)
2.1. Oil and Aqueous Phase
2.2. Surfactants/Emulsifiers
3. Properties
4. Formation of NEs
4.1. High Energy Emulsification Methods
4.1.1. High-Pressure Homogenization
4.1.2. Microfluidization
4.1.3. Ultrasonic Emulsification
4.1.4. Nanoparticles
4.1.5. High Shear Mixers
4.2. Low Energy Emulsification Methods
4.2.1. Phase Inversion Temperature Method
4.2.2. Phase Inversion Composition Method
4.2.3. Spontaneous Emulsification
4.2.4. Solvent Displacement Method
5. Advantages and Disadvantages
6. Application of NEs in Industry
6.1. Food Industry
6.2. Cosmetics
6.3. Drug Delivery
6.3.1. NEs in Anti-Cancer Treatment
6.3.2. NEs in Vaccine Delivery
6.3.3. NEs in Anti-Inflammatory Treatment
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Mao, L.; Xu, D.; Yang, J.; Yuan, F.; Gao, Y.; Zhao, J. Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol. Biotechnol. 2009, 47, 336–342. [Google Scholar]
- Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A.; Bou-Chacra, N.A. Nanoemulsion: Process selection and application in cosmetics—A review. Int. J. Cosmet. Sci. 2016, 38, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, M.Y.; Yurtov, E.V. Nanoemulsions: The properties, methods of preparation and promising applications. Russ. Chem. Rev. 2012, 81, 21–43. [Google Scholar] [CrossRef]
- Devarajan, V.; Ravichandran, V. Nanoemulsions: As modified drug delivery tool. Pharm. Glob. Int. Journey Compr. Pharm. 2011, 02, 1. Available online: http://journaldatabase.info/articles/review_nanoemulsions_as_modified_drug.html (accessed on 29 May 2019).
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Controlling and predicting droplet size of nanoemulsions: Scaling relations with experimental validation. Soft Matter 2016, 12, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-C.; Huang, D.-W.; Wang, C.-C.R.; Yeh, C.-H.; Tsai, J.-C.; Huang, Y.-T.; Li, P.-H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 2018, 26, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Mulia, K.; Putri, G.A.; Krisanti, E. Encapsulation of Mangosteen Extract in Virgin Coconut Oil Based Nanoemulsions: Preparation and Characterization for Topical Formulation. Mater. Sci. Forum 2018, 929, 234–242. [Google Scholar] [CrossRef]
- Jesus, F.L.M.; de Almeida, F.B.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Kelmann, R.G.; Carvalho, J.C.T.; Lira-Guedes, A.C.; et al. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae) Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity. Evid. Based. Complement. Alternat. Med. 2017, 2017, 6756793. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 2015, 188, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Li, Y.; McClements, D.J.; Xiao, H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 2012, 132, 799–807. [Google Scholar] [CrossRef]
- Anjali, C.; Sharma, Y.; Mukherjee, A.; Chandrasekaran, N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 2012, 68, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.M.; Cornelio, G.H.; Lorenzo, C.C.; Levy, J.P.; Reed, R.A.; Liu, L.; Hall, F.L. First clinical experience using a “pathotropic” injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer. Int. J. Oncol. 2004, 24, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Yan, X.; Li, B.; Li, Y. Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. Eur. food Res. Technol. 2014, 2014. 239, 1077–1085. [Google Scholar] [CrossRef]
- Macedo, J.P.F.; Fernandes, L.L.; Formiga, F.R.; Reis, M.F.; Nagashima Júnior, T.; Soares, L.A.L.; Egito, E.S.T. Micro-emultocrit technique: A valuable tool for determination of critical HLB value of emulsions. AAPS PharmSciTech 2006, 7, E146–E152. [Google Scholar] [CrossRef]
- Mahdi Jafari, S.; He, Y.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int. J. Food Prop. 2006, 9, 475–485. [Google Scholar] [CrossRef]
- Wang, Z.; Neves, M.A.; Isoda, H.; Nakajima, M. Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Components. Japan J. Food Eng. 2015, 16, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Savardekar, P.; Bajaj, A. International Journal of Research in Pharmacy and Chemistry Nanoemulsions-a Review. Ijrpc 2016 2016, 6, 312–322. [Google Scholar]
- Anton, N.; Benoit, J.-P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release 2008, 128, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Mehrnia, M.; Jafari, S.; Makhmal-zadeh, B.S.; Maghsoudlou, Y. Crocin Loaded Nano-emulsions: Factors Affecting Emulsion properties in Spontaneous Emulsification. Int. J. Biol. Macromol. 2015, 2015. 84, 261–267. [Google Scholar] [CrossRef]
- Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, P.; Feng, J.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Garcia, M.J.; Azemar, N.; Solans, C. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J. Colloid Interface Sci. 2005, 285, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Bisten, A.; Schuchmann, H. Optical measuring methods for the investigation of high-pressure homogenisation. Processes 2016, 4, 41. [Google Scholar] [CrossRef]
- Donsì, F.; Sessa, M.; Ferrari, G. Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Ind. Eng. Chem. Res. 2011, 51, 7606–7618. [Google Scholar] [CrossRef]
- Gall, V.; Runde, M.; Schuchmann, H. Extending applications of high-pressure homogenization by using simultaneous emulsification and mixing (SEM)—An overview. Processes 2016, 4, 46. [Google Scholar] [CrossRef]
- Yong, A.P.; Islam, M.A.; Hasan, N. A review: Effect of pressure on homogenization. Sigma J. Eng. Nat. Sci. Fen Bilim. Derg. 2017, 35, 1–22. [Google Scholar]
- Kissling, K.; Schütz, S.; Piesche, M. Numerical investigation on the deformation of droplets in high-pressure homogenizers. In High Performance Computing in Science and Engineering’10; Springer: Berlin/Heidelberg, Germany, 2011; pp. 287–294. [Google Scholar]
- Håkansson, A.; Trägårdh, C.; Bergenståhl, B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model. Food Hydrocoll. 2009, 23, 1177–1183. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. 1), S131–S155. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Fryd, M.M.; Mason, T.G. Advanced Nanoemulsions. Annu. Rev. Phys. Chem. 2012, 63, 493–518. [Google Scholar] [CrossRef]
