Electrical Conductivity for Monitoring the Expansion of the Support Material in an Anaerobic Biofilm Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory-Scale IFBR Characteristic
2.2. Substrate Description
2.3. IFBR Operating Conditions
2.4. Expansion Tests of Support Material to Determine the Downward Velocity
3. Results
3.1. Colonized Extendosphere® Expansion
3.2. Analysis of Electrical Conductivity Variation
3.3. Effect of VFA Generation on the Detection of Electrical Conductivity with Expanded Support Material
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Hu, J.; Lee, D.J. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Christy, P.M. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Scano, E.A.; Asquer, C.; Pistis, A.; Ortu, L.; Demontis, V.; Cocco, D. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers. Manag. 2014, 77, 22–30. [Google Scholar] [CrossRef]
- Rosas-Mendoza, E.S.; Méndez-Contreras, J.M.; Martínez-Sibaja, A.; Vallejo-Cantú, N.A.; Alvarado-Lassman, A. Correction to: Anaerobic digestion of citrus industry effluents using an Anaerobic Hybrid Reactor. Clean. Technol. Environ. Policy 2018, 20, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 2010, 101, 1153–1158. [Google Scholar] [CrossRef]
- Alvarado-Lassman, A.; Rustrián, E.; García-Alvarado, M.A.; Rodríguez-Jiménez, G.C.; Houbron, E. Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Bioresour. Technol. 2008, 99, 3009–3015. [Google Scholar] [CrossRef]
- Garnika, J.L.; Peraita, A.A.; de las Heras, J.G.; del Campo, S.S. Diseño de reactores híbridos anaerobios para el tratamiento de aguas residuales industriales. Tecnol. Agua 2005, 267, 60–67. [Google Scholar]
- Rizvi, H.; Ahmad, N.; Abbas, F.; Bukhari, I.H.; Yasar, A.; Ali, S.; Riaz, M. Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab. J. Chem. 2015, 8, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sustain. Energy Rev. 2000, 4, 135–156. [Google Scholar] [CrossRef]
- García-Calderón, D.; Buffiere, P.; Moletta, R.; Elmaleh, S. Influence of biomass accumulation on bed expansion characteristics of a down-flow anaerobic fluidized-bed reactor. Biotechnol. Bioeng. 1998, 57, 136–144. [Google Scholar] [CrossRef]
- Papirio, S.; Esposito, G.; Pirozzi, F. Biological inverse fluidized-bed reactors for the treatment of low pH-and sulphate-containing wastewaters under different COD conditions. Environ. Technol. 2013, 34, 1141–1149. [Google Scholar] [CrossRef]
- Sowmeyan, R.; Swaminathan, G. Evaluation of Inverse Anaerobic Fluidized Bed Reactor for Treating High Strength Organic Wastewater. Bioresour. Technol. 2008, 99, 3877–3880. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Lassman, A.; Sandoval-Ramos, A.; Flores-Altamirano, M.G.; Vallejo-Cantu, N.A.; Mendez-Contreras, J.M. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles. Water Environ. Res. 2010, 82, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Karamanev, D.G.; Nikolo, L.N. Application of Inverse Fluidization in Wastewater Treatment: From Laboratory to Full-Scale Bioreactors. Environ. Prog. 1996, 15, 194–196. [Google Scholar] [CrossRef]
- Buffière, P.; Bergeon, J.P.; Moletta, R. The inverse turbulent bed: A novel bioreactor for anaerobic treatment. Water Res. 2000, 34, 673–677. [Google Scholar] [CrossRef]
- Comte, M.P.; Bastoul, D.; Hebrard, G.; Roustan, M.; Lazarova, V. Hydrodynamics of a three-phase fluidized bed—The inverse turbulent bed. Chem. Eng. Sci. 1997, 52, 3971–3977. [Google Scholar] [CrossRef]
