Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Tannin Characterization
2.3. Experimental Design
2.3.1. Effect of Tannin Dosage and pH
2.3.2. Effect of POME Dosages and Aeration Time
2.3.3. Comparison between Treatment Applications
2.4. Analytical Statistics
2.5. Analytical Work
3. Results and Discussion
3.1. Leachate Characterization
3.2. Descriptive Analysis of the Four Treatment Applications
3.2.1. Combined Leachate/POME Treatment Application (LP)
3.2.2. Leachate/Tannin Treatment Application (LT)
3.2.3. Pre-(Leachate/Tannin)–Post-(Leachate/POME) Treatment Application (LT/LP)
3.2.4. Pre-(Leachate/POME)–Post-(Leachate/Tannin) Treatment Application (LP/LT)
3.3. Evaluation of the Physicochemical Parameters and Heavy Metal Removal
3.3.1. The Effect of Different Treatment Applications on the Removal of Physicochemical Parameters
3.3.2. Heavy Metal Removal with the Different Treatment Applications
3.4. Cluster Analysis of the Four Treatment Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ha, D.Y.; Cho, S.H.; Kim, Y.K.; Leung, S.W. A new approach to characterize biodegradation of organics by molecular mass distribution in landfill leachate. Water Environ. Res. 2008, 80, 748–756. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Mojiri, A. Composition of leachate. In Civil and Environmental Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2016; pp. 248–274. [Google Scholar]
- Zai, M.; Ferchichi, M.; Ismaı, A.; Jenayeh, M.; Hammami, H. Rehabilitation of El Yahoudia dumping site, Tunisia. Waste Manag. 2004, 24, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Tralhao, L.; Coutinho-Rodrigues, J.; Alçada-Almeida, L. A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste. Waste Manag. 2010, 30, 2418–2429. [Google Scholar] [CrossRef] [PubMed]
- Al-Yaqout, A.; Hamoda, M. Evaluation of landfill leachate in arid climate—A case study. Environ. Int. 2003, 29, 593–600. [Google Scholar] [CrossRef]
- Aloui, F.; Kchaou, S.; Sayadi, S. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability. J. Hazard. Mater. 2009, 164, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew. Sustain. Energy Rev. 2016, 53, 1046–1058. [Google Scholar] [CrossRef]
- Aziz, H.A.; Othman, O.M.; Amr, S.S.A. The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate. Waste Manag. 2013, 33, 396–400. [Google Scholar] [CrossRef]
- Lak, M.G.; Sabour, M.R.; Amiri, A.; Rabbani, O. Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Waste Manag. 2012, 32, 1895–1902. [Google Scholar]
- Amr, S.S.A.; Aziz, H.A.; Adlan, M.N. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Manag. 2013, 33, 1434–1441. [Google Scholar] [CrossRef]
- Rada, E.; Istrate, I.; Ragazzi, M.; Andreottola, G.; Torretta, V. Analysis of electro-oxidation suitability for landfill leachate treatment through an experimental study. Sustainability 2013, 5, 3960–3975. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.J.; Aziz, H.A.; Amr, S.S.A.; Sethupathi, S.A.P.; Ng, C.A.; Lim, J.W. The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin. Water Treat. 2015, 54, 2382–2395. [Google Scholar] [CrossRef]
- Mojiri, A.; Branch, I.K. Review on membrane bioreactor, ion exchange and adsorption methods for landfill leachate treatment. Basic Appl. Sci. 2011, 5, 136. [Google Scholar]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
- Maleki, A.; Zazouli, M.A.; Izanloo, H.; Rezaee, R. Composting plant leachate treatment by coagulation-flocculation process. American-Eurasian. J. Agric. Environ. Sci. 2009, 5, 638–643. [Google Scholar]
- Aziz, N.I.H.A.; Hanafiah, M.M.; Ali, M.Y.M. Sustainable biogas production from agrowaste and effluents—A promising step for small-scale industry income. Renew. Energy 2019, 132, 363–369. [Google Scholar] [CrossRef]
- Aziz, N.I.H.A.; Hanafiah, M.M.; Gheewala, S.H. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass Bioenergy 2019, 122, 361–374. [Google Scholar] [CrossRef]
