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Abstract: This paper presents an economic reliability-aware model predictive control (MPC) for
the management of drinking water transport networks (DWNs). The proposed controller includes
a new goal to increase the system and components reliability based on a finite horizon stochastic
optimization problem with joint probabilistic (chance) constraints. The proposed approach is based on
a single-layer economic optimization problem with dynamic constraints. The inclusion of components
and system reliability in the MPC model using an Linear Parameter Varying (LPV) modeling approach
aims to maximize the availability of the system by estimating system reliability. On the other hand,
the use of a LPV-MPC control approach allows the controller to consider nonlinearities in the
model in a linear like way. Moreover, the resulting MPC optimization problem can be formulated
as a Quadratic Programming (QP) problem at each sampling time reducing the computational
burden/time compared to solving a nonlinear programming problem. The use of chance-constraint
programming allows the computation of an optimal strategy with a pre-established risk acceptability
levels to cope with the uncertainty of the demand forecast. Finally, the proposed approach is applied
to a part of the water transport network of Barcelona for demonstrating its performance. The obtained
results show that the system reliability of the DWN is maximized compared with the other approaches.

Keywords: drinking water networks; model predictive control; reliability; linear parameter varying;
operation and management; economic cost

1. Introduction

The real-time control and supervision of drinking water networks (DWNs) is a field of increased
interest given the environmental, economic and social impact [1]. DWNs are critical infrastructures in
urban environments. These networks provide important services in modern society and maintaining
the service availability is an important requirement. Therefore, reliability and resilience are important
properties to be guaranteed in DWNs while being subject to constraints and continuously varying
conditions of probabilistic nature [2]. DWNs are multivariate dynamic constrained systems that are
described by the interconnection of several subsystems (tanks, actuators, sources, nodes and consumer
sectors). Moreover, DWN optimal management is a complex challenge for water utilities that can
be addressed as a multi-objective optimization problem. This problem can be solved online using a
Model Predictive Control (MPC) scheme [3].
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Generally, the structure of the MPC approach follows a moving horizon strategy. The control
action is obtained solving an optimal control problem that provides a control action sequence in a
prediction horizon that minimizes the considered control objectives and satisfies the set of constraints
including the system model and physical/operational limitations. Therefore, MPC can provide suitable
strategies to achieve the DWN operational control improving their performance, as it allows computing
optimal control approaches ahead of time for all the pressure and flow control elements [4]. Revising the
literature, different approaches can be found that show the benefits of the optimal DWN management.
In [5–7], by optimizing a mathematical function that considers operational goals in a specific time
horizon and using a model of the network dynamics and demand forecasts, optimal strategies are
computed. These references also assumed predicted disturbances as defined in the model, but involve
a soft constraint to penalize evacuation of water volume below a heuristic safety threshold without
forcing any target regulation. Regarding optimised control strategies for managing water systems, MPC
is not implemented in a classical way, as there is no reference volume to be tracked [8]. The standard
MPC forces the system to follow the set point, but it does not guarantee that the system evolution
toward the set points is obtained in an economic efficient way. The general aim in the operation of
several process industries, as, e.g., DWNs, is the reduction of costs associated to the consumption
of energy, which is not the main goal of standard MPC. For this purpose, Economic MPC (EMPC)
provides a systematic method for the optimization of economic system operation [9]. The problem
of optimization associated to the EMPC strategy aims at obtaining a family of optimal set points
considering economic efficiency rather than aiming that the controlled system reach a certain set
point [9].

The use of control strategies that take into account the system and component reliability that
guarantee the quality of service is necessary. The health monitoring of the actuator and system should
be considered for increasing the system reliability, minimising the fault appearance and reducing
the operational costs. In the later stages, system reliability in the process of control system has been
considered using a Prognosis and Health Management (PHM) framework. This is because reliability is
a standard method for evaluating how long the system will achieve its function without malfunctions.
Moreover, it can be used to predict future damages in the system according to the health state of its
components [10].

In the past few years, the problems of system reliability and actuator lifetime in service has
received considerable interest for the researcher community. In [11], to decrease the maintenance
cost, the actuator lifetime is regarded as a controlled parameter that is considered as additional
goal when using a linear quadratic optimal controller. On the other side, MPC predicts the suitable
control actions to obtain optimal performance according to multi-objective cost functions and physical
constraints, and therefore it can be considered as a suitable approach for developing health-aware
control schemes. An MPC strategy based on distributing the loads among redundant actuators is
introduced in [12], while forcing constraints to guarantee that the accumulated actuator degradation
will not arrive at the unsafe level at the end of the prediction horizon. In [13], the authors proposed
a health-aware MPC controller that incorporates a fatigue-based prognosis into MPC to minimize
the component damage. Most of the other methods that consider component health and system
reliability management stand within the structure of fault-tolerant control or in the area of preservation
scheduling see, e.g., Gallestey et al. [14], Khelassi et al. [15], Salazar et al. [16] and references therein.
However, none of these methods consider uncertainty.

The reliability is the system’s ability (or component) to carry out its expected functions.
The reliability of DWN is influenced by different conditions such as the capacity and the quality
of the water accessible at the sources and the pump/pipe failure rates [17,18]. In most of the
works, the actuator reliability is assumed that follows an exponential distribution that varies with
the control action [19]. The system reliability is characterised according to the interdependence
topology based on the combining of each actuator reliability. Subsequently, the system reliability has
a demonstrative relationship with the control input that leads to a nonlinear mathematical model.
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In several studies, this is achieved by including a damage index in the optimization problem and
establishing a trade-off by weight tuning [20] or by imposing constraints with respect to the actuator
reliability [17]. However, considering the reliability at the actuator level not at the system level is the
main drawback of the previous methods; otherwise, it leads to the use of nonlinear MPC according
to nonlinearity of the resulting constraints. Generally, Economic Nonlinear MPC (ENMPC) implies
a high computational cost and, the existing gradient-based numerical algorithms do not certify that
the obtained solution corresponds to the global one because of the non-convexity of the associated
optimization problem. Transforming the nonlinear optimization problem into a quadratic problem
through a linearisation method is one way of addressing the non-convexity problem and guaranteeing
a unique optimum. In this way, the system is modelled by an incremental model because the model
has to be linearised at each iteration. This approach has been improved by means of of the use Linear
Parameter Varying (LPV) models that do not require linearisation [21]. The LPV models can describe
both nonlinear phenomena and time-varying that can be estimated/measured online.

Another weakness of previous approaches combining reliability analysis and MPC is the
conservatism of the resulting control strategies, which affects negatively the efficient DWN operation.
Furthermore, in real applications, the assumption of bounded disturbances in real applications is not
always satisfied. Thus, constraint violations can not be avoided because of the appearance of faults,
unexpected events, etc. A more realistic representation of uncertainty is based on using the stochastic
approach that leads to less conservative control methods by incorporating explicit disturbance models
in the control design and by converting hard constraints into probabilistic constraints. The stochastic
approach is a sophisticated theory in the field of optimization, but a revived consideration has been
provided to the stochastic programming methods as powerful tools for the design of controllers,
leading to the stochastic MPC, which has a particular alternative called chance-constrained MPC
(CC-MPC) [22,23]. The stochastic control approach that represents robustness in terms of probabilistic
(chance) constraints, which need that the probability of violation of any operational condition or
physical constraint is under a designated value. By placing this value suitably, the user/operator can
obtained the desired trade-off between robustness and performance. For related works that proposed
the CC-MPC approach in water networks the reader is referred to [24,25]. Some economic-oriented
controller that consider the reliability issue has been proposed [20], but without considering reliability
at the system level and probabilistic constraints based on the reliability of the system.

