Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of AuNPs
2.3. Characterization
2.4. Primary Fibroblast Culture
2.5. SRB Assay
3. Result and Discussion
3.1. Influence of Gelatin Concentration
3.2. Influence of Reaction Temperature
3.3. Influence of pH Condition
3.4. Proposed Mechanism of Branched AuNPs
3.5. X-Ray Diffraction Analysis of Gold Nanoparticles
3.6. FT-IR Analysis of Gelatin-AuNPs Interaction
3.7. Cell Cytotoxicity of AuNPs-Gelatin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prashant, K.J.; Ivan, H.E.S.; Mostafa, A.E. Au nanoparticles target cancer. Nano Today 2007, 2, 18–29. [Google Scholar]
- Parth, M.; Tapan, K.M. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int. J. Pharm. 2018, 553, 483–509. [Google Scholar]
- Li, J.J.; Wang, S.C.; Zhao, J.; Weng, G.J.; Zhu, J.; Zhao, J.W. Synthesis and SERS activity of super-multibranched Au-Ag nanostructure via silver coating-induced aggregation of nanostars. Spectrochim. Acta A 2018, 204, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Pu, S.; Li, J.; Cai, J.; Zhou, B.; Ren, G.; Ma, Q.; Zhong, L. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan. Int. J. Biol. Macromol. 2019, 122, 770–783. [Google Scholar] [CrossRef]
- Canpean, V.; Gabudean, A.M.; Astilean, S. Enhanced thermal stability of gelatin coated gold nanorods in water solution. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 9–13. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Li, Y.; Bian, K.; Yin, T.; Gao, D. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis. Mater. Sci. Eng. C 2018, 82, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.; Seyedebrahimi, R.; Jahromi, M. Biodelivery of nerve growth factor and gold nanoparticles encapsulated in chitosan nanoparticles for schwann-like cells differentiation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun. 2019, 513, 681–687. [Google Scholar] [CrossRef]
- Jurate, V.; Rajender, S.V. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011, 2, 837–846. [Google Scholar]
- Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical application. J. Phys. Chem. B 2005, 109, 13857–13870. [Google Scholar] [CrossRef]
- Alkilany, A.M.; Nagaria, P.K.; Hexel, C.R.; Shaw, T.J.; Murphy, C.J.; Wyatt, M.D. Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects. Small 2009, 5, 701–708. [Google Scholar] [CrossRef]
- Ali, N.; Harpinder, S.; Wayne, C.; Ryan, T.S.; Robert, R.; Mehdi, N. Gold nanorod-incorporated Gelatin-based Conductive Hydrogels for Engineering Cardiac Tissue Constructs. Acta Biomater. 2016, 41, 133–146. [Google Scholar]
- Wang, Y.C.; Gunasekaran, S. Spectroscopic and microscopic investigation of gold nanoparticle nucleation and growth mechanism using gelatin as a stabilizer. J. Nanopart Res. 2012, 14, 1200. [Google Scholar] [CrossRef]
- Sorina, S.; Monica, F.; Dana, M.; Simion, A. Gelatin-nanogold bioconjugates as effective plasmonic platforms for SERS detection and tagging. Colloids Surf. B. 2013, 103, 475–481. [Google Scholar]
- Madhav, N.; Lee, S.J.; Park, I.S.; Lee, M.H.; Bae, T.S.; Kuboki, Y.; Uo, M.; Fumino, W. Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J. Nanopart. Res. 2011, 13, 491–498. [Google Scholar]
- Magdalena, L.B.; Krzysztof, P.; Marek, W.; Krzysztof, F. The kinetics of redox reation of gold (III) chloride complex ions with L-ascorbic acid. Inorg. Chim. Acta 2013, 395, 189–196. [Google Scholar]
- Sihai, C.; Zhong, L.W.; John, B.; Stephen, H.F.; David, L.C. Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. J. Am. Chem. Soc. 2003, 125, 16186–16187. [Google Scholar]
- Njoki, P.N.; Lim, I.S.; Mott, D.; Park, H.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 2007, 111, 14664–14669. [Google Scholar] [CrossRef]
- Colleen, L.N.; Hongwei, L.; Jason, H.H. Optical Properties of Star-Shaped Gold Nanoparticles. Nano Lett. 2006, 6, 683–688. [Google Scholar] [Green Version]