- Aceves-Lara, C.A.; Latrille, E.; Conte, T.; Steyer, J.P. Online estimation of VFA, alkalinity and bicarbonate concentrations by electrical conductivity measurement during anaerobic fermentation. Water. Sci. Technol. 2012, 65, 1281–1289. [Google Scholar] [CrossRef]
- Robles, A.; Latrille, E.; Ribes, J.; Bernet, N.; Steyer, J.P. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors. Water. Sci. Technol. 2016, 73, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Charnier, C.; Latrille, E.; Lardon, L.; Miroux, J.; Steyer, J.P. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations. Water Res. 2016, 95, 268–279. [Google Scholar] [CrossRef]
- Goswami, U.; Sarma, H.P. A study on the pH, electrical conductivity and organic carbon content of the bio-degradable solid wastes in Guwahati City. Ecol. Environ. Conserv. 2007, 13, 419. [Google Scholar]
- Siddiqqui, M.A.; Rameshwar, H.Y. Physical Variation during Predigestion of Selected Organic Waste before Vermicomposting. Int. Res. J. Environ. Sci. 2018, 12, 229–233. [Google Scholar]
- Moradi, H.; Fahramand, M.; Sobhkhizi, A.; Adibian, M.; Noori, M.; Abdollahi, S.; Rigi, K. Effect of vermicompost on plant growth and its relationship with soil properties. Int. J. Farm. Allied Sci. 2014, 3, 333–338. [Google Scholar]
- Alvarado-Lassman, A.; Rustrián, E.; Garcia-Alvarado, M.A.; Rodríguez-Jiménes, G.C.; Houbron, E. Evaluation of Performance, Stabilization and Operation of Inverse Fluidized Bed Anaerobic Reactors Using Several Supports. In Proceedings of the 10th World Congress on Anaerobic Digestion, Montreal, QC, Canada, 29 August–2 September 2004; International Water Association: London, UK, 2004; pp. 1233–1236. [Google Scholar]
- Bouallagui, H.; Touhami, Y.; Cheikh, R.B.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Garcia-Peña, E.I.; Parameswaran, P.; Kang, D.W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011, 102, 9447–9455. [Google Scholar] [CrossRef]
- Sanjaya, A.P.; Cahyanto, M.N.; Millati, R. Mesophilic batch anaerobic digestion from fruit fragments. Renew. Energy 2016, 98, 135–141. [Google Scholar] [CrossRef]
- Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ. Technol. 2015, 36, 198–207. [Google Scholar] [CrossRef]
- Bouallagui, H.; Lahdheb, H.; Romdan, E.B.; Rachdi, B.; Hamdi, M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manag. 2009, 90, 1844–1849. [Google Scholar] [CrossRef]
- Sitorus, B.; Panjaitan, S.D. Biogas recovery from anaerobic digestion process of mixed fruit-vegetable wastes. Energy Procedia 2013, 32, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Knol, W.; Van Der Most, M.M.; De Waart, J. Biogas production by anaerobic digestion of fruit and vegetable waste. A preliminary study. J. Sci. Food Agric. 1978, 29, 822–830. [Google Scholar] [CrossRef]
- Zuo, Z.; Wu, S.; Zhang, W.; Dong, R. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour. Technol. 2013, 146, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, F.R.; Guwy, A.J.; Hawkes, D.L.; Rozzi, A.G. On-line monitoring of anaerobic digestion: Application of a device for continuous measurement of bicarbonate alkalinity. Water Sci. Technol. 1994, 30, 1. [Google Scholar] [CrossRef]
- Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J. Water. Pollut. Control Fed. 1986, 58, 406–411. [Google Scholar]