The aim of this paper is to include in an EMPC strategy for DWN an additional objective that takes
into account PHM information obtained by the online evaluation of the system reliability. The system
reliability is incorporated into the control algorithm by using an augmented model that includes
both the reliability and DWN models. As the reliability model of the whole DWN is nonlinear,
its model is expressed as an LPV model such that at each time instant the varying parameters are
updated according to the value of the scheduling variables. This allows to solve the optimization MPC
problem associated to the health-aware approach using quadratic programming instead of nonlinear
programming. Considering the probabilistic nature of system reliability, it is included in the MPC
optimization problem in the form probabilistic constraints as the demands (disturbances) using the
chance constraints programming paradigm. The resulting control inputs obtained by the proposed
health-aware MPC approach are able to achieve the economic control objectives and simultaneous to
increase the lifespan and reliability of the system components.

Chance-constraints programming allow to determine an optimal strategy by establishing the
desired level of infeasibility and system reliability. Moreover, it allows considering the system reliability,
which is assessed online using an LPV-MPC strategy; representing the main contribution of this paper.
The second contribution is to propose an advanced health-aware LPV-MPC approach that formulates a
quadratic optimization problem taking into account the functional dependency of scheduling variables
and state vector. This approach avoids the use of nonlinear optimization. Moreover, it uses chance
constraints programming to manage dynamically designate safety stocks in flow-based networks to
satisfy nonstationary flow demands and system reliability.
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The structure of the paper is as follows. The control-oriented model considered for DWN when
considering the transportation layer is introduced in Section 2. Section 3 presents the chance-constraints
programming and the way to use it into the MPC controller. The system reliability modeling and
the relationship between reliability and chance constricted are described in Section 4. In Section 5,
the economic reliability-aware MPC-LPV including chance-constraints programming is provided. The
results of the application of the proposed control strategy to the DWN network using the proposed
case study are analyzed and summarized in Section 6. Finally, the conclusions and research future
paths are presented in Section 7.

Notation: Throughout this paper R,R+,Rn,Rm×n indicate the field of real numbers, the set of
non-negative real numbers, the set of column real vectors of length n, and the set of m by n real
matrices, respectively. Equivalently, I+ presents the set of non-negative integer numbers including
zero. Define the set I[a,b] := {x ∈ I+|a ≤ x ≤ b} for some a, b ∈ I+ and I≥c := {x ∈ I+|x ≥ c} for
some c ∈ I+. The operator ⊕ is direct sum of matrices (block diagonal concatenation). Furthermore,
‖.‖ denotes the spectral norm for matrices and ||.||2 is the squared 2-norm symbol. The superscript >

represents the transpose and operators <,≤,=,>,≥ indicate element-wise relations of vectors.

2. EMPC for Transport Water Networks

2.1. Control-Oriented Model

In the literature, several control-oriented models for DWNs can be found depending if the
transportation or distribution layer is considered. (see, e.g., in [26,27]). In this paper, a flow-based
control-oriented modeling approach is considered following [6,28] since the transportation layer is
considered. A DWN is composed by pipes, water tanks, pumping stations, and valves used for
consumer water supply. To derive the control oriented-model, the state vector x ∈ Rnx is defined to
represent the tank volumes. The vector u ∈ Rnu of controlled inputs is associated to the flow rates
through the actuators (pumps and valves) of the network, and the vector dm ∈ Rnd of disturbances
(demands) as the collection of flow rates required by the consumers at demand nodes. By means fo the
flow–mass balance relations in the tanks and nodes, a discrete-time model based on linear differential
algebraic equations (DAEs) for all time instant k ∈ Z≥0 can be formulated for a given DWN as follows,

x(k + 1) = Ax(k) + Bu(k) + Bddm(k), (1a)

0 = Euu(k) + Eddm(k), (1b)

where difference Equation (1a) model the dynamics of the storage tanks, whereas the algebraic
relations (1b) describe the mass balance at junction nodes. A ∈ Rnx×nx , B ∈ Rnx×nu , Bd ∈ Rnx×nd ,
Eu ∈ Rnd×nu , Ed ∈ Rnd×nd , and C ∈ Rny×nx are time-invariant matrices of that depends on the network
topology. The system is subject to physical input and state constraints provided by convex and closed
polytopic sets defined as

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (2a)

u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (2b)

for all k ∈ Z≥0, where G ∈ Rmx×nx , g ∈ Rmx , H ∈ Rmu×nu , and h ∈ Rmu are vectors/matrices
collecting the system constraints, signifying mu ∈ Z≥0 and mx ∈ Z≥0, the number of input and
state constraints, respectively. Concerning the operation of the considered flow-based networks,
the following assumptions are considered in this paper.

Assumption 1. The demands in dm(k) and the states in x(k) are observable at each time instant k ∈ Z≥0,
also the pair (A, B) is stabilizable.
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Assumption 2. The demand realizations at the current time instant k ∈ Z≥0 can be represented as

dm(k) = dm(k) + d̃m(k), (3)

where dm(k) is the vector of expected disturbances that can be forecast, and d̃m(k) is the vector of probabilistic
independent forecasting errors with nonstationary uncertainty and a known (or approximated) quasi-concave
probability distribution D

(
0, ∑(dm,(j)(k))

)
. Consequently, each j-th row of dm(k) is described by an stochastic

variable dm,(j)(k)D(j)
(
dm,(j)(k), ∑(d̃m,(j)(k))

)
, where dm,(j)(k) represents the mean and ∑(d̃m,(j)(k))

the variance.

2.2. EMPC Formulation

Computing the input commands ahead of time, to obtain the optimal performance of the
network according to a set of control goals, is the purpose of applying MPC techniques for managing
water transportation networks [1]. The control goal is to minimize a convex stage cost function
` : Z≥0 ×X×U −→ R≥0, which might carry any functional relationship with the economics of
the system operation. Therefore, the control aim can be expressed for minimization of a convex
multi-objective cost function, which involves three functional objects for managing the DWN with
different types:

• Economic objective: Minimizing water production and transport costs while providing the
demanded volume.

• Safety objective: The safety volumes in the tanks are preserved guaranteeing, up to some level,
the water supply under connected variations in the demand.

• Smoothness objective: For avoiding overpressures in pipes and damage in actuators, the actuators
are managed based on the smooth control actions.

2.2.1. Economic Cost Minimization

Minimizing the economical costs that include water production and electrical costs related to
pumping is the main control objective of the DWN. Transporting drinking water to proper elevation
levels by the network involves significant electricity costs due to pumping. Therefore, the cost function
related to this objective can be expressed as

`e(k) , α(k)>Weu(k), (4)

where α(k) , (α1 + α2(k)) ∈ Rnu , α1 ∈ Rnu denotes a fixed water production costs that related to the
water treatments, and α2 ∈ Rnu corresponds to a time-varying water cost associated to pumping that
varies in each time instant k with respect to the dynamic electricity tariff. We indicates the weighting
term that allows to prioritize the economic control objective in the complete objective function.

