Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Assessment of the System
2.4. Oxygen Dissolution Tests
2.5. Aeration Efficiency
3. Results and Discussion
3.1. Effect of Liquid Velocity on the Vacuum Pressure and Gas Velocity
3.2. Effect of Liquid and Gas Velocity on the Oxygen Dissolution Rate
3.3. Relationship of Liquid and Gas Velocity with Volumetric Mass Transfer Coefficient
3.4. Aeration Effciency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeon, S.-Y.; Yoon, J.-Y.; Jang, C.-M. Bubble Size and Bubble Concentration of a Microbubble Pump with Respect to Operating Conditions. Energies 2018, 11, 1864. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, J.V.; Agrawal, Y.K. Synthesis, characterization and application of microbubbles: A review. IJPSR 2012, 3, 1532–1543. [Google Scholar] [CrossRef]
- Tsuge, H. (Ed.) Micro- and Nanobubbles: Fundamentals and Applications; Pan Stanford Publishing: Singapore, 2014; ISBN 978-981-4463-10-2. [Google Scholar]
- Onari, H.; Saga, T.; Watanabe, K.; Maeda, K.; Matsuo, K. High Functional Characteristics of Micro-bubbles and Water Purification. Resour. Process. 1999, 46, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Budhijanto, W.; Darlianto, D.; Pradana, Y.S.; Hartono, M. Application of micro bubble generator as low cost and high efficient aerator for sustainable fresh water fish farming. In Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016, East Java, Indonesia, 1–2 November 2016; p. 110008. [Google Scholar]
- Ido, K. Device for Culturing Fishes or Shellfishes. Available online: https://patents.google.com/patent/JP2002010723A/en (accessed on 1 August 2020).
- Sadatomi, M.; Kawahara, A.; Matsuyama, F.; Kimura, T. An advance microbubble generator and its application to a newly developed bubble-jet-type air-lift pump. Multiph. Sci. Technol. 2007, 19, 323–342. [Google Scholar] [CrossRef]
- Ishak, A.S.; Nordin, N.a.H.M.; Bilad, M.R.; Lam, M.K. Effect of hydrophilic coating for membrane assisted air diffuser for Chlorella vulgaris cultivation. Moroc. J. Chem. 2020, 8, 105–112. [Google Scholar] [CrossRef]
- Lutfi, U.A.M.I.; Hizam, S.M.; Lau, K.S.; Nordin, N.A.H.M.; Bilad, M.R.; Putra, Z.A.; Wirzal, M.D.H. Microfiltration Membrane Assisted CO2 Diffuser for Algae Cultivation. J. Appl. Membr. Sci. Technol. 2018, 22. [Google Scholar] [CrossRef] [Green Version]
- Marbelia, L.; Noor, A.W.; Paramesti, A.; Damarjati, B.A.; Widyaparaga, A.; Deendarlianto; Bilad, M.R.; Budhijanto, W. A Comparative Study of Conventional Aerator and Microbubble Generator in Aerobic Reactors for Wastewater Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012132. [Google Scholar] [CrossRef]
- Nawi, N.I.M.; Arifin, S.N.H.M.; Hizam, S.M.; Rampun, E.L.A.; Bilad, M.R.; Elma, M.; Khan, A.L.; Wibisono, Y.; Jaafar, J. Chlorella vulgaris broth harvesting via standalone forward osmosis using seawater draw solution. Bioresour. Technol. Rep. 2020, 9, 100394. [Google Scholar] [CrossRef]
- Li, H.; Hu, L.; Song, D.; Al-Tabbaa, A. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation. Int. J. Environ. Res. Public Health 2013, 11, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Ikeura, H.; Takahashi, H.; Kobayashi, F.; Sato, M.; Tamaki, M. Effect of different microbubble generation methods on growth of Japanese mustard spinach. J. Plant Nutr. 2017, 40, 115–127. [Google Scholar] [CrossRef]
- Alam, H.S.; Redhyka, G.G.; Bahrudin; Sugiarto, A.T.; Salim, T.I.; Mardhiya, I.R. Design and Performance of Swirl Flow Microbubble Generator. Int. J. Eng. Technol. 2018, 7, 66–69. [Google Scholar] [CrossRef]
- Terasaka, K.; Hirabayashi, A.; Nishino, T.; Fujioka, S.; Kobayashi, D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 2011, 66, 3172–3179. [Google Scholar] [CrossRef]
- FRANC, J.-P. Physics and Control of Cavitation. In Design and Analysis of High Speed Pumps; Educational Notes RTO-EN-AVT-143, Paper 2; RTO: Neuilly-sur-Seine, France, 2006; pp. 2-1–2-36. [Google Scholar]
- Kosel, J.; Gutiérrez-Aguirre, I.; Rački, N.; Dreo, T.; Ravnikar, M.; Dular, M. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation. Water Res. 2017, 124, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, G.; Chel, A. Microbubble technology: Emerging field for water treatment. Bubble Sci. Eng. Technol. 2014, 5, 33–38. [Google Scholar] [CrossRef]