- Sharma, N.; Mishra, S.; Sharma, S.; Deshpande, R.D.; Kumar Sharma, R. Preparation and Optimization of Nanoemulsions for targeting Drug Delivery. Int. J. Drug Dev. Res. 2013, 5, 37–48. [Google Scholar]
- Maali, A.; Mosavian, M.T.H. Preparation and Application of Nanoemulsions in the Last Decade (2000–2010). J. Dispers. Sci. Technol. 2013, 34, 92–105. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control 2014, 37, 292–297. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Canselier, J.P.; Delmas, H.; Wilhelm, A.M.; Abismaïl, B. Ultrasound emulsification—An overview. J. Dispers. Sci. Technol. 2002, 23, 333–349. [Google Scholar] [CrossRef]
- Gaikwad, S.G.; Pandit, A.B. Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason. Sonochem. 2008, 15, 554–563. [Google Scholar] [CrossRef]
- Kaci, M.; Arab-Tehrany, E.; Desjardins, I.; Banon-Desobry, S.; Desobry, S. Emulsifier free emulsion: Comparative study between a new high frequency ultrasound process and standard emulsification processes. J. Food Eng. 2017, 194, 109–118. [Google Scholar] [CrossRef]
- Kobayashi, D.; Hiwatashi, R.; Asakura, Y.; Matsumoto, H.; Shimada, Y.; Otake, K.; Shono, A. Effects of operational conditions on preparation of oil in water emulsion using ultrasound. Phys. Procedia 2015, 70, 1043–1047. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. Comparison of batch and continuous ultrasonic emulsification processes. J. Food Eng. 2015, 167, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Nakabayashi, K.; Fuchigami, T.; Atobe, M. Tandem acoustic emulsion, an effective tool for the electrosynthesis of highly transparent and conductive polymer films. Electrochim. Acta 2013, 110, 593–598. [Google Scholar] [CrossRef]
- Machado, A.H.E.; Lundberg, D.; Ribeiro, A.J.; Veiga, F.J.; Lindman, B.; Miguel, M.G.; Olsson, U. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Langmuir 2012, 28, 4131–4141. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.J.; Bararnia, H.; Anand, S. Synthesizing Pickering Nanoemulsions by Vapor Condensation. ACS Appl. Mater. Interfaces 2018, 10, 21746–21754. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed. 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Primo, F.L.; Michieleto, L.; Rodrigues, M.A.M.; Macaroff, P.P.; Morais, P.C.; Lacava, Z.G.M.; Bentley, M.V.L.B.; Tedesco, A.C. Magnetic nanoemulsions as drug delivery system for Foscan®: Skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer. J. Magn. Magn. Mater. 2007, 311, 354–357. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Paul, E.L.; Atiemo-Obeng, V.A.; Kresta, S.M. (Eds.) Rotor–Stator Mixing Devices in Handbook of Industrial Mixing:Science and Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 479–505. Available online: https://www.google.com/search?client=firefox-b-d&biw=1366&bih=654&ei=dM5eXcWcI6Ov8QPs67SgCQ&q=Rotor–stator+mixing+devices%2Cin%3AE.L.Paul%2CV.A.Atiemo-Obeng%2CS.M.Kresta%28Eds.%29%2CHandbook+of+Industrial+Mixing%3AScience+and+Practice%2CJohn+Wiley (accessed on 23 August 2019).
- Zhang, J.; Xu, S.; Li, W. Chemical Engineering and Processing: Process Intensification; Elsevier B.V.: Amsterdam, The Netherlands; Volume 57–58, Available online: https://www.academia.edu/7354436/High_shear_mixers_A_review_of_typical_applications_and_studies_on_power_draw_flow_pattern_energy_dissipation_and_transfer_properties (accessed on 23 May 2019).
- Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 2001, 17, 2076–2083. [Google Scholar] [CrossRef]
- Porras, M.; Solans, C.; Gonzalez, C.; Gutierrez, J.M. Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 324, 181–188. [Google Scholar] [CrossRef]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014, 142, 57–63. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & nanoemulsion formation. Food Hydrocoll. 2012, 26, 268–276. [Google Scholar]
- Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015, 171, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 2013, 20, 338–344. [Google Scholar] [CrossRef]
- Roger, K.; Cabane, B.; Olsson, U. Formation of 10− 100 nm size-controlled emulsions through a sub-PIT cycle. Langmuir 2009, 26, 3860–3867. [Google Scholar] [CrossRef] [PubMed]
- Astaraki, A.M. The effect of concentration of surfactant and electrolyte on the pit and droplet sizes nanoemulsions of n-dodecane in water. Russ. J. Appl. Chem. 2016, 89, 84–89. [Google Scholar] [CrossRef]
- Izquierdo, P.; Esquena, J.; Tadros, T.F.; Dederen, C.; Garcia, M.J.; Azemar, N.; Solans, C. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 2002, 18, 26–30. [Google Scholar] [CrossRef]
- Yu, L.; Li, C.; Xu, J.; Hao, J.; Sun, D. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature. Langmuir 2012, 28, 14547–14552. [Google Scholar] [CrossRef] [PubMed]
- Solè, I.; Pey, C.M.; Maestro, A.; González, C.; Porras, M.; Solans, C.; Gutiérrez, J.M. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010, 344, 417–423. [Google Scholar] [CrossRef]
- Shinoda, K.; Saito, H. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J. Colloid Interface Sci. 1968, 26, 70–74. [Google Scholar] [CrossRef]
- Mishra, R.K.; Soni, G.C.; Mishra, R.P. A Review article: On Nanoemulsion. World J. Pharm. Pharm. Sci. 2014, 3, 258–274. [Google Scholar]
- Perazzo, A.; Preziosi, V.; Guido, S. Phase inversion emulsification: Current understanding and applications. Adv. Colloid Interface Sci. 2015, 222, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Maestro, A.; Solè, I.; González, C.; Solans, C.; Gutiérrez, J.M. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J. Colloid Interface Sci. 2008, 327, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Lippacher, A.; Müller, R.H.; Mäder, K. Liquid and semisolid SLNTM dispersions for topical application: Rheological characterization. Eur. J. Pharm. Biopharm. 2004, 58, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Vauthier, C.; Ponchel, G. Polymer Nanoparticles for Nanomedicines; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 3319414194. [Google Scholar]
- Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Celecoxib Nanoemulsion for Transdermal Drug Delivery: Characterization and In Vitro Evaluation. J. Dispers. Sci. Technol. 2009, 30, 834–842. [Google Scholar] [CrossRef]
- Nantarat, T.; Chansakaow, S.; Leelapornpisid, P. Optimization, characterization and stability of essential oils blend loaded nanoemulsions by PIC technique for anti-tyrosinase activity. Int. J. Pharm. Pharm. Sci. 2015, 308–312. [Google Scholar]
- Solans, C.; Solé, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012, 17, 246–254. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1359029412000787 (accessed on 29 May 2019). [CrossRef]
- Taylor, P.; Ottewill, R.H. The formation and ageing rates of oil-in-water miniemulsions. Colloids Surf. A Physicochem. Eng. Asp. 1994, 88, 303–316. Available online: https://www.sciencedirect.com/science/article/abs/pii/0927775794028532 (accessed on 24 August 2019). [CrossRef]
- McClements, D.J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: Nutraceuticals and pharmaceuticals. Ther. Deliv. 2013, 4, 841–857. [Google Scholar] [CrossRef]
- Sadurni, N.; Solans, C.; Azemar, N.; Garcia-Celma, M.J. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur. J. Pharm. Sci. 2005, 26, 438–445. [Google Scholar] [CrossRef]
- Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm. 2004, 280, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Solans, C.; Morales, D.; Homs, M. Spontaneous emulsification. Curr. Opin. Colloid Interface Sci. 2016, 22, 88–93. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Vauthier, C.; Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm. Res. 2009, 26, 1025–1058. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Satayanarayanaand; Kumar, G.V. Nanoemulsion—A method to improve the solubility of lipophilic drugs. Pharmanest 2010, 2, 72–83. Available online: https://www.banglajol.info/index.php/ICPJ/article/view/10535 (accessed on 24 August 2019).
- Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods. In Precision Medicine Powered by pHealth and Connected Health; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 62, pp. 317–322. [Google Scholar]
- Yuan, Y.; Gao, Y. Characterization and stability evaluation of b -carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 41 2008, 41, 61–68. [Google Scholar] [CrossRef]
- Qian, C.; Mcclements, D.J. Food Hydrocolloids Formation of nanoemulsions stabilized by model food-grade emulsi fi ers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Lee, L.; Norton, I.T. Comparing droplet breakup for a high-pressure valve homogeniser and a Microfluidizer for the potential production of food-grade nanoemulsions. J. Food Eng. 2013, 114, 158–163. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef]
- Li, P.; Chiang, B. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef]
- Ren, G.; Sun, Z.; Wang, Z.; Zheng, X.; Xu, Z.; Sun, D. Journal of Colloid and Interface Science Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J. Colloid Interface Sci. 2019, 540, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Mereddy, R.; Li, L.; Sultanbawa, Y. Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, N.; Jose García-Celma, M.; Escribano, E.; Nolla, J.; Llinàs, M.; Basri, M.; Solans, C.; Esquena, J.; Tadros, T.F. Formation of Nanoemulsion Containing Ibuprofen by PIC Method for Topical Delivery. Mater. Today Proc. 2018, 5, S172–S179. Available online: https://www.sciencedirect.com/science/article/pii/S2214785318320194 (accessed on 29 May 2019). [CrossRef]
- Kaci, M.; Belhaffef, A.; Meziane, S.; Dostert, G.; Menu, P.; Velot, É.; Desobry, S.; Arab-Tehrany, E. Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids Surfaces B Biointerfaces 2018, 167, 165–175. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0927776518302145 (accessed on 29 May 2019). [CrossRef] [PubMed]
- Bakshi, P.; Jiang, Y.; Nakata, T.; Akaki, J.; Matsuoka, N.; Banga, A.K. Formulation Development and Characterization of Nanoemulsion-Based Formulation for Topical Delivery of Heparinoid. J. Pharm. Sci. 2018, 107, 2883–2890. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.Y.; Yew, M.Y.; Lee, S.Y.; Rathbone, M.J.; Gan, S.N.; Coombes, A.G.A. In Vitro Evaluation of Novel Phenytoin-Loaded Alkyd Nanoemulsions Designed for Application in Topical Wound Healing. J. Pharm. Sci. 2017, 106, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. Available online: https://www.sciencedirect.com/science/article/pii/S0268005 × 14002549 (accessed on 26 March 2019). [CrossRef]
- Rebolleda, S.; Sanz, M.T.; Benito, J.M.; Beltrán, S.; Escudero, I.; González San-José, M.L. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem. 2015, 167, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Barradas, T.N.; de Campos, V.E.B.; Senna, J.P.; dos Santos Cerqueira Coutinho, C.; Tebaldi, B.S.; de Holanda e Silva, K.G.; Mansur, C.R.E. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 480, 214–221. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0927775714009182 (accessed on 30 May 2019). [CrossRef]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, K. Importance of Surface Energy in Nanoemulsion. In Nanoemulsions—Properties, Fabrications and Applications; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/online-first/importance-of-surface-energy-in-nanoemulsion (accessed on 23 August 2019).[Green Version]
- Kadappan, A.S.; Guo, C.; Gumus, C.E.; Bessey, A.; Wood, R.J.; McClements, D.J.; Liu, Z. The Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies. Mol. Nutr. Food Res. 2018, 62, 1700836. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.B.; Shenoy, D.B.; Amiji, M.M. Nanoemulsion Formulations for Improved Oral Delivery of Poorly Soluble Drugs. TechConnect Briefs 2006, 1, 475–478. Available online: https://briefs.techconnect.org/papers/nanoemulsion-formulations-for-improved-oral-delivery-of-poorly-soluble-drugs/ (accessed on 4 September 2019).