- Aziz, N.I.H.A.; Hanafiah, M.M. Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent. Renew. Energy 2020, 145, 847–857. [Google Scholar] [CrossRef]
- Lee, S.; Mukherjee, T.; Agamuthu, P.; Panandam, J. Biochemical polymorphism studies in breeds of wool-sheep, hair-sheep and their hybrids in Malaysia. Asian-Australas. J. Anim. Sci. 1995, 8, 357–364. [Google Scholar] [CrossRef]
- Rupani, P.F.; Singh, R.P.; Ibrahim, M.H.; Esa, N. Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. World Appl. Sci. J. 2010, 11, 70–81. [Google Scholar]
- Graham, N.; Gang, F.; Fowler, G.; Watts, M. Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids Surf. A Physicochem. Eng. Asp. 2008, 327, 9–16. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Yaacob, W.W.; Taha, M.R.; Samsudin, A.R. Groundwater and soil vulnerability in the Langat Basin Malaysia. Eur. J. Sci. Res. 2009, 27, 628–635. [Google Scholar]
- Bahaa-Eldin, E.; Wan, Z.; Rahim, S.; Ghani, R. Geoenvironmental sampling: How good is a good practice? Bull. Geol. Soc. Malays. 2003, 46, 443–446. [Google Scholar]
- Al-Sabahi, E.; Rahim, S.A.; Wan, Z.; Al-Nozaily, F.; Alshaebi, F. The characteristics of leachate and groundwater pollution at municipal solid waste landfill of Ibb city, Yemen. Am. J. Environ. Sci. 2009, 5, 256–266. [Google Scholar]
- Banch, T.J.; Hanafiah, M.M.; Alkarkhi, A.F.; Amr, A.; Salem, S. Factorial design and optimization of landfill leachate treatment using Tannin-based natural coagulant. Polymers 2019, 11, 1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangrich, A.S.; Doumer, M.E.; Mallmannn, A.S.; Wolf, C.R. Química verde no tratamento de águas: Uso de coagulante derivado de tanino de Acacia mearnsii. Rev. Virtual Química 2013, 6, 2–15. [Google Scholar]
- Li, H.; Jiao, Y.; Xu, M.; Shi, Z.; He, B. Thermodynamics aspect of tannin sorption on polymeric adsorbents. Polymers 2004, 45, 181–188. [Google Scholar] [CrossRef]
- Roux, D.G.; Ferreira, D.; Hundt, H.K.L.; Malan, E. Structure, stereochemistry, and reactivity of natural condensed tannins as basis for their extended industrial application. Appl. Polym. Symp. 1975, 28, 335–353. [Google Scholar]
- Coral, L.; Bergamasco, R.; Bassetti, F. Estudo da viabilidade de utilização do polímero natural (TANFLOC) em substituição ao sulfato de alumínio no tratamento de águas para consumo. In Proceedings of the Key Elements for a Sustaintable World: Energy, Water and Climate Change São Paulo–Brasil, 2nd International Workshop Advances in Cleaner Production, Sao Paulo, Brazil, 20–22 May 2009. [Google Scholar]
- Yusup, Y.; Alkarkhi, A.F. Cluster analysis of inorganic elements in particulate matter in the air environment of an equatorial urban coastal location. Chem. Ecol. 2011, 27, 273–286. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. The R Development Core team. 2012. Nlme: Linear and nonlinear mixed effects models. R Package Version 2008, 3, 1–137. [Google Scholar]
- APHA. Water environment federation. In Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Długosz, J. Characteristics of the composition and quantity of leachate from municipal landfills—A review. Arch. Waste Manag. Environ. Prot. 2012, 14, 19–30. [Google Scholar]
- Kulikowska, D.; Klimiuk, E.J.B.T. The effect of landfill age on municipal leachate composition. Bioresour. Technol. 2008, 99, 5981–5985. [Google Scholar] [CrossRef] [PubMed]
- Alslaibi, T.M.D. Evaluating the Impact of Landfill Leachate on Groundwater Aquifer in Gaza Strip Using Modeling Approach. Ph.D. Thesis, Faculty of Engineering, the Islamic University, Gaza, Palestine, 2009. [Google Scholar]
- Kanmani, S.; Gandhimathi, R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 2013, 3, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Moturi, M.; Rawat, M.; Subramanian, V.J.E.M. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi, India. Environ. Monit. Assess. 2004, 95, 183–199. [Google Scholar] [CrossRef]
- Aucott, M. The Fate of Heavy Metals in Landfills: A Review; New Jersey Department of Environmental Protection: Trenton, NJ, USA, 2006.