2.2.2. Safety Management

To preserve water stocks in spite of unexpected changes in the water demands, an appropriate
safety storage level for each tank is required to be guaranteed. This goal can be formulated in the
following manner,

`s(k) ,

{
‖x(k)− xs‖2, i f x(k) ≤ xs

0, otherwise
(5)

where xs indicates the tanks safety levels. This piecewise linear formulation can be avoided by
considering that the safety cost function can be expressed through a soft constraint by using a slack
variable ξ, which is introduced to retain feasibility of the optimization problem and minimized

`s(k) , ξ>(k)Wsξ(k), (6)
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and the soft constraint is defined as
x(k) ≥ xs − ξ(k), (7)

and Ws is diagonal positive definite matrix that allows to prioritize this objective in the complete
objective function.

2.2.3. Control Action Smoothness

Pumps and valves are the considered actuators in a DWN. Therefore, the control actions obtained
by the MPC controller must be smooth for the purpose of preserving the component lifetime. To achieve
the smoothing effect, the variation of the control actions among two consecutive time instants is
penalized as follows,

`∆u(k) , ∆u(k)>W∆u∆u(k), (8)

where ∆u(k) , u(k)− u(k− 1), and W∆u is a weighting matrix that allows prioritizing this objective
in the complete objective function.

2.2.4. EMPC Optimization Problem Formulation

The EMPC strategy can be implemented by solving a finite-horizon optimization problem over a
prediction horizon Np, where the multi-objective cost function is minimized subject to the prediction
model and a set of system constraints. According to the network model (1), the MPC controller design
is based on minimizing the following cost function in the prediction horizon Np,

J =
Np

∑
l=0

(`e(l|k) + `s(l|k) + `∆u(l|k)). (9)

where at each time instant, the following optimization problem is solved online.

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (10a)

subject to:

x(l + 1|k) = Ax(l|k) + Bu(l|k) + Bddm(l|k), l = 0, · · · , Np − 1 (10b)

0 = Euu(l|k) + Eddm(k), l = 0, · · · , Np − 1 (10c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (10d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (10e)

x(l|k),∈ X, l = 1, · · · , Np (10f)

ξ(l|k) ≥ 0, l = 0, · · · , Np (10g)

x(0|k) = x(k), (10h)

The optimal control actions sequence u∗(k) = {u(l|k)}l∈Z[0,Np−1]
, x∗(k) = {x(l|k)}l∈Z[1,Np ]

, and

ξ∗(k) = {xi(l|k)}l∈Z[1,Np ]
are obtained online. Considering the receding horizon philosophy [3],

the procedure is based on solving the optimization problem (10a) from the current time instant k to
k+ Np by using x(0|k) as the initial condition that is computed from measurements (or state estimation)
at time k. Then, by applying the first value u∗(0|k) from the optimal input sequence u∗(k) to the system,
the procedure goes to the next time instant. To calculate u∗(0|k + 1) at time k + 1, the optimization
problem (10a) is solved from k + 1 to k + 1 + Np, and initial states x(0|1 + k) from measurements (or
state estimation) are updated at time k + 1. The same method is iterated for the following time instants.
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3. Chance-Constrained Model Predictive Control

If the stochastic nature of disturbances (demands) and reliability of components of the system
is not explicitly considered, an optimal solution of (10) satisfying all constraints can not be found in
real scenarios. Therefore, to guarantee feasibility of the optimization problem (10), it is appropriate
to relax the original constraints that involve stochastic elements with probabilistic statements in the
form of chance constraints. In this manner, the constraints are needed to be satisfied with predefined
risk levels to manage the uncertainty and component reliability of the system. Chance-constrained
programming is a technique of stochastic programming dealing with constraints of the general form as

P[f(v, ζ) ≤ 0] ≥ 1− δζ , (11)

where P indicates the probability operator, v ∈ Rnv is the decision vector, ζ ∈ Rnζ a random variable,
and f : Rnv ×Rnζ −→ Rnc a constraint mapping. The level δζ ∈ (0, 1) is user given and defines the
preference for safety of the decision v. The constraint (11) means that we wish to take a decision v
that satisfies the nc-dimensional random inequality system f(v, ζ) ≥ 0 with high enough probability.
As demonstrated in [29], if f(., .) is jointly convex in (v, ζ) and Φ =∆ P[.] is quasi-concave, then the
feasible set

Ψ(δζ) =
∆ {v|P[f(v, ζ) ≤ 0] ≥ 1− δζ} (12)

is convex for all δζ(0, 1). All chance-constrained models need prior knowledge of the acceptable risk
δζ connected with the constraints. A lower risk acceptability proposes a harder constraint. In general,
joint chance constraints lack from analytic expressions because of the involving multivariate probability
distribution [30]. In this paper, by following the results in [30,31], a uniform distribution of the joint
risk is approximated by upper bounding the joint constraint and assuming a similar distribution
of the joint risk among a set of individual chance constraints are transformed inside equivalent
deterministic constraints.

Consider the general joint chance constraint (11), and define f(v, ζ) =∆ ζ − Fv with F ∈ Rζ×nv .
Therefore, the additive stochastic element is separable and the following chance constraint is achieved,

P[ζ ≤ Fv] ≥ 1− δζ . (13)

Then, by rewiring ω =∆ Fv, for any duple (ζ, ω), it follows that

Φζ(ω) = P[{ζ1 ≤ ω1, ..., ζnc ≤ ωnc}]. (14)

Describing the events Ci =
∆ {ζi ≤ ωi}, ∀i ∈ Znc

1 (as e.g., faults in the actuators or unexpected
changes in the demand), it follows that

Φζ(ω) = P[Ci ∩ ...∩ Cnc ]. (15)

Indicating the complements of the events Ci by Cc
i =∆ {ζi > ωi}, and it is obvious from probability

theory that
C1 ∩ ...∩ Cn = (Cc

1 ∪ ...∪ Cc
nc)

c, (16)

and consequently

Φζ(ω) = P[Ci ∩ ...∩ Cnc ] (17a)

= P[(Cc
1 ∪ ...∪ Cc

nc)
c] (17b)

= 1− P[(Cc
1 ∪ ...∪ Cc

nc)
c] ≤ 1− δζ . (17c)
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By using the union bound, the Boole inequality let to bound the result in (17c), declaring that for
a countable set of events, the probability that at least one event occurs is not higher than the sum of the
individual probabilities [32], such that

P
[
∪nc

i=1 Ci

]
≤

nc

∑
i=1

P[Ci], (18)

and, by applying (18) to (17c), it yields to

nc

∑
i=1

P[Cc
i ] ≤ δζ ⇐⇒

nc

∑
i=1

(1− P[Ci]) ≤ δζ . (19)

Then, a set of constraints rises from previous results as sufficient conditions to enforce the joint
chance constraint (13), by allotting the joint risk δζ in nc separate risks δζ,i, i ∈ Znc

i . These constraints
are described as follows,

P[Ci] ≥ 1− δζ,i, ∀i ∈ Znc
1 (20a)

nc

∑
i=1

δζ,i ≤ δζ , (20b)

0 ≤ δζ,i ≤ 1, (20c)

where (20a) produces the set of nc effective individual chance constraints, which bounds the probability
that each inequality of the receding horizon problem could not be satisfied. Moreover, (20b) and (20c)
are conditions forced to bound the new single risks in such a way that the joint risk bound is not
breached. Each solution that satisfies the aforesaid constraints is guaranteed to provide (13).