- Gurpret, K.; Singh, S.K. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Rutvij, J.P.; Gunjant, J.P.; Bharadia, P.D.; Pandya, V.M. Nanoemulsion: An advanced concept of dosage form. Int. J. Pharm. Cosmetol. 2011, 1, 122–133. [Google Scholar]
- Kim, C.K.; Cho, Y.J.; Gao, Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release 2001, 70, 149–155. [Google Scholar] [CrossRef]
- Lovelyn, C.; Attama, A.A.; Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 02, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, N.; Zúñiga, R.N.; Arancibia, C. Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. LWT 2019, 111, 760–766. [Google Scholar] [CrossRef]
- Gundewadi, G.; Sarkar, D.J.; Rudra, S.G.; Singh, D. Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens. Ind. Crops Prod. 2018, 125, 95–104. [Google Scholar] [CrossRef]
- Farshi, P.; Tabibiazar, M.; Ghorbani, M.; Mohammadifar, M.; Amirkhiz, M.B.; Hamishehkar, H. Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Biosci. 2019, 28, 49–56. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Gu, J.; McClements, D.J. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll. 2016, 61, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci. 2019, 28, 57–65. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Bhargava, K.; Conti, D.S.; da Rocha, S.R.P.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq. 2018, 268, 734–742. [Google Scholar] [CrossRef]
- Maurya, V.K.; Aggarwal, M. A phase inversion based nanoemulsion fabrication process to encapsulate vitamin D3 for food applications. J. Steroid Biochem. Mol. Biol. 2019, 190, 88–98. [Google Scholar] [CrossRef]
- Borba, C.M.; Tavares, M.N.; Macedo, L.P.; Araújo, G.S.; Furlong, E.B.; Dora, C.L.; Burkert, J.F.M. Physical and chemical stability of β-carotene nanoemulsions during storage and thermal process. Food Res. Int. 2019, 121, 229–237. [Google Scholar] [CrossRef]
- Seibert, J.B.; Bautista-Silva, J.P.; Amparo, T.R.; Petit, A.; Pervier, P.; dos Santos Almeida, J.C.; Azevedo, M.C.; Silveira, B.M.; Brandão, G.C.; de Souza, G.H.B.; et al. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem. 2019, 287, 61–67. [Google Scholar] [CrossRef]
- Arredondo-Ochoa, T.; García-Almendárez, B.E.; Escamilla-García, M.; Martín-Belloso, O.; Rossi-Márquez, G.; Medina-Torres, L.; Regalado-González, C. Physicochemical and antimicrobial characterization of beeswax–starch food-grade nanoemulsions incorporating natural antimicrobials. Int. J. Mol. Sci. 2017, 18, 2712. [Google Scholar] [CrossRef]
- Mohammad, S.; Gharibzahedi, T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar]
- Zhang, L.; Zhang, F.; Fan, Z.; Liu, B.; Liu, C.; Meng, X. DHA and EPA nanoemulsions prepared by the low-energy emulsification method: Process factors influencing droplet size and physicochemical stability. Food Res. Int. 2019, 121, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Hong, S.J.; Garcia, C.V.; Lee, S.B.; Shin, G.H.; Kim, J.T. Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J. Food Eng. 2019, 259, 12–20. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2019. [Google Scholar] [CrossRef]
- Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H.R.; Qi, J.; Ali, B.; Bian, Y.-Y.; Ma, J.; Yokoyama, W.; Zhong, F. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem. 2016, 197, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.M.; Rhee, Y.-S.; Wu, X. Nanomedicine in pulmonary delivery. Int. J. Nanomedicine 2009, 4, 299–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellapa, P.; Ariffin, F.; Issa, Y. Nanoemulsion for cosmetic application Biomedical European of AND Pharmaceutical sciences. Eur. J. Biomed. Pharm. Sci. 2016, 3, 8–11. [Google Scholar]
- De Azevedo Ribeiro, R.C.; Barreto, S.M.A.G.; Ostrosky, E.A.; Da Rocha-Filho, P.A.; Veríssimo, L.M.; Ferrari, M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef] [PubMed]
- Pengon, S.; Chinatangkul, N.; Limmatvapirat, C.; Limmatvapirat, S. The effect of surfactant on the physical properties of coconut oil nanoemulsions. Asian J. Pharm. Sci. 2018, 13, 409–414. [Google Scholar] [CrossRef]
- Quintão, F.J.O.; Tavares, R.S.N.; Vieira-Filho, S.A.; Souza, G.H.B.; Santos, O.D.H. Hydroalcoholic extracts of Vellozia squamata: Study of its nanoemulsions for pharmaceutical or cosmetic applications. Braz. J. Pharmacogn. 2013, 23, 101–107. [Google Scholar] [CrossRef]
- Guglielmini, G. Nanostructured novel carrier for topical application. Clin. Dermatol. 2008, 26, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Sonneville-Aubrun, O.; Simonnet, J.-T.; L’Alloret, F. Nanoemulsions: A new vehicle for skincare products. Adv. Colloid Interface Sci. 2004, 108–109, 145–149. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0001868603001465 (accessed on 30 May 2019). [CrossRef] [PubMed]
- Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm. 2010, 1, 24. [Google Scholar] [CrossRef]
- Singh, K.K.; Vingkar, S.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int. J. Pharm. 2008, 347, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Schwendner, J.F.; Konnerth, C.; Romeis, S.; Schmidt, J.; Peukert, W. Formation of drug-loaded nanoemulsions in stirred media mills. Adv. Powder Technol. 2019. [Google Scholar] [CrossRef]
- Acevedo-Estupiñan, M.V.; Gutierrez-Lopez, G.F.; Cano-Sarmiento, C.; Parra-Escudero, C.O.; Rodriguez-Estrada, M.T.; Garcia-Varela, R.; García, H.S. Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT 2019, 107, 151–157. [Google Scholar] [CrossRef]
- Sarkar, F.H.; Banerjee, S.; Li, Y. Pancreatic Cancer: Pathogenesis, Prevention and Treatment. Toxicol. Appl. Pharmacol. 2007, 224, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Ganta, S.; Talekar, M.; Singh, A.; Coleman, T.P.; Amiji, M.M. Nanoemulsions in Translational Research—Opportunities and Challenges in Targeted Cancer Therapy. AAPS PharmSciTech 2014, 15, 694–708. [Google Scholar] [CrossRef]