- Rajesh Kumar, P.R.; Akila Swathanthra, P.A.; Basava Rao, V.V.B.; Rao, S.R.M. Adsorption of Cadmium and Zinc Ions from Aqueous Solution Using Low Cost Adsorbents. J. Appl. Sci. 2014, 14, 1372–1378. [Google Scholar]
- Mondal, P.; Majumder, C.B.; Mohanty, B. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J. Hazard. Mater. 2008, 150, 695–702. [Google Scholar] [CrossRef] [PubMed]
Parameter | Max. | Min. | Mean | Sd. Dev. | (USEPA 2012) *; (DOE 2012) ** |
---|---|---|---|---|---|
pH | 7.95 | 7.95 | 7.95 | 0.00 | 6–9 ** |
EC (µS/cm) | 9100 | 9100 | 9100 | 0 | - |
Salinity (ppt) | 5.9 | 5.9 | 5.9 | 0.0 | - |
TDS (mg/L) | 6740 | 6740 | 6740 | 0 | - |
TSS (mg/L) | 1580 | 1560 | 1570 | 10 | 88 * |
Color (Pt-Co) | 2530 | 2520 | 2527 | 6 | 100 ** |
COD (mg/L) | 910 | 900 | 907 | 6 | 400 ** |
BOD5 (mg/L) | 64 | 60 | 62 | 2 | 20 ** |
BOD5/COD | 0.07 | 0.07 | 0.0680 | 0.0020 | - |
NH3-N (mg/L) | 750 | 750 | 750 | 0 | 5 ** |
DO (mg/L) | 6.85 | 6.56 | 6.71 | 0.15 | 10 * |
Mg (mg/L) | 2.93 | 2.79 | 2.85 | 0.08 | - |
Ca (mg/L) | 8.72 | 8.52 | 8.59 | 0.12 | - |
Fe (mg/L) | 1.30 | 1.21 | 1.25 | 0.04 | 5 ** |
Zn (µg/L) | 33.78 | 29.43 | 31.43 | 2.20 | 2000 ** |
Cu (µg/L) | 4.88 | 3.67 | 4.25 | 0.60 | 20 ** |
Cr (µg/L) | 12.05 | 10.73 | 11.27 | 0.69 | 10 ** |
Cd (µg/L) | 3.28 | 3.09 | 3.19 | 0.10 | 10 ** |
Pb (µg/L) | 2.43 | 1.03 | 1.81 | 0.72 | 10 ** |
As (µg/L) | 17.03 | 16.64 | 16.80 | 0.21 | 50 ** |
Co (µg/L) | 2.06 | 2.02 | 2.04 | 0.02 | 50 ** |
Mn (µg/L) | 30.93 | 25.82 | 27.67 | 2.83 | 20 ** |
Parameter | Raw Leachate | LT | LP | LT/LP | LP/LT | (USEPA 2012) *; (DOE 2012) ** | ||||
---|---|---|---|---|---|---|---|---|---|---|
Residual | Removal (%) | Residual | Removal (%) | Residual | Removal (%) | Residual | Removal (%) | |||
pH | 7.95 ± 0 | 9.09 ± 0.01 | 9.12 ± 0 | 5.68 ± 0.03 | 9.13 ± 0.03 | 6–9 ** | ||||
EC (µS/cm) | 9100 ± 0 | 6367 ± 29 | 30.04 | 3614 ± 5 | 46.85 | 5200 ± 0 | 23.53 | 3040 ± 0 | 55.29 | - |
Salinity (ppt) | 5.9 ± 0 | 4.1 ± 0 | 30.51 | 2.3 ± 0 | 48.89 | 3.47 ± 0.1 | 22.96 | 2.00 ± 0 | 55.56 | - |
TDS(mg/L) | 6740 ± 0 | 4450 ± 10 | 33.98 | 2815 ± 1 | 42.55 | 3647 ± 6 | 25.58 | 2440 ± 0 | 50.20 | - |
TSS (mg/L) | 1570 ± 10 | 493 ± 6 | 68.58 | 1633 ± 29 | 65.25 | 910 ± 10 | 80.64 | 1700 ± 50 | 63.83 | 88 * |
Color (PtCo) | 2527 ± 6 | 217 ± 6 | 91.42 | 1417 ± 29 | 54.30 | 546.67 ± 6 | 82.37 | 810.00 ± ‘10 | 73.87 | 100 ** |
COD(mg/L) | 907 ± 6 | 457 ± 6 | 49.63 | 470 ± 10 | 85.97 | 536.67 ± 0 | 83.98 | 420.00 ± 10 | 87.46 | 400 ** |
BOD5(mg/L) | 79.00 ± 2 | 37 ± 1 | 53.16 | 29.33 ± 2 | 86.23 | 19.00 ± 1 | 91.08 | 40.33 ± 1 | 81.06 | 20 ** |