- Hiroaki, I. Self-Organized Formation of Hierachical Structures. Top. Curr. Chem. 2007, 270, 43–72. [Google Scholar]
- Damjan, P.; Sanjin, M.; Miroslav, P.; Mario, B. Role of microscopic phase separation in gelation of aqueous gelatin solution. RSC Adv. 2014, 10, 348–356. [Google Scholar]
- Segtnan, V.H.; Isaksson, T. Temperature, sample and time dependent structural characteristics of gelatine gels studied by near infrared spectroscopy. Food Hydrocoll. 2004, 18, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Y.; Wang, W.; Huang, C.; Wang, Y.; Yu, Z.; Zhang, H. Influence of pH of Gelatin Solution on Cycle Performance of the Sulfur Cathode. J. Electrochem. Soc. 2010, 157, A443–A446. [Google Scholar] [CrossRef]
- Shihua, T.; Youqun, L. Interaction via in situ binding of CdS nanorods onto gelatin. J. Colloid Interface Sci. 2011, 360, 71–77. [Google Scholar]
- Hashim, D.M.; Man, Y.B.C.; Norakasha, R.; Shuhaimi, M.; Salmah, Y.; Syahariza, Z.A. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010, 118, 856–860. [Google Scholar] [CrossRef]
- Fu, F.-N.; Deoliveira, D.B.; Trumble, W.R.; Sarkar, H.K.; Singh, B.R. Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin. Appl. Spectrosc. 1994, 48, 1432–1441. [Google Scholar] [CrossRef]
Sample | Gelatin C % (w/v) | λmax (nm) | Absorbance |
---|---|---|---|
G1 | 0 | 532 | 1.037 |
G2 | 0.5 | 532 | 1.091 |
G3 | 1.0 | 528 | 1.082 |
G4 | 1.5 | 532 | 1.094 |
G5 | 2.0 | 546 | 1.188 |
G6 | 2.5 | 576 | 1.074 |
Temperature | λmax (nm) | Absorbance |
---|---|---|
40 °C | 529 | 1.144 |
50 °C | 526 | 1.127 |
60 °C | 529 | 1.040 |
70 °C | 528 | 1.035 |
80 °C | 528 | 0.977 |
pH Value | Wavelength (nm) | Abs |
---|---|---|
pH3 | 702 | 0.751 |
pH4 | 608 | 1.022 |
pH5 | 553 | 1.179 |
pH6 | 548 | 1.183 |
pH7 | 550 | 1.049 |
pH8 | 557 | 1.150 |
pH9 | 571 | 1.162 |
pH10 | 555 | 1.287 |
Position (cm−1) Pure Gelatin (Curve b) | Position (cm−1) Gelatin—Gold Nanoparticles (Curve a) | Assignment |
---|---|---|
3411 | 3404 | Hydrogen bonds of retain water |
3080 | 3075 | N-H stretching |
1652 | Amide I in β-antiparallel sheets secondary structure | |
1640–1620 | Amide I in α-helix structure | |
1545 | 1536 | Amide II N-H bending vibration |
1243 | Amide III, in plane N-H bending coupling to C-N stretching vibrations | |
1330–1295 | Amide III in α-helix | |
1250–1220 | Amide III in β-antiparallel sheets | |
1500–1400 | COO− symmetrical stretching vibration |
Sample | Concentration (μg/mL) | Growth Inhibitor Value (%) | |||
---|---|---|---|---|---|
1 | 2 | 3 | Average | ||
Gold nanoparticles | 400 | 47.69 | 42.29 | 32.50 | 40.83 ± 7.70 |
200 | 44.62 | 35.18 | 26.07 | 35.29 ± 9.27 | |
100 | 24.62 | 16.60 | 15.36 | 18.86 ± 5.02 | |
50 | 10.77 | 13.44 | 19.64 | 14.62 ± 4.55 | |
20 | 15.38 | 14.62 | 17.86 | 15.96 ± 1.69 | |
AuNPs-gelatin | 400 | 29.62 | 29.64 | 32.14 | 30.47 ± 1.45 |
200 | 18.85 | 20.55 | 25.00 | 21.47 ± 3.18 | |
100 | 21.54 | 15.81 | 16.07 | 17.81 ± 3.23 | |
50 | 18.46 | 20.95 | 17.86 | 19.09 ± 1.64 | |
20 | 7.31 | 12.25 | 13.93 | 11.16 ± 3.44 | |
Gelatin | −13.54 | −19.34 | −25.56 | −19.46 ± 6.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, Q.K.; Nguyen Thi, M.N.; Nguyen Thi, P.P.; Nguyen, D.T. Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells. Processes 2019, 7, 631. https://doi.org/10.3390/pr7090631
Vo QK, Nguyen Thi MN, Nguyen Thi PP, Nguyen DT. Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells. Processes. 2019; 7(9):631. https://doi.org/10.3390/pr7090631
Chicago/Turabian StyleVo, Quoc Khuong, My Nuong Nguyen Thi, Phuong Phong Nguyen Thi, and Duy Trinh Nguyen. 2019. "Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells" Processes 7, no. 9: 631. https://doi.org/10.3390/pr7090631
APA StyleVo, Q. K., Nguyen Thi, M. N., Nguyen Thi, P. P., & Nguyen, D. T. (2019). Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells. Processes, 7(9), 631. https://doi.org/10.3390/pr7090631