- Lawler, J. Introduction to the tumour microenvironment review series. J. Cell. Mol. Med. 2009, 13, 1403–1404. [Google Scholar] [CrossRef] [PubMed]
- Wiradharma, N.; Zhang, Y.; Venkataraman, S.; Hedrick, J.L.; Yang, Y.Y. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 2009, 4, 302–317. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1748013209000589 (accessed on 26 June 2019). [CrossRef]
- Qiao, W.; Wang, B.; Wang, Y.; Yang, L.; Zhang, Y.; Shao, P. Cancer Therapy Based on Nanomaterials and Nanocarrier Systems. J. Nanomater. 2010, 2010, 1–9. Available online: http://www.hindawi.com/journals/jnm/2010/796303/ (accessed on 26 June 2019). [CrossRef] [Green Version]
- Mahato, R. Nanoemulsion as Targeted Drug Delivery System for Cancer Therapeutics. J. Pharm. Sci. Pharmacol. 2017, 3, 83–97. [Google Scholar] [CrossRef]
- Sareen, S.; Joseph, L.; Mathew, G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig. 2012, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Ganta, S.; Paxton, J.W.; Baguley, B.C.; Garg, S. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion. Int. J. Pharm. 2008, 360, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Tan, Y.-M.; Amiji, M. Preparation and In Vitro Characterization of Multifunctional Nanoemulsions for Simultaneous MR Imaging and Targeted Drug Delivery. J. Biomed. Nanotechnol. 2006, 2, 217–224. [Google Scholar] [CrossRef]
- Talekar, M.; Ganta, S.; Singh, A.; Amiji, M.; Kendall, J.; Denny, W.A.; Garg, S. Phosphatidylinositol 3-kinase Inhibitor (PIK75) Containing Surface Functionalized Nanoemulsion for Enhanced Drug Delivery, Cytotoxicity and Pro-apoptotic Activity in Ovarian Cancer Cells. Pharm. Res. 2012, 29, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small 2008, 4, 2043–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.M.; Sillerud, L.O. Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int. J. Nanomedicine 2012, 7, 4341–4352. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.-B.; Lavasanifar, A. Traceable Multifunctional Micellar Nanocarriers for Cancer-Targeted Co-delivery of MDR-1 siRNA and Doxorubicin. ACS Nano 2011, 5, 5202–5213. [Google Scholar] [CrossRef]
- Zhao, J.; Mi, Y.; Feng, S.-S. Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles. Biomaterials 2013, 34, 3411–3421. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, A.C.; Goddard, D.M. Novel drug delivery systems: Future directions. J. Neurosci. Nurs. 2009, 41, 115–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.-X.; Mitter, N.; Yu, C.; Middelberg, A.P.J. Nanoparticle vaccines. Vaccine 2014, 32, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhter, S.; Jain, G.; Ahmad, F.; Khar, R.; Jain, N.; Khan, Z.; Talegaonkar, S. Investigation of Nanoemulsion System for Transdermal Delivery of Domperidone: Ex-vivo and in vivo Studies. Curr. Nanosci. 2008, 4, 381–390. Available online: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-4137&volume=4&issue=4&spage=381 (accessed on 26 June 2019). [CrossRef]
- Reed, S.G.; Bertholet, S.; Coler, R.N.; Friede, M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009, 30, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Nicolay, U.; Lindert, K.; Groth, N.; Della Cioppa, G. MF59-adjuvanted versus non-adjuvanted influenza vaccines: Integrated analysis from a large safety database. Vaccine 2009, 27, 6959–6965. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Tritto, E.; Muzzi, A.; Monaci, E.; Bagnoli, F.; Iavarone, C.; O’Hagan, D.; Rappuoli, R.; De Gregorio, E. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl. Acad. Sci. USA 2008, 105, 10501–10506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garçon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef]
- Garçon, N.; Di Pasquale, A. From discovery to licensure, the Adjuvant System story. Hum. Vaccin. Immunother. 2017, 13, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B.; Anderson, R.C.; Dutill, T.S.; Goto, Y.; Reed, S.G.; Vedvick, T.S. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids Surf. B Biointerfaces 2008, 65, 98–105. [Google Scholar] [CrossRef]
- Klucker, M.; Dalençon, F.; Probeck, P.; Haensler, J. AF03, An Alternative Squalene Emulsion-Based Vaccine Adjuvant Prepared by a Phase Inversion Temperature Method. J. Pharm. Sci. 2012, 101, 4490–4500. [Google Scholar] [CrossRef]
- Sosman, J.A.; Sondak, V.K. Melacine®: An allogeneic melanoma tumor cell lysate vaccine. Expert Rev. Vaccines 2003, 2, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Aithal, G.; Nayak, U.; Mehta, C.; Narayan, R.; Gopalkrishna, P.; Pandiyan, S.; Garg, S. Localized In Situ Nanoemulgel Drug Delivery System of Quercetin for Periodontitis: Development and Computational Simulations. Molecules 2018, 23, 1363. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.-C.; Chen, Y.-C.; Wu, M.-T.; Wang, C.-C.; Wu, Y.-T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomed. 2018, 13, 669–680. [Google Scholar] [CrossRef]
- Javed, S.; Kohli, K. Local delivery of minocycline hydrochloride: A therapeutic paradigm in periodontal diseases. Curr. Drug Deliv. 2010, 7, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, D.K. Inflammatory Bowel Disease. N. Engl. J. Med. 1991, 325, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Head, K.A.; Jurenka, J.S. Inflammatory bowel disease Part 1: Ulcerative colitis--pathophysiology and conventional and alternative treatment options. Altern. Med. Rev. 2003, 8, 247–283. [Google Scholar] [PubMed]
- Geoghegan, F.; Wong, R.W.K.; Rabie, A.B.M. Inhibitory effect of quercetin on periodontal pathogens in vitro. Phyther. Res. 2009, 24, 817–820. [Google Scholar] [PubMed]
- Madav, S.; Tripathi, H.C.; Mishra, S.K. Analgesic, antipyretic and antiulcerogenic effect of andrographolide. Indian J. Pharm. Sci. 1995, 57, 121–125. Available online: https://www.researchgate.net/publication/283798271_Analgesic_antipyretic_and_antiulcerogenic_effect_of_andrographolide (accessed on 4 September 2019).