According to the satisfaction of each individual constraint is an event Ci, ∀i ∈ Znc
i . A joint chance

constraint needs that the connection of all the individual constraints is satisfied with the wanted
probability level, such as

P
[
∩nc

i=1 Ci

]
≥ 1− δζ . (21)

Considering that each individual constraint is probabilistically dependent, the level of
conservatism can be derived by using the inclusion–exclusion principle for the union of finite events,
Ci, ∀i ∈ Znc

1 , which proves the following equality,

P
[
∪nc

i=1 Ci

]
=

nc

∑
i=1

P[Ci]− ∑
1≤i<j≤nc

P
[
Ci ∩ Cj

]
+ ∑

1≤i<j<k≤nc

P
[
Ci ∩ Cj ∩ Ck

]
− ... + (−1)nc−1P

[
∩nc

i=1 Ci

]
.

(22)

Note that by considering as an event a fault in an actuator, it can be observed that Equation (22)
has a similar as formulation as the one used for evaluating the system reliability based on the
component reliability.

In a DWN, the constraints come from models (10b) and (10c) that can be formulated as chance
constraints statements taking into account the probabilities associated to the component reliability.
Considering only faults in actuators, the reliability of the system is related to the system inputs ui(k).
Therefore, (11) can be formulated in case of the actuators as follows,

P[f(ui(k), ζi(k)) ≤ 0] ≥ 1− δζi , (23)

where ζ(k) ∈ {0, 1} is a stochastic variable which considers if the actuator is one of two states
{Unvailable, Available} (or {0, 1}) defined as follows,
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ζi(k) =

{
1, Ri(k) > 0

0, Ri(k) = 0.
(24)

where Ri(k) is the actuator reliability. In the case that ζi(k) = 1, the input ui(k) associated to the i-th
actuator is bounded by (2b); otherwise, an additional constraint setting ui(k) = 0 should be included.
Furthermore, to determine the reliability associated to the system that associates a probability to the
system model constraint (1), the joint-chance constraint probability calculation (22) should be used
leading to the following probabilistic formulation for the MPC optimization problem (10),

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (25a)

subject to

P
[

Ax(l|k) + B(ζi)u(l|k) + Bddm(l|k), (25b)

Eu(ζi)u(l|k) + Eddm(k)
]
≥ 1− δ, l = 0, · · · , Np − 1 (25c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (25d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (25e)

x(l|k),∈ X, l = 1, · · · , Np (25f)

ξ(l|k) ≥ 0, l = 0, · · · , Np (25g)

x(0|k) = x(k). (25h)

The main difficulty in solving this stochastic problem using chance constraints is that at each time
iteration, the probabilities associated to the system reliability should be updated taking into account
the value of the optimal control actions ui. In the following section, a solution procedure is proposed
to solve this problem.

4. Augmenting Network Model with the Reliability Model

As discussed in the introduction, one of the contributions of this work is to integrate the
information about system health in the MPC controller by using the reliability approach. In the
following, a procedure to derive the reliability model of the DWN is presented, considering that faults
can only occur in the actuators.

4.1. Reliability Model

In the literature, different types of distributions have been considered to characterize the evolution
of the reliability with time. The most commonly used are exponential, normal, log-normal, and Weibull
distributions [33]. Here, the exponential function is considered.

First, define the concept of failure rate which is important to obtain reliability. The general
explanation of failure rate, indicated by λ is presented as the fraction of the density of the stochastic
lifetime to the remainder function (i.e., conditional probability). Particularly, systems are designed to
work under different load values. According to [33], the load firmly affects the component failure rate.
Therefore, for presenting system reliability evaluation should be considered the load versus failure rate
relationship. A significant amount of literature has been produced to include the impact of the load
level in the reliability estimation [33]. In this paper, actuator failure rates under various load levels
are considering in function of the applied control input. The following exponential laws is the most
widely used relationship to characterize the variation of the actuator fault rates with the load
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λi = λ0
i exp

(
βiui(k)

)
, i = 1, 2, . . . , m (26)

where λ0
i represents the baseline failure rate (nominal failure rate) and ui(k) is the control action a time

k for the i-th actuator. βi is a constant parameter that depends on the actuator characteristics.
Accordingly to the failure rate definition, reliability of a system or component can be described

as follows

Definition 1. Reliability is determined as the probability that a system (or component) will perform their
functioning satisfactorily for a certain period of time subject to operating conditions [34].

From the mathematical point of view, reliability R(t) is defined as the probability of the successful
operation of a system in the intervening period from time 0 to time t:

R(t) = P(T > t), t ≥ 0 (27)

where T is a stochastic variable that describes time until failure. Furthermore, the unreliability of
system (or a component) is represented as follows.

Definition 2. The unreliability F(t) is determined as the probability that the component or system encounters
the first failure or has failed one or more times among the time interval 0 to time t.

Considering the system (or component) is always in one of the two states introduced in
Equation (24), the following relationship is provided,

F(t) + R(t) = 1. (28)

The reliability of a component R0(t) in the useful life period can be specified at a certain time t by
a starting point. Accordingly, R0,i(t) will denote the i-th actuator reliability determined considering
nominal operating conditions

R0,i(t) = exp
(
− λ0

i t
)
, i = 1, 2, . . . , m (29)

Therefore, the components reliability of a system with the i-th components can be computed by
exploiting the exponential function and the baseline reliability level R0,j as follows,

Ri(t) = R0,i exp
(
−
∫ k

0
λi(s) ds

)
, i = 1, 2, . . . , m (30)

In discrete-time, Equation (30) can be rewritten as

Ri(k + 1) = R0,i(k) + exp
(
− Ts

k+1

∑
s=0

λi(s)
)

, i = 1, 2, . . . , m (31)

where λi(s) is the failure rate that is acquired from the i-th component under varying load levels ui
and Ts is the sampling time.

4.2. Overall Reliability

The system lifespan can be determined by the reliability of the overall system that is denoted
as Rg(k). This reliability is obtained based on the computation of the reliabilities of elementary
components (or subsystems). Therefore, Rg(k) is influenced by the configuration of the actuator that
can be computed from the combination of parallel and/or series of subsystems (or components) [35].
However, there are several engineering systems that not attending the parallel, series, or connection
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of parallel and series structures. To manage the more complex situations, a graph model can be used
to determine if the component successful path existence can be identified to determine whether the
system is working correctly. A path for the graph network is a set of components, in such a way that
the system will succeed just when all the components are successful in that set. A minimal path Ps is a
set of components that relates to it, but the elimination any one of the components will create the set
not to be a successful path [35]. Therefore, the overall system reliability Rg(k) can be counted as

Rg(k) = 1−
s

∏
j=1

(
1− ∏

i∈Ps,j

Ri(k)
)

, (32)

where j = 1, . . . , s is minimal paths number. As mentioned in previous section, there is an indirect
relationship between conservatism of probability and the overall system reliability. In fact, the formula
obtained for overall reliability system (Equation (32)) can be obtained from Equation (22).

