Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of Antimony Processing
2.2. Sampling Point Layout and Sample Collection
2.3. Sample Preparation and Testing
2.4. Quality Control
2.5. Evaluation Method of PTEs Pollution
2.5.1. Pollution Index (PI)
2.5.2. Potential Ecological Risk Index (RI)
3. Results and Discussions
3.1. Characteristics of PTE Pollution in Wastewater
3.2. Pollution Characteristics of PTEs in Dust
3.3. Pollution Characteristics of PTEs in Tailings
3.4. Comparison of the Total Amount of PTEs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, M.C.; Wang, X.Q.; Wu, F.C.; Fu, Z.Y. Antimony pollution in China. Sci. Total Environ. 2012, 41, 421–422. [Google Scholar] [CrossRef]
- Hu, X.Y.; He, M.C.; LI, S.S.; Guo, X.J. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. J. Geochem. Explor. 2017, 176, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Quina, A.S.; Durão, A.F.; Muñoz, F.; Ventura, J.; Mathias, M.D.L. Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). Ecotoxicol. Environ. Saf. 2019, 171, 414–424. [Google Scholar] [CrossRef]
- Sun, Z.H.; Xie, X.D.; Wang, P.; Hu, Y.N.; Cheng, H.F. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.H.; Cui, Z.J. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- Deng, R.J.; Jin, C.S.; Ren, B.Z.; Hou, B.L.; Hursthous, A. The potential for treatment of antimony-containing wastewater by iron-base adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.W.; Nyirenda, M.T.; Xie, L.N.; Li, Y.; Zhou, B.L.; Zhu, Y.; Liu, H.L. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China. Appl. Geochem. 2017, 77, 52–61. [Google Scholar] [CrossRef]
- Qi, C.C.; Wu, F.C.; Deng, Q.J.; Liu, G.J.; Mo, C.L.; Liu, B.J.; Zhu, J. Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China. Microchem. J. 2011, 97, 44–51. [Google Scholar] [CrossRef]
- Wei, C.Y.; Ge, Z.F.; Chu, W.S.; Feng, R.W. Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ. Exp. Bot. 2015, 109, 31–39. [Google Scholar] [CrossRef]
- Tan, D.; Long, J.M.; Li, B.Y.; Ding, D.; Du, H.H.; Lei, M. Fraction and mobility of antimony and arsenic in three polluted soils: A comparison of single extraction and sequential extraction. Chemosphere 2018, 213, 533–540. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Zhu, Y.G.; Luo, L.; Lei, M.; Li, X.; Mulder, J. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 2011, 159, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Li, J.N.; Wei, Y.; Zhao, L.; Zhang, J.; Shangguan, Y.X.; Li, F.S.; Hou, H. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicol. Environ. Saf. 2014, 110, 308–315. [Google Scholar] [CrossRef]
- Guo, W.J.; Fu, Z.Y.; Wang, H.; Song, F.H.; Wu, F.C.; Gisey, J.P. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan, China. Microchem. J. 2018, 137, 181–189. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, F.B.; Yuan, C.L.; Li, B.; Liu, T.X.; Liu, C.S.; Du, Y.H.; Liu, C.P. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO3−. Sci. Total Environ. 2019, 650, 633–641. [Google Scholar] [CrossRef]
- Basnet, P.; Amarasiriwardena, D.; Wu, F.C.; Fu, Z.Y.; Zhang, T. Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China. Environ. Pollut. 2014, 195, 148–156. [Google Scholar] [CrossRef]
- Zeng, D.F.; Zhou, S.J.; Ren, B.Z.; Chen, T.S. Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China. J. Anal. Methods Chem. 2015, 2015, 909724. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Endo, G.; Okamoto, A.; Yoo, Y.; Horiguchi, S. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutat. Res. 1991, 264, 163–170. [Google Scholar] [CrossRef]
- Schnorr, T.M.; Steenland, K.; Thun, M.J.; Rinsky, R.A. Mortality in a cohort of antimony smelter workers. Am. J. Ind. Med. 1995, 27, 759–770. [Google Scholar] [CrossRef]
- Nigra, A.E.; Ruiz-Hernandez, A.; Redon, J.; Navas-Acien, A.; Tellez-Plaza, M. Environmental metals and cardiovascular disease in adults: A systematic review beyond lead and cadmium. Curr. Environ. Health Rep. 2016, 3, 416–433. [Google Scholar] [CrossRef]
- Parvez, F.; Chen, Y.; Brandt-Rauf, P.W.; Bernard, A.; Dumont, X.; Slavkovich, V.; Argos, M.; D’Armiento, J.; Foronjy, R.; Hasan, M.R.; et al. Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh. Environ. Health Perspect. 2008, 116, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, G.; Fowler, B.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed.; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- USEPA. Water Related Fate of the 129 Priority Pollutants; USEPA: Washington, DC, USA, 1979.