- Shen, T.; Yang, W.S.; Yi, Y.-S.; Sung, G.-H.; Rhee, M.H.; Poo, H.; Kim, M.-Y.; Kim, K.-W.; Kim, J.H.; Cho, J.Y. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–16. [Google Scholar] [PubMed]
- Wang, J.; Tan, X.F.; Nguyen, V.S.; Yang, P.; Zhou, J.; Gao, M.; Li, Z.; Lim, T.K.; He, Y.; Ong, C.S.; et al. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol. Cell. Proteomics 2014, 13, 876–886. [Google Scholar] [CrossRef]
- Azuma, K.; Ippoushi, K.; Ito, H.; Higashio, H.; Terao, J. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J. Agric. Food Chem. 2002, 50, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
Nanoemulsions | Aqueous Phase | Surfactant/Co-Solvent | Ref. |
---|---|---|---|
NEs incorporating citral essential oil | Deionized water | Sorbitane trioleate Polyoxyethylene (10) Oleyl ether Ethylene glycol | [7] |
Mangosteen extract in virgin coconut oil based NEs | Water | Tween 80 Span 80 | [8] |
NEs with C. guianensis Aublet (Meliaceae) oil | Water | Polysorbate 80 Sorbitan monooleate | [9] |
NEs based vitamin E delivery systems | Water | Quillaja saponin Lecithin | [10] |
Vitamin E-enriched NEs | Water | Tween 80 | [11] |
NEs based delivery systems for curcumin long, medium, short chain triglycerides | Deionized water | Lipase Bile extract | [12] |
Neem oil (Azadirachta indica) NEs | Water | Tween 20 | [13] |
No. | Method of Formulation | Emulsifiers | Condition | Results and Main Findings | Ref. |
---|---|---|---|---|---|
1 | High pressure homogenizer | Tween 80, Tween 60, Tween 40, Tween 20 | Diameters dispersed particles: 132–184 nm, Size distribution: 40–400 nm, - Constant: 50 °C, 100 MPa (first stage), 10 MPa (second stage), 3 cycles. concentration: 4%–12%, - Constant: Tween 20, concentration: 10%, temperature: 30–70 °C, first stage pressure: 60–140 MPa, second stage pressure: 6–14 MPa. | Smallest particle sizes and narrowest size distribution: Tween 20 - Particle sizes ↓: ↑ Pressure, cycle, temperature. - Physical stability ↓: ↓ temperature. - Physical stability ↑: ↑ pressure, cycle. - Degradation during storage. | [80] |
2 | High-pressure homogenizer | SDS, Tween 20, β-lactoglobulin, Sodium caseinate | - Oil phase: 5 wt% (corn oil/octadecane) with 95 wt% - Aqueous phase: emulsifier (1–10 wt%), glycerol (0–50 wt%), sodium phosphate (10 mM), sample-to-buffer: 1:100, pH: 7, 2 min pressures: 4–14 kbar | Smaller droplet sizes: Tween 20, SDS (d~60 nm). - Mean particle diameter ↓: ↑ Pressure, passes number. | [81] |
3 | High pressure homogenizer, Microfluidizer | SDS, Tween 20, Sodium caseinate | Oil-in-water produced 10 wt% silicone oil with 90 wt% aqueous phase: (3 wt% Tween 20 and 0–50 wt% glycerol). | Droplet sizes, after 1st pass: microfluidizer < homogenizer, droplet sizes, after repeated pass: homogenizer < microfluidizer. - ↑ Viscosity: ↑ droplet size due to greater resistance to deformation | [82] |
4 | High pressure homogenizer | Tween 80 (1% v/v) | Temperature: 20 °C Pressure: 50, 100, 150 MPa | Smaller droplet sizes: 6 nm, at 150 MPa, 10 cycles. - ↑ Pressure & cycles: ↓ droplet size, viscosity, whiteness index. | [83] |
5 | Ultrasonication | Tween 80 | Oil concentration: 6% v/v, Oil: surfactant ratio: 1:1, 1:2, 1:3, 1:4 v/v 20 kHz, 750 W, T < 10 °C probe diameter: 13 mm | Smaller droplet sizes: 29.3 ± 0.2 nm at emulsion concentration: 1:4 v/v. ↓ droplet size: ↓ time, ↑ emulsion concentration. | [56] |
6 | Ultrasonication | Tween 80 | Oil concentration: 16.66%, Water: 66.68% v/v, 250 rpm, 20 kHz, 750 W, time: 0, 5, 10, 15, 20, 25, 30 min | Smaller droplet sizes: 3.8 nm at 30 min. ↓ droplet size: ↑ time. | [84] |
7 | Ultrasonication | Sorbitane trioleate + polyoxyethylene | Oil concentration: 10 wt%, co-surfactant: 1%, Oil: surfactant ratio: 0.26–0.94, 20 kHz, diameter: 20 mm, 20 °C, 100–140 s | Smaller droplet sizes: <100 nm, 0.6–0.7 at 18 W, 120 s. | [85] |
8 | Phase inversion composition (PIC) | POP(D230-2OA) | 20 °C, 30 min, 300 rpm | Smaller droplet sizes: ≈37 nm at D230-2OA concentration: 7.89 wt%. - ↓ droplet radius, ↓ droplet size distribution: ↑ D230-2OA concentration. - ↓ PIT: with ↑ NaCl Concentration. - ↑ NaCl concentration: initial droplet radius↓ . - ↑ NaCl concentration: ↓ electrostatic repulsion | [86] |
9 | Phase inversion composition (PIC) | Oleylamine chloride, Potassium oleate, Oleic acid. | 25 ◦C, 750 rpm, water: 80% w/w, O/S ratios: 30/70-60/40. Oleylamine/C12E10 ratios: 20/80, 30/70, 40/60, 50/50. | - Smaller droplet size: smaller O/S ratio, due to high concentrations of surfactant permit stabilization of more surface, smaller droplets can be formed. | [65] |
10 | Phase inversion composition (PIC) | Span20, Tween 20, C12E4, C18E10. | C12E4–C18E10 (50/50 wt. ratio)/isopropyl myristate (oil/surfactant ratio, OS = 1.10)/water (80 wt%). - Tween20–Span20 (42.8/51.8 wt. ratio)/paraffin (OS = 2)/water (70 wt%). - Potassium oleate–oleic acid–C12E10 (oleic acid/C12E10 ratio = 0.6)/hexadecane (OS = 1.3)/water (80 wt%). | Smaller droplets size: at 600 mL vessel. Smaller droplets: low addition rates imply long addition times. the stated requirement for a proper NEs formation through a low energy method is achieved when oil is incorporated more into this phase with the help of long times to reach equilibrium in the viscous zone. | [61] |