- Arumugam, P. Understanding the Fundamental Mechanisms of a Dynamic Micro-bubble Generator for Water Processing and Cleaning Applications. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Fujiwara, A.; Takagi, S.; Watanabe, K.; Matsumoto, Y. Experimental Study on the New Micro-Bubble Generator and Its Application to Water Purification System. In Volume 2: Symposia, Parts A, B, and C; ASMEDC: Honolulu, HI, USA, 2003; pp. 469–473. [Google Scholar]
- Sadatomi, M.; Kawahara, A.; Matsuura, H.; Shikatani, S. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Exp. Therm. Fluid Sci. 2012, 41, 23–30. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lim, J.-Y.; Park, S.-Y.; Kim, J.-H. Effects of Distance of Breaker Disk on Performance of Ejector Type Microbubble Generator. KSCE J. Civ. Eng. 2018, 22, 1096–1100. [Google Scholar] [CrossRef]
- Parmar, R.; Majumder, S.K. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report. Chem. Eng. Process. Process Intensif. 2013, 64, 79–97. [Google Scholar] [CrossRef]
- Juwana, W.E.; Widyatama, A.; Dinaryanto, O.; Budhijanto, W.; Indarto; Deendarlianto. Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. Chem. Eng. Res. Design 2019, 141, 436–448. [Google Scholar] [CrossRef]
- Al-Ahmady, K.K. Effect of air flow rate and submergence of diffusers on oxygen transfer capacity of diffused aeration systems. AREJ 2006, 14, 27–38. [Google Scholar] [CrossRef]
- Pittoors, E.; Guo, Y.; W. H. Van Hulle, S. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: A review. Chem. Eng. Commun. 2014, 201, 983–1002. [Google Scholar] [CrossRef]
- Wastewater Engineering: Treatment and Reuse, 4th ed.; Tchobanoglous, G.; Burton, F.L.; Stensel, H.D.; Metcalf & Eddy, Inc. (Eds.) McGraw-Hill series in civil and environmental engineering; McGraw-Hill: Boston, MA, USA, 2003; ISBN 978-0-07-041878-3. [Google Scholar]
- Shah, M.S.; Joshi, J.B.; Kalsi, A.S.; Prasad, C.S.R.; Shukla, D.S. Analysis of flow through an orifice meter: CFD simulation. Chem. Eng. Sci. 2012, 71, 300–309. [Google Scholar] [CrossRef]
- Liu, C.; Liang, B.; Tang, S.; Zhang, H.; Min, E. A Theoretical Model for the Size Prediction of Single Bubbles Formed under Liquid Cross-flow. Chin. J. Chem. Eng. 2010, 18, 770–776. [Google Scholar] [CrossRef]
- Kukizaki, M.; Goto, M. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J. Membr. Sci. 2006, 281, 386–396. [Google Scholar] [CrossRef]
- Kawahara, A.; Sadatomi, M.; Matsuyama, F.; Matsuura, H.; Tominaga, M.; Noguchi, M. Prediction of micro-bubble dissolution characteristics in water and seawater. Exp. Therm. Fluid Sci. 2009, 33, 883–894. [Google Scholar] [CrossRef]
- Waste Water Aeration; Jäger Umwelt-Technik GmbH: Hannover, Germany, 2020; pp. 1–13.
- Deendarlianto, D.; Indarto, I.; Juwana, W.E.; Afisna, L.P.; Nugroho, F.M. Performance of Porous-Venturi Microbubble Generator for Aeration Process. JEMMME 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Bilad, M.R.; Arafat, H.A.; Vankelecom, I.F.J. Membrane technology in microalgae cultivation and harvesting: A review. Biotechnol. Adv. 2014, 32, 1283–1300. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liew, K.C.S.; Rasdi, A.; Budhijanto, W.; Yusoff, M.H.M.; Bilad, M.R.; Shamsuddin, N.; Md Nordin, N.A.H.; Putra, Z.A. Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water. Processes 2020, 8, 1266. https://doi.org/10.3390/pr8101266
Liew KCS, Rasdi A, Budhijanto W, Yusoff MHM, Bilad MR, Shamsuddin N, Md Nordin NAH, Putra ZA. Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water. Processes. 2020; 8(10):1266. https://doi.org/10.3390/pr8101266
Chicago/Turabian StyleLiew, Kelly Chung Shi, Athina Rasdi, Wiratni Budhijanto, Mohd Hizami Mohd Yusoff, Muhmmad Roil Bilad, Norazanita Shamsuddin, Nik Abdul Hadi Md Nordin, and Zulfan Adi Putra. 2020. "Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water" Processes 8, no. 10: 1266. https://doi.org/10.3390/pr8101266
APA StyleLiew, K. C. S., Rasdi, A., Budhijanto, W., Yusoff, M. H. M., Bilad, M. R., Shamsuddin, N., Md Nordin, N. A. H., & Putra, Z. A. (2020). Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water. Processes, 8(10), 1266. https://doi.org/10.3390/pr8101266