- Viturtia, A.M.; Mata-Alvarez, J.; Cecchi, F. Two-phase continuous anaerobic digestion of fruit and vegetable wastes. Resour. Conserv. Recycl. 1995, 13, 257–267. [Google Scholar] [CrossRef]
- Dogan, E.; Demirer, G.N. Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste. J. Renew. Sustain. Energy 2012, 4, 063131. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zuo, J.; Gan, L.; Li, P.; Liu, F.; Wang, K.; Gan, H. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 2011, 23, 1403–1408. [Google Scholar] [CrossRef]
- Babel, S.; Fukushi, K.; Sitanrassamee, B. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester. Water Res. 2004, 38, 2417–2423. [Google Scholar] [CrossRef]
- Gan, J.; Chen, L.; Li, B.; Jiang, W.Z.; Kitamura, Y. A rotational drum fermentation system with water flushing for enhancing hydrolysis and acidification of solid organic wastes. Bioresour. Technol. 2008, 99, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Camarillo, R.; Rincón, J. Effect of inhibitory compounds on the two-phase anaerobic digestion performance of diluted wastewaters from the alimentary industry. Chem. Eng. J. 2012, 193, 68–76. [Google Scholar] [CrossRef]
- Shen, F.; Yuan, H.; Pang, Y.; Chen, S.; Zhu, B.; Zou, D.; Li, X. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 2013, 144, 80–85. [Google Scholar]
Parameter | Value | Unit | |
---|---|---|---|
Height | 1.15 | m | |
Diameter | 0.19 | m | |
Total volume | 32 | L | |
Of total volume | |||
Biogas chamber | 5 | L | |
Working volume | 27 | L | |
Of working volume | |||
Useful volume | 19 | L | |
Support material | 8 | L |
Parameter | Unit | Sampling Place 1 (S1) | Standard Deviation | Sampling Place 2 (S2) | Standard Deviation | Sampling Place 3 (S3) | Standard Deviation |
---|---|---|---|---|---|---|---|
COD | g/L | 30 | 5.89 | 23.18 | 4.04 | 9.90 | 1.86 |
SCOD | g/L | 26.15 | 4.70 | 16.83 | 4.37 | 8.21 | 1.40 |
TS | g/L | 12.86 | 2.98 | 7.15 | 3.07 | 3.28 | 1.24 |
VS | g/L | 7.82 | 2.66 | 3.79 | 1.93 | 0.90 | 0.83 |
pH | - | 4.5 | 0.15 | 6.8 | 0.28 | 8.3 | 0.16 |
Voltage | V | 0.85 | 0.04 | 1.9 | 0.02 | 2.0 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Peña, O.; Alvarado-Lassman, A.; Vallejo-Cantú, N.A.; Juárez-Barojas, I.; Rodríguez-Jarquín, J.P.; Martínez-Sibaja, A. Electrical Conductivity for Monitoring the Expansion of the Support Material in an Anaerobic Biofilm Reactor. Processes 2020, 8, 77. https://doi.org/10.3390/pr8010077
Marín-Peña O, Alvarado-Lassman A, Vallejo-Cantú NA, Juárez-Barojas I, Rodríguez-Jarquín JP, Martínez-Sibaja A. Electrical Conductivity for Monitoring the Expansion of the Support Material in an Anaerobic Biofilm Reactor. Processes. 2020; 8(1):77. https://doi.org/10.3390/pr8010077
Chicago/Turabian StyleMarín-Peña, Oscar, Alejandro Alvarado-Lassman, Norma A. Vallejo-Cantú, Isaías Juárez-Barojas, José Pastor Rodríguez-Jarquín, and Albino Martínez-Sibaja. 2020. "Electrical Conductivity for Monitoring the Expansion of the Support Material in an Anaerobic Biofilm Reactor" Processes 8, no. 1: 77. https://doi.org/10.3390/pr8010077
APA StyleMarín-Peña, O., Alvarado-Lassman, A., Vallejo-Cantú, N. A., Juárez-Barojas, I., Rodríguez-Jarquín, J. P., & Martínez-Sibaja, A. (2020). Electrical Conductivity for Monitoring the Expansion of the Support Material in an Anaerobic Biofilm Reactor. Processes, 8(1), 77. https://doi.org/10.3390/pr8010077