11 | Phase inversion temperature (PIT) | 124, 126 | Oil concentration: 20 wt%, isohexadecane concentration: 20 wt%, surfactant concentration: 4 wt%, 8 wt%, 25 °C. | Smaller droplets size: 25–32 nm at XC12E6 (8 wt%). - Droplet size increased with time. - ↓ HLB temperature: ↑ surfactant concentration. | [24] |
12 | Phase inversion temperature (PIT) | POP (D230, D400) | - Aqueous phase: tetradecane/POP (0.78 wt%) + NaCl (50 mM). Surfactant concentration: 4.76, 6.04, 7.89 wt%, POP unit: 2.5, 6.1, 300 rpm, 20 min | Droplet radii: 20–300 nm Small droplet size: changing surfactant concentration, NaCl concentration, the number of POP units surfactant, and the degree of unsaturation of hydrocarbon chain in POP surfactant. - Hydration of the short POP chains affected the temperature | [86] |
13 | Phase inversion temperature (PIT) | Brij30 | - Organic phase: n-dodecane (20 wt%) + Brij30 (4 wt%, 8 wt%) - Aqueous phases: NaCl (0.01, 0.05, 0.10, 0.25, 0.50, 1.00 M), 15 °C | Smaller droplet sizes: 8.6–14 nm. ↓ PIT: ↑ NaCl concentration and surfactant. - ↑ T: ↓ emulsion conductivity. | [58] |
14 | Spontaneous emulsification | Span 80, PGPR | Water content: 10 wt%, crocin solution: 0.1%, surfactant content: 10 wt% (SWR = 100%), oil content: 80 wt%, stirring: 700 rpm | - Smaller droplet sizes: PGPR. - PGPR stable for a long time Droplet size, ↑ encapsulant concentration: ↓ PGPR and ↑ Span 80. ↓ droplet size: due to ↑ surfactant adsorption density and ↑ crocin hydrophobicity causes shrinkage in water droplets. | [19] |
15 | Spontaneous emulsification | Span 80, Span 85, Lipoid S75 Tween 20, Tween 80, Pluronic F68 | -Organic phase: oil (400 mg, Miglyol 812, Myritol 318, hexyl laurate or α - tocopherol), lipophilic surfactant (86 mg). - Aqueous phase: water (80 mL), hydrophilic surfactant (136 mg). 25 °C, stirring: 30 min, evaporation: 45 min, water-miscible solvent: acetone | - Smallest droplets size: 171 ± 2 nm, at: Lipoid S75, Pluronic F68, α-tocopherol/acetone, EtAc-acetone, MEK-acetone mixtures at 15/85 and 30/70% (v/v): acetone replacement. ↓ droplet size: ↑ viscosity, ↑ concentration aqueous and organic phase | [74] |
16 | Spontaneous emulsification | Tween 20, Tween 40, Tween 60, Tween 80, Tween 85. | - Organic phase: oil (10 wt%, (MCT + VE)), surfactant (10 wt%). - Aqueous phase: 80 wt%, pH 3.0, 0.8% citric acid, 0.08% sodium benzoate. stirrer: 500 rpm 25 °C. | - Smallest droplets size: 55 nm, Tween 80, at: PDI≈0.12, VE: 8%, MCT: 2%, SER: 10 wt%. - ↓ Smaller droplet: ↑ temperature, ↑ stirring speed. - ↓ Smaller droplet: ↑ temperature, ↓ viscosity, ↑ solubility. | [11] |
No. | Formulation | Limitations | Technique of Preparation | Characterization | Application | Ref. |
---|---|---|---|---|---|---|
1 | Lemon myrtle and anise myrtle essential oil in water NEs | Hydrophobic nature | Ultrasonication | Particle size and PDI Turbidity Density Stability Antibacterial activity | NEs showed enhanced antibacterial activity and stability | [87] |
2 | Formation of NEs containing Ibuprofen | Slightly soluble in water Poor flow and compaction | Phase inversion composition method | Size and PDI Zeta potential Stability Permeation of ibuprofen | Good stability and possible to use in topical application | [88] |
3 | NEs incorporating citral essential oil | unstable and hydrophobic under normal storage conditions, thus can easily lose its bactericide activity | Ultrasonication | Droplet size Encapsulation ratio Transmission electron microscopy Stability Antimicrobial activity | Can be used in the antimicrobials activity in the agrochemicals, cosmetics, and pharmaceutical industries. | [7] |
4 | NEs of coenzyme Q10 | Poor bioavailability within skin membrane | Sonication | Particle size Zeta potential Stability Encapsulation efficiency Human skin cell behavior | Can be used in topical application | [89] |
5 | NE-based formulation for topical delivery of heparinoid | Hydrophilic nature. Difficult to penetrate skin stratum corneum | High-pressure homogenization | Droplet size Morphology Viscosity In vitro permeation Skin resistance evaluation | Formulations represent a potential strategy for providing a localized therapy for the treatment of superficial thrombophlebitis | [90] |
6 | Phenytoin-loaded alkyd NEs | Water-insoluble | Phase inversion method | Size and PDI Loading efficiency Effect on cell viability Effect on cell proliferation | Possible for topical wound healing application | [91] |
7 | NEs encapsulating curcumin | Curcumin is the least stable bioactive component of turmeric (Curcuma longa) plant | Ultrasonication | Particle size Encapsulation efficiency Zeta potential | An effective delivery system for curcumin in functional foods | [92] |
8 | Formulation of oil-in-water (O/W) NEs of wheat bran oil | Poor solubility in water systems | Ultrasonication | Droplet size Stability Antioxidant Anti tyrosinase activity | Suitable for use in the food industry | [93] |
9 | O/W NEs containing sweet fennel essential oil | Hydrophobic nature | High-pressure homogenization | Size and PDI Viscosity Antioxidant activity Stability | Application of sweet fennel oil NEs as a potential candidate for antioxidant topical formulations. | [94] |
10 | Neem oil (Azadirachta indica) NEs | Hydrophobic | Ultrasonication | Size and PDI Transmission electron microscopy Viscosity pH stability Zeta potential | Effective larvicidal agent. | [13] |
No. | Advantages | Ref. |
---|---|---|