4.3. System Reliability Modeling

Aiming to include reliability in the MPC model, a transformation is needed allowing to estimate
reliability in a LPV framework. The considered transformation relies on applying the logarithm to (32).
Then, Equation (32) can be rewritten as follows,

log(Qg(k)) = log
( s

∏
j=1

(
1− ∏

i∈ps,j

Ri(k)
))

, (33)

and by introducing an change of variable

zj(k) = 1− ∏
i∈ps,j

Ri(k), (34)

Equation (33) can be expressed as

log(Qg(k)) =
s

∑
i∈ps,j

log(zj(k)). (35)

Considering (34), the log(zj(k)) can be determined as

log(zj(k)) =
log(zj(k))

log(1− zj(k))
∑

i∈ps,j

log Ri(k). (36)

Afterward, by renaming β j(k) =
log(zj(k))

log(1−zj(k))
in (36), (33) can be rewritten as

log(Qg(k)) =
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (37)

Finally, the system unreliability can be computed from the unreliability of the baseline system

log(Qg(k + 1)) = log(Qg(k)) +
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (38)
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5. Economic Reliability-Aware MPC-LPV Using Chance-Constraints

5.1. Economic Reliability Aware MPC-LPV

In this section, the integration of reliability model in the MPC controller augmenting the DWN
model is proposed. As previously discussed, the reliability of the DWN can be determined by
employing the control input. Thus, a new objective can be included in the MPC controller that aims to
preserve the system reliability additionally to consider the reliability model (38). Figure 1 summarizes
the procedure to obtain the augmented control model from the dynamic model of DWN by obtaining
the reliability model using Equation (32) or equivalently Equation (22).

System Model

Signal-Flow Graphs

Obtaining Minimal Path

Reliability Model

Augmented Model

for Control

Figure 1. Structure diagram of the proposed approach.

By following this procedure, the augmented MPC model can be formulated as follows,

xg(k + 1) = Agxr(k) + Bgu(k) + Bd,gdm(k),

yg(k) = Cgx(k),
(39)

where the state and output vector are defined by xg = [x, log(Qg), log(R1), . . . , log(Ri)]
T and

yg = [y, log(Qg)]T , respectively. The augmented matrices are defined as

Ag =



A 0nx×ni+1

01×nx 1 ∑s
i∈ps,j

β j(k)

0ni×nx Ini×ni


, Bg =



Bnu×nu

0

−λi × Ini×ni


,

Bd,g =



Bd,nu×nu

0ni+1×nBd


, Cg =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(40)
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Considering the control action ui(k) as the scheduling variable related to each actuator and state
in the augmented MPC model, it can be considered (39) as an LPV model. The model (39) cannot be
assessed before solving the optimization problem (10), due to the future state sequence is unknown
and cannot be determined. In reality, x(l|k) depends on the future control inputs u(k), and also on
the future scheduling parameters, thus LPV model can not instantiated offline but instead should
be evaluated online at each time instant k. In this way, the MPC optimization problem (10) can be
formulated as a QP problem by using an estimation of scheduling variables, θ̂ instead of utilizing θ.
That means the scheduling variables in the prediction horizon are estimated using the values from
the previous MPC iteration and applied to update the model matrices of the MPC controller. Indeed,
the control input sequence is utilized to change the model matrices used in the prediction horizon.
Therefore, the predicted parameters and sequence of states are obtained from the optimal control
sequence u(k), such as

x̃(k) =


x(l + 1|k)
x(l + 2|k)

...
x(Np|k)

 ∈ RNp,nx , Θ =


θ̂(l|k)

θ̂(l + 1|k)
...

θ̂(Np − 1|k)

 ∈ RNp,nθ . (41)

The vector Θ(k) includes parameters from time k to k + Np − 1 while the state prediction
is considered for time k + 1 to k + Np. Thus, by a small abuse of notation, ϕ is defined as
Θ(k) = ϕ([xT(k) x̃T(k)], u(k)). The vector Θ(k) consists of parameters from time k tok + Np − 1,
whereas the state prediction is performed for time k + 1 to k + Np.

Therefore, using Equation (41), the predicted states can be directly expressed as follows,

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (42)

where A ∈ Rnx×nx and B ∈ Rnx×nu are provided by Equations (43) and (44).

A(Θ(k)) =


I

A(θ̂(k))
A(θ̂(k + 1))A(θ̂(k))

...
A(θ̂(k + Np − 1))A(θ̂(k + Np − 2)) . . . A(θ̂(k))

 , (43)

and

B(Θ(k)) =


0 0 0 . . . 0

B(θ̂(k)) 0 0 . . . 0
A(θ̂(k + 1))B(θ̂(k)) B(θ̂(k + 1)) 0 . . . 0

...
...

. . .
. . .

...
A(θ̂k+Np−1) . . . A(θ̂(k + 1))B(θ̂(k)) A(θ̂k+Np−1) . . . A(θ̂(k + 2))B(θ̂(k + 1)) . . . B(θ̂k+Np−1)) 0

 . (44)

By exploiting Equation (42), and new weighting matrices w̃1 = diagNp(w1), and w̃2 = diagNp(w2),
the cost function (9) with the new additional objective that aims to increase the system reliability can
be revised in vector form as follows,

min
u(k),ξ(k),x(k)Qg(k)

Np

∑
l=0

[`e(l|k) + `s(l|k) + `∆u(l|k)− `Rg(l|k)], (45a)

subject to
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x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (45b)

0 = Euu(l|k) + Eddm(k), (45c)

x(l + 1|k) ≥ xs − ξ(l|k) (45d)

log Qg(l + 1|k) = x̃nx+1(l|k) (45e)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (45f)

x(l|k),∈ X, l = 1, · · · , Np (45g)

ξ(l|k) ≥ 0, l = 0, · · · , Np (45h)

x(0|k) = x(k), (45i)

where `Rg(k) , Q>g w3Qg is an additional objective including the weight w3 into the controller cost
function to improve the system reliability. The optimization problem is solved as a QP problem
according to that the predicted states Θ(k) in (42) are linear with respect to control inputs u(k),
which is considerably further easier than solving a nonlinear optimization problem. To clarify the
proposed approach, Algorithm 1 is presented.

Algorithm 1 LPV-based MPC strategy

1: k←− 0
2: repeat
3: i←− 0
4: if k = 1 then

5: To solve the optimization problem (45a), where θ(0|k) ' θ(1|k) ' θ(2|k) ' ... ' θ(Np − 1|k)
6: Calculate Θ(k) by using x̃(k) and u(k)
7: else

8: Determine Θ(k) = {θ̂(i|k)}Np−1
i=0 where θ̂(i|k) = ψ(x(i|k− 1 + 1), u(i|k− 1)),

9: Solve the optimization problem (45a)
10: Compute x̃(k) and u(k),
11: i←− i + 1
12: end if
13: Apply first element of the input sequence to the plant
14: Define Θ0(k + 1) = ψ(x̃1(k), u0(k))
15: k←− k + 1
16: until end

5.2. Including Demand Uncertainty Using Chance Constraints

According to the stochastic nature of water demands, the DWN prediction model includes
exogenous additive uncertainties. Therefore, the constraint’s satisfaction (10) cannot be guaranteed,
unless uncertainty it is not explicitly considering in some way. Therefore, the original constraints that
include stochastic elements (2a) will formulated by means of probabilistic statements using the chance
constraints framework (11). Considering this framework introduced in Section 3, and the form of state
constraint set X, the form of a state joint chance constraint is described as

P[G(r)x ≤ g(r), ∀r ∈ Z[1,mx ]] ≥ 1− δx, (46)

where δx ∈ (0, 1) is the risk acceptability level of constraint violation for the states, and G(r) and g(r)
indicate the r-th row of G and g, respectively. This entails that all rows r have to be jointly satisfied
with the probability 1− δx. Also, the form of a state individual chance constraint is described as

P[G(r)x ≤ g(r), ] ≥ 1− δx, ∀r ∈ Z[1,mx ] (47)
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which requires that each r-th row of the inequality has to be satisfied individually with the respective
probability 1− δx,r, where δx,j ∈ (0, 1). Then, according to Equation (20), the state constraints can be
described as follows,

P[G(r)x ≤ g(r)] ≥ 1− δx,r, ∀r ∈ Z[1,mx ] (48a)
mx

∑
r=1

δx,r ≤ δx, (48b)

0 ≤ δx,r ≤ 1, (48c)

and, as recommended in [31], specifying a constant and equal value of risk to each individual constraint,
that is, δx,r = δx/mx for all r ∈ Z[1,mx ], then (48b) and (48c) are obtained.