- European Council. Directive 76/464/EEC—Water Pollution by Discharges of Certain Dangerous Substance discharged into the aquatic environment of the community. OJ L 1976, 129, 23–29. [Google Scholar]
- Tang, Z.E.; Deng, R.J.; Zhang, J.; Ren, B.Z.; Hursthouse, A.S. Regional distribution characteristics and ecological risk assessment of heavy metal pollution of different land use in an antimony mining area-Xikuangshan, China. Hum. Ecol. Risk Assess. 2019. [Google Scholar] [CrossRef]
- Zhou, S.J.; Hursthouse, A.S.; Chen, T.S. Pollution characteristics of Sb, As, Hg, Pb, Cd, and Zn in soils from different zones of Xikuangshan antimony mine. J. Anal. Methods Chem. 2019, 2019, 2754385. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-al-mamun, M.; Kundu, G.K. Heavy metals in the industrial sludge and their ecological risk: A case study for a developing country. J. Geochem. Explor. 2017, 172, 41–49. [Google Scholar] [CrossRef]
- China State Environmental Protection Administration. Environmental Quality Standards for Surface Water; CSEPA: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C.M.S. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, G. Background Value of Soils in Hunan and Their Investigation Methods; China Environmental Science Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- He, J.Y.; Yang, Y.; Christakos, G.; Liu, Y.J.; Yang, X. Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma 2019, 337, 359–367. [Google Scholar] [CrossRef]
- Häkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–986. [Google Scholar] [CrossRef]
- Huang, X.F.; Hu, J.W.; Li, C.X.; Deng, J.J.; Long, J.; Qin, F.X. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China. Int. J. Environ. Health Res. 2009, 19, 405–419. [Google Scholar] [CrossRef]
- Wang, N.N.; Wang, A.H.; Kong, L.H.; He, M.C. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610–611, 167–174. [Google Scholar] [CrossRef]
- Sun, J.X.; Luo, T.; Zhou, F.; Zou, W.M.; Yan, J.L. Pollution characteristics and assessment of heavy metals in surface water of Yancheng coastal area in Jiangsu. Environ. Pollut. Control 2018, 40, 1294–1299. (In Chinese) [Google Scholar]
- Sun, Q.Z.; Zang, S.Y. Pollution evalution and forecast of heavy metal in lake of Zhalong Wetland, China. J. Agro-Environ. Sci. 2012, 31, 2242–2248. (In Chinese) [Google Scholar]
- Entwistle, J.A.; Hursthouse, A.S.; Marinho Reis, P.A.; Steward, A.G. Matalliferous mine dust: Human health impacts and potential determinants of disease in mining communities. Curr. Pollut. Rep. 2019, 5, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Bai, S.Q.; Du, B.Q. Heavy metal pollution of dust topsoil and roadside tree near by main city roadways. J. Southwest Jiaotong Univ. 2006, 41, 68–73. (In Chinese) [Google Scholar]
- Lu, X.W.; Pan, H.Y.; Wang, Y.W. Pollution evaluation and source analysis of heavy metal in roadway dust from a resource-typed industrial city in Northwest China. Atmos. Pollut. Res. 2017, 8, 587–595. [Google Scholar] [CrossRef]
- Shi, D.Q.; Lu, X.W. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Lanzerstorfer, C. Heavy metals in the finest size fractions of road-deposited sediments. Environ. Pollut. 2018, 239, 522–531. [Google Scholar] [CrossRef]
- Nikolaidis, C.; Zafiriadis, I.; Mathioudakis, V.; Constantinidis, T. Heavy Metal Pollution Associated with an Abandoned Lead-zinc Mine in the Kirki Region, NE Greece. Bull. Environ. Contam. Toxicol. 2010, 85, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Garcí-carmona, M.; Garcí-robles, H.; Turpí torrano, C.; Fernández ondoño, E.; Lorite moreno, J.; Sierra aragón, M.; Martín peinado, F.J. Residual pollution and vegetation distribution in amended soils 20 years after a pyrite mine tailings spill (Aznalcólar, Spain). Sci. Total Environ. 2019, 650, 933–940. [Google Scholar] [CrossRef]
Node | Sample No. | PTEs Concentration/(mg·L−1) | |||||
---|---|---|---|---|---|---|---|
Sb | As | Hg | Pb | Cd | Zn | ||