1 | Small sized droplets of NEs having larger surface area thus, enhancing absorption. | [99] |
2 | Less energy required to produce NEs. | [99] |
3 | Aids in solubilizing lipophilic drugs and covers the terrible flavor of the drugs. | [60,100] |
4 | Considered not toxic and not causing irritant in nature. | [37] |
5 | The stability of chemically unstable compounds can be improved by NEs as it can defend them from oxidative and light degradation. | [101] |
6 | Various formulations of NEs can be formed (e.g., creams, liquids, and sprays) | [100] |
7 | May substitute liposomes and vesicles | [74] |
8 | Improves the bioavailability of a drug | [60,102] |
No. | Disadvantages | Ref. |
---|---|---|
1. | To stabilize the nanodroplets, NEs need support of high concentration of surfactant and cosurfactant | [102] |
2. | Capability to solubilize high-melting substances is limited. | [100] |
3. | Environmental parameters such as temperature and pH could influence the stability of NEs. | [63] |
4. | For utilization in pharmaceutical applications, surfactant used must be non-toxic | [63] |
No. | NEs*; Type | Method of Fabrication | Size (nm) | Key Features | Application | Ref. |
---|---|---|---|---|---|---|
1 | beeswax–starch (BW-S)-NEs; O/W* | Microfluidization with Tween-80 | 77.6 ± 6.2 | Antifungal activity against R. stolonifer, C. gloeosporioides, and B. cinerea, and the pathogenic bacterium S. Saintpaul | Edible coatings to preserve fresh food products. | [116] |
2 | Jujube gum (JG)-based-NEs containing nettle essential oil (NEO): O/W | Homogenization with Tween-40 | 63.1 ± 6.2 | 3.5% NEO and 12% JG showed the best antimicrobial activity. | Jujube gum edible coating for Beluga sturgeon fillets. | [117] |
3 | Ginger essential oil (GEO)-NEs; O/W | Ultrasonication with Tween-80 | 57.4 ± 2.7 | Antimicrobial activity against two food pathogens: Listeria monocytogenes, Salmonella typhimurium | Edible coating for chicken breast fillet | [110] |
4 | linalool NEs; O/W | Ultrasonication with Tween-80 | 10.9 ± 0.1 | S. typhimurium | Antibiofilm agent | [109] |
5 | (1) DHA* and (2) EPA* NEs; O/W | Emulsion Phase Inversion (EPI) method with Tween-80 and Tween-85 | (1) 145 ± 2.5 (2) 155 ± 2.5 | Tea polyphenols were added as antioxidants | Enhances food fortification and large-scale production | [118] |
6 | Turmeric extract NEs powder (TE-NEP); O/W | High-speed homogenization & Ultrasonication and spray drying with Tween-80 | ~280 | Antioxidants. The TE-NEP was stable in simulated gastric conditions. | Fortification of milk, increasing shelf-life, 21 days. | [119] |
7 | Cumin seed oil (CSO) with corn-oil NEs Whey protein isolate-guar gum (WPI-GG); O/W | Ultrasonication and high-speed homogenization with Tween-80 | ~75 | Antifungal activity against Aspergillus flavus | Food preservative | [106] |
8 | Cinnamon essential oil (CEO) NEs; O/W | Ultrasonication with Tween-80 | 65.98 | Antifungal activity against Aspergillus niger, Rhizopus arrhizus, Penicillium sp., and Colletotrichum gloeosporioides | High potential for food and agricultural applications | [120] |
9 | Clove oil (CO) with canola oil anionic NEs; W/O* | High-speed homogenization with purity gum ultra (PGU) | 150–200 | Antimicrobial activity against Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and Gram-negative (Escherichia coli) | Potential for preservatives | [121] |
10 | Basil oil NEs; O/W | Ultrasonication with saponin | 37.7–57.6 | Antimicrobial activity against Penicillium chrysogenum and Aspergillus flavus | Preservatives against food spoilage pathogens | [105] |
Drugs | Targeting Ligand | Imaging Agent | Ref. |
---|---|---|---|
PIK75 (PI3K inhibitor) | EGFR specific peptide folate | NBD-C6-ceramide | [142] |
Doxorubicin | Folate | DHPE (fluorescence) | [143] |
Paclitaxel | Anti-PSMA mAb, J591 | Superparamagnetic iron platinum NPs (SIPP) for MRI Rhodamine (fluorescence) | [144] |
Doxorubicin Mdr1-siRNA | αvβ3-specific RGD4Cp TATp | Cy5.5 (fluorescence) | [145] |
Docetaxel Plk1-siRNA | Herceptin mAb | Nile red (fluorescence) | [146] |
Adjuvant Name | Composition | Application | Ref. |
---|---|---|---|
MF59® | O/W Squalene emulsion | Influenza | [151,152] |
AS03 | SB62 adjuvant and twofold diluted form of O/W squalene | H5N1 and H1N1 | [153] |
AS02 | Immune-stimulatory agents such as MPL and triterpenoid saponin molecules | Malaria, HIV, and tuberculosis | [154] |
MPL®SE | Combination of monophosphoryl lipid and a stable squalene emulsion | Leishmaniasis | [155] |
AF03 | Thermoreversible O/W emulsions | H1N1 influenza | [156] |
DETOX® | Composed of bacterial cell wall and monophosphoryllipid A (MPL) dissolved in squalane and Tween 8 | Melanoma | [157] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 2019, 7, 617. https://doi.org/10.3390/pr7090617
Azmi NAN, Elgharbawy AAM, Motlagh SR, Samsudin N, Salleh HM. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes. 2019; 7(9):617. https://doi.org/10.3390/pr7090617
Chicago/Turabian StyleAzmi, Nor Azrini Nadiha, Amal A. M. Elgharbawy, Shiva Rezaei Motlagh, Nurhusna Samsudin, and Hamzah Mohd. Salleh. 2019. "Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics" Processes 7, no. 9: 617. https://doi.org/10.3390/pr7090617
APA StyleAzmi, N. A. N., Elgharbawy, A. A. M., Motlagh, S. R., Samsudin, N., & Salleh, H. M. (2019). Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 7(9), 617. https://doi.org/10.3390/pr7090617