By considering a known (or approximated) quasi-concave probabilistic distribution function for
the stochastic disturbance in the dynamic model (1), it yields to

P[G(r)x(k + 1) ≤ g(r)] ≥ 1− δx,r ⇔ FG(r)Bddm(k)(g(r)− G(r)(Ax(k) + Bu(k))) ≥ 1− δx,r

⇔ G(r)(Ax(k) + Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)(1− δx,r),

(49)

for all r ∈ Z[1,mx ], where FG(r)Bddm(k)(.) and F−1
G(r)Bddm(k)(.) are the cumulative distribution and the

left-quantile function of G(r)Bddm(k), respectively. The use of chance constraints allows to guarantee a
safety stock at each storage node of a flow-based network for decreasing the probability of stock-outs
due to demand uncertainty. In this way, according to Equation (48a), the safety stocks are optimally
assigned and designed by the constraint back-off effect due to the term FG(r)Bddm(k)(1 − δx,r) in
Equation (46). Therefore, the original state constraint set X is adjusted by the effect of the mx

deterministic equivalents in (49) and substituted by the stochastic feasibility set provided by

Xs(k) :={x(k) ∈ Rnx |∃ u(k) ∈ U, such that

G(r)(Ax(k) + Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)(1− δx,r) ∀r ∈ Z1,mx

and Euu(k) + Edd̄(k) = 0},

(50)

where d̄(k) = E[dm] is the first moment of dm for all k ∈ Z0≥0. The set Xs(k) is convex when non-empty
for all δx,r ∈ (0, 1) in most distribution functions, due to the convexity of G(r)x(k + 1) ≤ g(r) and
the log-concavity assumption of the distribution. For some particular distributions, e.g., Gaussian,
convexity is preserved for δx,r ∈ (0, 0.5] [30].

5.3. Enhancing System Reliability Using Chance Constraints

According to the Section 5.1, component and system reliability model can be included in the
EMPC controller model. Besides, (50) provides a new constraint set according to the deterministic
equivalent (49). However, (50) does not consider the states related to the component and system
reliability. Therefore, it is necessary to modify the constraint set (50) with probabilistic statements
based on the component and system reliability. In this way, the system reliability is formulated in
terms of probabilistic constraints as follows,

xRg(k) ∈ {xRg ∈ RnR |P[GRgxRg ≥ gRg] ≥ (1− δRg)} (51)

where xRg(k) ∈ RnRg is system reliability state defined in Equation (39), and δRg ∈ (0, 1) is the
corresponding risk acceptability level of constraint violation. According to the above discussion and
the effect of stochastic reliability in the model (39), (51) can be rewritten as

P[GRgxRg(k + 1) ≥ gRg] ≥ (1− δRg)⇔ FGRgη(gRg − GRgxRg(k + 1)) ≥ 1− δRg

⇔ GRgxRg(k + 1) ≥ gRg + F−1
GRgη(1− δRg),

(52)
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where η is a random vector whose components follow a normal distribution, and FGRgη(.) and F−1
GRgη(.)

are the cumulative distribution and the left-quantile functions involved in the state and actuator health
deterministic equivalent constraints, respectively. The deficiency of reliability in the system can be caused
that the actuator operation compromise the network supply service unless demands result reachable
from other redundant flow paths or a fault-tolerant mechanism is activated. Therefore, a preventive
strategy can be performed to increase overall system reliability by guaranteeing that the system reliability
at each time instant to remain above a safe threshold until a predefined maintenance horizon is reached.
Thereupon, the probabilistic constraint (52) can be formulated in the predictive controller as

GRgxRg(k + Np|k) ≥ gRg(k) + F−1
GRgη(1− δRg), (53a)

gRg(k) = xRg, min(k) := xRg(k) + Np
Rtresh − xRg(k)
kM + Np + k

, (53b)

where xRg, min(k) ∈ RnRg is the vector of minimum reliability of the system allowed for time instant k
and Rtresh ∈ RnRg is the vector of threshold for the terminal system reliability at a maintenance horizon
kM ∈ Z≥0. The right-hand side of Equation (53b) is an identical restricting of the remaining allowable
system reliability (Rtresh − xRg(k)) that is updated at each time step according to the applied control
actions and guarantees that xRg(k) ≥ Rtresh for k = kM.

5.4. Chance-Constraints Reliability-Aware EMPC-LPV Reformulation

After the inclusion system reliability in the control low as an additional state of the control model
and discussing about how to use the probabilistic statements for demand and reliability constraints and
formulating them into deterministic equivalent constraints. Next, the setting of the proposed economic
reliability-aware MPC-LPV controller, including deterministic equivalent constraints, is presented.
This transformation leads to an optimization problem considering both the dynamic safety stocks and
the system reliability theory, in order to improve the flow supply service level in a given network,
handling demands uncertainty and equipment damage.

In this way, for a given sequence of demands d, the predicted system reliability Rg, acceptable
risk levels δx and δRg, and the optimization problem associated with the deterministic equivalent for
considered transportation DWN at each time step k are expressed as follows,

min
u(k),ξ(k),x(k)xRg(k)

Np

∑
k=0

[`e(k) + `s(k) + `∆u(k)− `Rg(k)], (54a)

subject to:

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (54b)

0 = Euu(l|k) + Eddm(k), (54c)

x(k + l + 1|k) ≤ xmax(r)−Φx
k,r(δx), (54d)

x(k + l + 1|k) ≥ xmin(r) + Φx
k,r(δx) (54e)

GRgxRg(k + Np|k) ≥ xRg, min(k) + Φ
xRg
k,η (δRg), (54f)

x(k + l + 1|k) ≥ xs − ξ(k + l|k), (54g)

ξ(k + l|k) ≥ 0, (54h)

xRg(l + 1|k) = Rg(k), (54i)

u(k), uk+1, ..., uk+Np−1 ∈ U, (54j)

x(k|k), d̄m(k|k)) = (x(k), dm(k)), (54k)
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for all l ∈ Z[0,Np−1] and all r ∈ Z[0,mr ], where the terms Φx
k,r(δx) = F−1

G(r)Bddm(k)

(
1 − δx

nx Np

)
and

Φ
xRg
k,η (δRg) = F−1

GRgη

(
1− δx

Np

)
are the quantile functions involved in the states and system reliability

deterministic equivalent constraints.

6. Application

6.1. Case Study

The system used as a case study is a part of the Barcelona DWN that is presented in [36]. In the
considered case study, nine sources were considered, consisting of five underground and four surface
sources, which currently provide an inflow of about 2 m3/s. This part is composed of 17 tanks and 61
actuators (valves and pumps), 12 nodes, and 25 demands. Figure 2 presents the considered network
showing the components and the relationships between them.