BOD5/COD | 0.0871 ± 0.002 | 0.0810 ± 0.0024 | 7.00 | 0.0625 ± 0.0046 | 1.99 | 0.04 ± 0.0012 | 44.46 | 0.10 ± 0.0036 | 50.65 | - |
NH3-N (mg/L) | 750 ± 0 | 260.00 ± 5 | 65.33 | 32.33 ± 2 | 95.35 | 66.67 ± 6 | 90.41 | 2.00 ± 0 | 99.71 | 5 ** |
DO(mg/L) | 6.71 ± 0.15 | 7.59 ± 0.13 | 6.79 ± 0.03 | 7.43 ± 0.02 | 7.51 ± 0.02 | 10 * | ||||
Mg2+ (mg/L) | 2.85 ± 0.08 | 2.78 ± 0.05 | 2.29 | 22.77 ± 0.25 | 52.44 | 8.51 ± 0.03 | 82.23 | 7.36 ± 0.08 | 84.62 | - |
Ca2+ (mg/L) | 8.59 ± 0.12 | 6.72 ± 0.89 | 21.72 | 6.81 ± 0.95 | 57.76 | 12.10 ± 2.05 | 24.92 | 5.65 ± 2.08 | 64.96 | - |
Fe2+ (µg/L) | 1250 ± 0.04 | 240 ± 0 | 80.66 | 460 ± 0.04 | 95.34 | 230 ± 0.07 | 97.70 | 280 ± 0.01 | 97.17 | 5 ** |
Zn2+ (µg/L) | 31.43 ± 2.2 | 2.72 ± 1.27 | 91.35 | 16.14 ± 3.88 | 97.03 | 23.90 ± 0.23 | 95.60 | 25.65 ± 9.1 | 95.28 | 2000 ** |
Cu2+(µg/L) | 4.25 ± 0.60 | 0.41 ± 0.78 | 90.35 | 3.30 ± 0.53 | 98.97 | 3.03 ± 0.48 | 99.05 | 6.42 ± 2.99 | 97.99 | 20 ** |
Cr2+ (µg/L) | 11.27 ± 0.69 | 0.86 ± 0.08 | 92.41 | 9.82 ± 1.34 | 94.17 | 3.28 ± 0.37 | 98.05 | 5.54 ± 0.3 | 96.71 | 10 ** |
Cd2+ (µg/L) | 3.19 ± 0.1 | 2.57 ± 0.07 | 19.47 | 0.22 ± 0.07 | 99.10 | 1.82 ± 1.63 | 92.34 | 0.50 ± 0.04 | 97.91 | 10 ** |
Pb+ (µg/L) | 1.81 ± 0.72 | 0.07 ± 0.1 | 96.26 | 0.50 ± 0.26 | 95.72 | 0.37 ± 0.10 | 96.87 | 0.69 ± 0.19 | 94.11 | 10 ** |
As3+ (µg/L) | 2.81 ± 0.21 | 1.54 ± 0.09 | 45.40 | 11.59 ± 0.67 | 8.39 | 1.37 ± 0.43 | 89.21 | 1.69 ± 0.07 | 86.67 | 50 ** |
Co2+ (µg/L) | 2.04 ± 0.02 | 0.32 ± 0.02 | 84.47 | 0.22 ± 0.03 | 97.78 | 1.11 ± 0.03 | 88.64 | 1.38 ± 0.03 | 85.90 | 50 ** |
Mn2+ (µg/L) | 27.67 ± 2.83 | 2.77 ± 2.55 | 90.00 | 26.81 ± 3.53 | 26.80 | 22.08 ± 16.1 | 39.73 | 7.17 ± 5.8 | 80.44 | 20 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banch, T.J.H.; Hanafiah, M.M.; Alkarkhi, A.F.M.; Amr, S.S.A.; Nizam, N.U.M. Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials. Processes 2020, 8, 111. https://doi.org/10.3390/pr8010111
Banch TJH, Hanafiah MM, Alkarkhi AFM, Amr SSA, Nizam NUM. Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials. Processes. 2020; 8(1):111. https://doi.org/10.3390/pr8010111
Chicago/Turabian StyleBanch, Tawfiq J. H., Marlia M. Hanafiah, Abbas F. M. Alkarkhi, Salem S. A. Amr, and Nurul U. M. Nizam. 2020. "Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials" Processes 8, no. 1: 111. https://doi.org/10.3390/pr8010111
APA StyleBanch, T. J. H., Hanafiah, M. M., Alkarkhi, A. F. M., Amr, S. S. A., & Nizam, N. U. M. (2020). Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials. Processes, 8(1), 111. https://doi.org/10.3390/pr8010111