Ore concentrate tank | W1 | 2.351 | 0.792 | 1.96 × 10−5 | 0.254 | 1.16 × 10−5 | 7.986 |
W2 | 1.987 | 0.695 | 1.59 × 10−5 | 0.263 | 1.35 × 10−5 | 7.521 | |
W3 | 2.166 | 0.692 | 1.15 × 10−5 | 0.249 | 1.08 × 10−5 | 6.924 | |
Average | 2.168 | 0.726 | 1.57 × 10−5 | 0.255 | 1.20 × 10−5 | 7.387 | |
filter tank | W4 | 4.375 | 1.018 | 3.12 × 10−5 | 1.472 | 1.79 × 10−5 | 9.145 |
W5 | 4.762 | 1.006 | 2.87 × 10−5 | 1.554 | 1.58 × 10−5 | 8.927 | |
W6 | 4.109 | 0.994 | 3.57 × 10−5 | 1.583 | 2.04 × 10−5 | 9.005 | |
Average | 4.415 | 1.006 | 3.19 × 10−5 | 1.536 | 1.80 × 10−5 | 9.026 | |
Tailings tank | W7 | 2.774 | 0.852 | 1.02 × 10−5 | 0.024 | 9.57 × 10−6 | 6.785 |
W8 | 2.584 | 0.735 | 9.54 × 10−6 | 0.037 | 9.75 × 10−6 | 6.548 | |
W9 | 2.981 | 0.729 | 9.96 × 10−6 | 0.035 | 8.76 × 10−6 | 7.006 | |
Average | 2.780 | 0.772 | 9.90 × 10−6 | 0.032 | 9.36 × 10−6 | 6.780 | |
Tailing reservoir | W10 | 3.157 | 0.747 | 3.27 × 10−5 | 0.065 | 1.07 × 10−5 | 10.968 |
W11 | 3.336 | 0.692 | 3.54 × 10−5 | 0.135 | 1.12 × 10−5 | 9.997 | |
W12 | 3.749 | 0.701 | 2.99 × 10−5 | 0.104 | 1.19 × 10−5 | 11.065 | |
Average | 3.414 | 0.713 | 3.27 × 10−5 | 0.101 | 1.13 × 10−5 | 10.677 | |
Standard value of surface water class IV | 0.005 | 0.1 | 0.001 | 0.05 | 0.005 | 2.0 |
Node | Sample No. | PTEs Content/(mg·kg−1) | |||||
---|---|---|---|---|---|---|---|
Sb | As | Hg | Pb | Cd | Zn | ||
Crushing and screening plant | D1 | 1845.274 | 784.026 | 1.631 | 238.961 | 5.781 | 645.327 |
D2 | 1650.716 | 655.772 | 0.954 | 207.542 | 6.174 | 598.182 | |
Average | 1747.995 | 719.899 | 1.293 | 223.252 | 5.978 | 621.755 | |
Fine ore bin | D3 | 2478.571 | 1425.322 | 1.138 | 117.264 | 2.544 | 758.074 |
D4 | 2275.693 | 1109.845 | 1.204 | 561.029 | 3.017 | 812.036 | |
Average | 2377.132 | 1267.584 | 1.171 | 339.147 | 2.781 | 785.055 | |
Concentrate transportation route | D5 | 1966.467 | 958.457 | 0.413 | 375.025 | 4.559 | 514.637 |
D6 | 2014.278 | 915.028 | 0.652 | 300.416 | 5.013 | 498.753 | |
Average | 1990.373 | 936.743 | 0.533 | 337.721 | 4.786 | 506.695 | |
Hunan Province soil background values [29] | 2.98 | 14 | 0.09 | 27 | 0.079 | 95 |
Node | Sample No. | PTEs Content/(mg·kg−1) | |||||
---|---|---|---|---|---|---|---|
Sb | As | Hg | Pb | Cd | Zn | ||
Tailing dam | S1 | 2865.591 | 1082.167 | 3.273 | 59.628 | 2.151 | 590.492 |
S2 | 2517.722 | 1141.047 | 3.017 | 55.467 | 2.008 | 643.057 | |
S3 | 2641.058 | 897.651 | 2.669 | 54.235 | 1.946 | 537.867 | |
Average | 2674.790 | 1040.288 | 2.986 | 56.433 | 2.035 | 590.472 |
Node | Sample No. | PTEs Content/(mg·kg−1) | |||||
---|---|---|---|---|---|---|---|
Sb | As | Hg | Pb | Cd | Zn | ||
Soils surrounding the Tailings | S4 | 1652.147 | 106.205 | 2.481 | 40.028 | 1.127 | 499.671 |
S5 | 1834.156 | 112.055 | 2.338 | 38.863 | 1.326 | 548.173 | |
S6 | 1477.084 | 97.937 | 1.907 | 39.042 | 1.103 | 521.467 | |
Average | 1654.462 | 105.399 | 2.242 | 39.311 | 1.185 | 523.104 | |
Hunan Province soil background values [29] | 2.98 | 14 | 0.09 | 27 | 0.079 | 95 |
Node | PI | Eir | RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sb | As | Hg | Pb | Cd | Zn | Sb | As | Hg | Pb | Cd | Zn | ||
Soils surrounding the Tailings | 555.18 | 7.52 | 24.91 | 1.46 | 15.00 | 5.51 | 10548.42 | 75.20 | 996.4 | 7.30 | 1500.00 | 5.51 | 13132.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Deng, R.; Hursthouse, A. Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China. Processes 2020, 8, 29. https://doi.org/10.3390/pr8010029
Zhou S, Deng R, Hursthouse A. Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China. Processes. 2020; 8(1):29. https://doi.org/10.3390/pr8010029
Chicago/Turabian StyleZhou, Saijun, Renjian Deng, and Andrew Hursthouse. 2020. "Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China" Processes 8, no. 1: 29. https://doi.org/10.3390/pr8010029
APA StyleZhou, S., Deng, R., & Hursthouse, A. (2020). Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China. Processes, 8(1), 29. https://doi.org/10.3390/pr8010029