Figure 2. Barcelona drinking water network.

The approach proposed in this paper has been applied to the using the control-oriented model
of DWN presented in Figure 2 presented in Section 2. This model can also be represented by means
of a graph G(ν, ε), where nx storage tanks, ns sources, nd demands, and nq intersection nodes are
represented by v ∈ ν vertices that are connected by a ∈ ε links (pipes) (see Figure 3). The graph that
shows in figure of the water network was obtained from the state-space representation of the system.
This procedure is defined with more detail in [37]. According to the DWN reliability study, demands,
sources, pipelines, and tanks are considered completely reliable whereas active elements such as valves
and pumps are recognized not completely reliable [38]. The forecast of each demand dm(k)) is known
as well the distribution of the forecasting error d̃m (see Figure 4).

Using the reliability analysis, the states that are structurally controllable can be determined
since the path computation analysis gives all possible paths from a source to a consumer node.
Furthermore, an approximate operational cost (related to the electricity cost of pump) and a maximal
water flow (according to the physical constraints of the actuators) can be obtained for each path.
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From the definition of minimal path Ps in Section 4.2, the minimal path sets are determined for
Barcelona DWN. A minimal path set is composed by those components which allow a flow path
between sources and demands, such as pipes, tanks, and pumps.

Tables 1 and 2 present important number of critical actuators within the network, according
to the topology and the way of network elements are linked, as most actuators (pumps or valves)
have the unique connection between tanks and demands. Subsequently, if an actuator fails, then
the corresponding demand will not be satisfied. Note that the information presented in Tables 1
and 2 is particularly significant for AGBAR because it recognizes the critical elements in the
network for monitoring/improvement policies to be performed in the event of element damage [39].
Considering the DWN (Figure 2), Tables 1 and 2, and the study of the success minimal path of the
water network, 607 minimal path sets are specified inside the system. Some simplification of success
minimal paths from the water network is presented in Table 3.

Figure 3. Graph from Barcelona DWN.
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Figure 4. Drinking water demand for several demands.
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Table 1. Structural actuators (towards tanks).

No. Name No. Name No. Name No. Name

u1 VALVA u16 VALVA309 u33 CC130 u47 VPSJ
u3 CPIV u17 bPousE u34 CC70 u48 CMO
u4 bMS u19 CGIV u35 VB u49 VMC
u5 CPII u20 CPLANTA50 u36 CF176 u50 VALVA60
u6 VALVA47 u21 PLANTA10 u37 VCO u51 VALVA56
u7 bCast u23 CRE u38 CCO u52 VALVA57
u8 VCR u24 CC100 u39 VS u53 CRO
u9 bPouCast u25 VALVA64 u40 V u54 VBMC
u10 CCA u26 VALVA50 u41 VCT u55 bPousB
u11 CB u27 CC50 u42 CA u56 VALVA53
u12 VALVA308 u28 VF u43 VP u57 VALVA54
u13 VALVA48 u29 CF200 u44 VBSLL u58 VALVA61
u14 VCA u30 VE u45 CPR u59 VALVA55
u15 CPLANTA70 u32 VZF u46 VCOA u60 VCON

Table 2. Structural actuators (towards demands).

No. Name No. Name No. Name No. Name

u2 VALVA45 u18 VSJD-29 u22 CE u31 VRM
u61 VALVA312

Table 3. Success minimal paths of the Barcelona DWN .

Path Component Set

P1 {aMS, bMS, c125PAL}
P2 {AportA, VALVA, VALVA45, c70PAL}
P3 {AportA, VALVA, VALVA47, CPIV, c125PAL}
P4 {AportA, VALVA, CPII, c110PAP}
P5 {ACast, bCast, c115CAST}
...

...
P607 {AportT, VALVA312, c135SCG}

The reliability of each minimal path set depends on the reliability of its components; tanks and
pipes are supposed perfectly reliable. Although, sources are involved in the minimal path sets only
for illustrative purposes of the procedure. The objective of the MPC as has been explained before
is to minimize the multi-objective cost function (54). The prediction horizon is 24 h because the
demand and also the electrical tariff have periodicity of 1 day. The analysis is carried for a time
period of 11 day (264 h) with sampling time of 1 h. The weights of the cost function (54a) are
We = 100, Ws = 1, W∆u = 1, and WRg = 10. The weighting matrices are founded by iterative tuning
until the desired performance is achieved. The tuning of these parameters is arranged based on that
the objective with the highest preference is the economic cost, which must be minimized maintaining
proper levels of safety volumes and control action smoothness and the same time should maximize
the system reliability. The simulation results based on real data are obtained using the Gurobi 6.2
optimization package and Matlab R2015b (64 bits), running in a PC Intel(R) Core(TM)i7-5500 CPU at
2.4 GHz with 12 GB of RAM.

6.2. Results and Discussion

To analyze and assess the benefits of the proposed economic readability-aware MPC-LPV
approach, a comparison with respect to baseline control strategies that were earlier proposed for
the same case study is considered. In particular, the considered methods are as follows.
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• Reliability-Aware Chance-constrained Economic MPC-LPV (RACCEMPC-LPV): This is the approach
proposed in this paper that is based on solving the optimization problem (54). This approach
allows the consideration of nonstationary stochastic demand uncertainty and stochastic whole
reliability of the system. Therefore, the base stock constraint, the hard bounds of the states and the
terminal constraint of the system reliability are formulated in the framework of chance constraints.

• Economic MPC-LPV (EMPC-LPV): This approach is based the optimization problem (45) without
including the reliability objective. Moreover, it is not considering the stochastic demand
uncertainty, chance constraints, and terminal constraint of the system reliability of the network.

• Chance-constrained Economic MPC-LPV (CCEMPC-LPV): This approach is included robustness only
for demand uncertainty by replacing the state deterministic constraints with chance-constraints.
Moreover, the CCEMPC-LPV controller does not include neither the reliability objective nor the
terminal constraint of the system reliability of the network.

• Reliability-aware economic MPC-LPV (RAEMPC-LPV): This approach relies on solving problem (45a).
In this approach, an additional goal is included to the controller in order to extend the components
and system reliability. However, the stochastic demand uncertainty and chance constraints
associated to the system reliability are not considered.

Table 4 exhibits the numeric assessment of the above-mentioned controllers through different key
performance indicators (KPIs), which are detailed below,

KPIe :=
1

ns + 1

ns

∑
k=0

α>(k)uk∆t, (55a)

KPI∆u :=
1

ns + 1

nu

∑
i=1

ns

∑
k=0

(∆u(i, k))2, (55b)

KPIs :=
nx

∑
i=1

ns

∑
k=0

max{0, xs(i, k)− x(i, k)}, (55c)

KPIR := xRg(k), (55d)

KPIt := topt(k), (55e)

where KPIe denotes the average economic performance of the water network, KPI∆u evaluates the
smoothness of the control actions, KPIs comprises the quantity of water utilized from safety stocks,
KPIR denotes the value of the whole system reliability of the DWN, and KPIt defines the difficulty
to solve the optimization tasks associated with each approach accounting topt(k) as the average time
that gets to solve the corresponding FHOP. In KPIe, KPI∆u , KPIs, and KPIt lower values signify better
performance results. However, a higher KPIR value shows better performance in system reliability of
the DWN. Furthermore, Table 5 presents the details of the production and operational costs associated
with each approach, which are one of the most important objectives for the DWN managers.

Figures 5 and 6 show, respectively, the evolution of the flow actuator commands and the tank
volumes for comparison of different considered MPC approaches for the Barcelona DWN. Figure 5
shows that pumps always try to operate at the minimum cost, i.e., when the electrical tariff is cheaper.
Figure 6 shows the proper replenishment planning for the tanks that the predictive controller dictates
according to the cyclic behavior of demands. Note that the net demand of each tank is properly
satisfied along the simulation horizon.

To manage the stochastic demand uncertainty, CCEMPC-LPV and RACCEMPC-LPV controllers
incorporated the robustness for demand uncertainty by replacing the state deterministic constraints
with chance constraints. Generally, chance constraints create an optimal back-off from real constraints
as a risk-averse mechanism to face the nonstationary uncertainty included in the prediction of states.
This is reflected in Figure 5, where the behavior in the presented actuators commands in chance
constraints approaches (CCEMPC-LPV and RACCEMPC-LPV) are almost the same and larger than in
the case of EMPC-LPV and RAEMPC-LPV, that also present a similar behavior. Similarly, this behavior
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appeared in the volume evolution of the selected storage tanks that are presented in Figure 6. These
results are logical since to cope with the uncertainty considered by the chance constraint-based methods
additional water is stored in the tanks and this requires more flow to be injected.
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Table 5 presents the details of water production and electricity cost of each approach.
The RACCEMPC-LPV approach has similar costs to those of the baseline CCEMPC-LPV approach,
but with the profit of a better handling of constraints and considering the system reliability into control
low of the controller. Generally, the proposed RACCEMPC-LPV approach leads to a higher total
closed-loop operational cost if considering only the water and electric costs as signs for economic
performance. This is the price to pay for increasing the reliability of the system.

On the other hand, Figure 7 shows the comparison of the system reliability predictions
and accumulated economic cost of the DWN that obtained from the different MPC approaches.
According to this figure and reviewing the results in Tables 4 and 5, it can be observed that the
robustness enhancements of the RACCEMPC-LPV approach are larger than the other controllers
in terms of reliability. The EMPC-LPV controller has lower values in the economic index KPIe

but, the guarantee of reliability, robustness and feasibility problems are not considered. The main
disadvantage of this controller is that control actions are computed based on economic criteria. In this
case, the controller overexploits actuators that have lower operational costs, quickening their damage
and hazarding the service reliability. The RAEMPC-LPV strategy reached the lowest KPIe after the
EMPC-LPV controller by including the reliability objective in the control low. However, the stochastic
demand uncertainty and stochastic uncertainty of the system reliability are not considered.
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Figure 7. Evaluation of system reliability and accumulated economic cost.

Table 4. Comparison of control performance.

Controller KPIe KPI∆u KPIs KPIRg KPIt Simulation Time

EMPC-LPV 3779.81 0.5271 28951.72 0.8772 1.5628 412.599
CCEMPC-LPV 4029.09 0.4910 28955.69 0.9186 1.9051 502.952
RAEMPC-LPV 3980.07 0.5317 28952.62 0.9263 1.78348 470.841
RACCEMPC-LPV 4029.19 0.4903 28955.90 0.9386 1.9664 519.147
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Table 5. Comparison of daily average costs of the MPC approaches.

MPC Approach Water Average Cost Electric Average Cost Daily Average Cost
(e.u./day) (e.u./day) (e.u./day)

EMPC-LPV 44162.44 3053.08 47215.53
CCEMPC-LPV 51237.98 3262.43 54500.42
RAEMPC-LPV 44369.90 3121.84 47491.75
RACCEMPC-LPV 51438.13 3262.64 54700.77

7. Conclusions

In this paper, an economic reliability-aware LPV-MPC strategy based on chance constraints for
water transport network has been proposed to deal with the management of flow-based networks,
considering both demand uncertainty and system reliability in a probabilistic way. The considered
control-oriented model of the water transport network is based on a flow modeling approach.
By considering chance constraints programming to compute an optimal replenishment policy based
on a desired risk acceptability level, the system reliability is introduced as state variables inside the
control model, which includes nonlinear term and it is changed in a linear-like form through the
LPV structure. Therefore, the LPV model includes both the reliability and DWN models including
scheduling parameters are updated with the state vector value at that time. Moreover, nonstationary
flow demands and system reliability are satisfied by considering chance-constraint programming.
The results obtained show that the system reliability of the DWN network is maximized with the
proposed controller while the cost is slightly increased. The level of resultant back-off volume is
variable and depend of the forecast demand uncertainty and system reliability at each prediction
step based on probabilistic distributions employed to their modeling. As, in practice, disturbances
are unbounded, the strategy proposed in this paper is based on a service-level guarantee and a
probabilistic feasibility.

Future research will concentrate on the study of predicting the system reliability of water
distribution networks by considering the pressure model.
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32. Shapiro, A.; Dentcheva, D.; Ruszczyński, A. Lectures on Stochastic Programming: Modeling and Theory; SIAM:
Phhiladelphia, PA, USA, 2009.

33. Jiang, R.; Jardine, A.K. Health state evaluation of an item: A general framework and graphical representation.
Reliab. Eng. Syst. Saf. 2008, 93, 89–99. [CrossRef]

34. Gertsbakh, I. Reliability Theory: With Applications to Preventive Maintenance; Springer: Berlin/Heidelberg,
Germany, 2013.

35. Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons:
Hoboken, NJ, USA, 2005.

36. Ocampo-Martínez, C.; Puig, V.; Cembrano, G.; Creus, R.; Minoves, M. Improving water management
efficiency by using optimization-based control strategies: The Barcelona case study. Water Sci. Technol.
Water Supply 2009, 9, 565–575. [CrossRef]

37. Siljak, D.D. Decentralized Control of Complex Systems; Courier Corporation: Chelmsford, MA, USA, 2011.
38. Weber, P.; Simon, C.; Theilliol, D.; Puig, V. Fault-Tolerant Control Design for over-actuated System

conditioned by Reliability: A Drinking Water Network Application. IFAC Proc. Vol. 2012, 45, 558–563.
[CrossRef]

39. Robles, D.; Puig, V.; Ocampo-Martinez, C.; Garza-Castañón, L.E. Reliable fault-tolerant model predictive
control of drinking water transport networks. Control Eng. Pract. 2016, 55, 197–211. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/oca.2269
http://dx.doi.org/10.1137/050622328
http://dx.doi.org/10.1016/j.ress.2006.10.018
http://dx.doi.org/10.2166/ws.2009.524
http://dx.doi.org/10.3182/20120829-3-MX-2028.00147
http://dx.doi.org/10.1016/j.conengprac.2016.06.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	EMPC for Transport Water Networks
	Control-Oriented Model
	EMPC Formulation
	Economic Cost Minimization 
	Safety Management
	Control Action Smoothness
	EMPC Optimization Problem Formulation


	Chance-Constrained Model Predictive Control
	Augmenting Network Model with the Reliability Model
	Reliability Model
	Overall Reliability
	System Reliability Modeling

	Economic Reliability-Aware MPC-LPV Using Chance-Constraints
	Economic Reliability Aware MPC-LPV
	Including Demand Uncertainty Using Chance Constraints 
	Enhancing System Reliability Using Chance Constraints
	Chance-Constraints Reliability-Aware EMPC-LPV Reformulation

	Application
	Case Study
	Results and Discussion

	Conclusions
	References

