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Abstract: Air infiltration into the combustion chambers of industrial furnaces is an unwanted
phenomenon causing loss of thermal efficiency, fuel consumption increase, and the subsequent
increase in operating costs. In this study, a novel design for a rotary tilting furnace door with
improved construction features is proposed and tested experimentally in a laboratory-scale furnace,
aimed at air infiltration rate reduction by decreasing the gap width between the static furnace door
and the rotating body. Temperatures in the combustion chamber and oxygen content in the dry flue
gas were measured to document changes in the combustion process with the varying gap width.
Volumetric flow values of infiltrating air calculated based on measured data agree well with results of
numerical simulations performed in ANSYS and with the reference calculation procedure used in
relevant literature. An achievable air infiltration reduction of up to 50% translates into fuel savings of
around 1.79 to 12% of total natural gas consumption of the laboratory-scale furnace. The average
natural gas consumption increase of around 1.6% due to air infiltration into industrial-scale furnaces
can thus likewise be halved, representing fuel savings of almost 0.3 m3 per ton of charge.

Keywords: air infiltration; rotary furnace; combustion; energy savings; thermal efficiency

1. Introduction

Reduction of the carbon footprint of industry is a primary objective of the European Union [1,2].
Energy efficiency, one of the pillars of the EU Energy Union strategy, has therefore been proposed
as a solution, namely as a highly effective pathway to improve the economic competitiveness and
sustainability of the European economy. Energy efficiency can help reduce the reliance on imports
of fossil fuels, thereby bolstering energy security in the short- as well as long-term in a cost-effective
way [3,4]. Currently, the metallurgical industry is one of the largest emitters of pollutants [5–8]. One of
the possibilities of reducing the release of emissions is to increase the efficiency of combustion units,
which leads to a decrease in fuel consumption [9]. Oxy-combustion technology or combustion at
elevated oxygen concentrations in the oxidizing agent has been proposed as a novel and promising
means to achieve this objective [10]. This type of combustion is referred to as oxygen-enhanced
combustion (OEC) and has many benefits including increased processing rates [11], higher heat transfer
efficiency [12,13], improved flame characteristics [14], reduced production of emissions [15], reduced
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equipment cost, and last but not least, improved product quality. It also represents an interesting route
for decarbonization via carbon capture and storage [16,17]. OEC technology is most often applied in
rotary tilting furnaces used in the processing of nonmetallic materials [18,19]. However, examples of
how the iron and steelmaking industry can benefit from this technology as well have been recently
summed up in [17]. Individual OEC technology applications in this industrial sector, related either to
the proposed continuous scrap-melting rotary furnace, potentially replacing the electric arc furnace, or
flameless oxy-fuel burners, are analyzed in detail in [20–22].

The rotary tilting furnace charge consists of a mixture of nonferrous wastes and dross, mostly
based on aluminum and alumina [23]. The dross comes from primary aluminum production using
bauxite. The processing of aluminum wastes using OEC technology has been published in more detail
in studies [24,25].

Rotary tilting furnaces are characterized by having both the burner and the flue gas duct located
in the door of the furnace, which remains static as the furnace body rotates [26]. To remove the flue
gas, an exhaust fan is needed, which creates negative pressure in the combustion chamber. This causes
the ambient air to infiltrate into the chamber, which significantly affects the combustion and heating of
the charge in rotary tilting furnaces [27]. When OEC technology is used, the amount of penetrating
air (79% vol. N2) increases the nitrogen concentration in the combustion chamber, thereby removing
heat from the process and decreasing the combustion temperatures reached in the furnace [28,29].
Excessive air infiltration can, therefore, significantly lessen the advantages of using OEC technology
and decrease the thermal efficiency of these furnaces.

On the other hand, oxygen content of the infiltrating air causes an increase in the oxygen
concentration in the combustion chamber. Therefore, the charge material (aluminum) tends to react
with the flue gas components [30]. The main reason for this is the high affinity of aluminum for
oxygen. The surface of solid and liquid aluminum is always covered with an oxidation layer, which
serves as protection against further oxidation. The chemical reaction in which aluminum reacts with
oxygen to form alumina (Al2O3) is a self-propagating reaction [31]. Its initiation can be prevented by
decreasing the oxygen content in the flue gas, which means regulating combustion with a low excess
of the oxidizing agent and reducing air penetration into the furnace.

Prevention of air infiltration into the furnace in the furnace design stage is difficult due to the
rotary movement of the kiln putting strain on the static door and leaving it with an improperly
sealed opening [32]. A gap is gradually created through which air increasingly penetrates into the
combustion chamber. The amount of air getting into the combustion chamber is influenced by the
pressure conditions inside the chamber and by the width of the gap through which the air infiltrates.
The amount of air penetrating into the combustion chamber can be estimated using the Bernoulli
equation. In their studies, Varga [33] and Baukal [34] describe the method of calculating the amount of
air getting into the combustion chamber and the associated energy required to heat the penetrating air
up to the temperature of flue gas.

The physical measurement of the amount of infiltrating air and the definition of its impact on
the combustion process under real conditions are difficult. Analyzing the amount of infiltrating air is
possible only on the basis of flue gas composition and/or combustion control, by means of which the
analysis of dry flue gas (O2, CO2, and CO) can determine the amount of excess combustion air.

At present, there is very little literature available that deals with the impact of air infiltration on
heat transfer and charge heating in rotary tilting furnaces. The above-mentioned consequences of air
penetration result in changes in the temperature field distribution inside the combustion chamber.
Consequently, the charge heating process is significantly prolonged and its thermal efficiency is reduced.
Attention should therefore be paid to this issue when evaluating the overall effect of air infiltration into
furnace chambers. A solution to this issue lies in the modification of the furnace door design, which
can reduce air infiltration through better sealing of the door opening, thus decreasing the gap through
which air infiltrates into the furnace. In this way, a contribution can be made to achieving greater
efficiency of oxygen use in furnaces, leading to an increased technological process efficiency and
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reduced greenhouse-gas emissions due to fuel savings. The authors of this article designed and created
an experimental laboratory-scale model of a rotary tilting furnace with a novel design of the furnace
door to investigate the impact of air infiltration on the combustion process and the resulting fuel
consumption. Oxygen-enhanced combustion was applied with oxygen concentrations ranging from 21
to 35% vol. The computational fluid dynamics (CFD) model of the experimental device was designed
and constructed for the better understanding of the impact of air infiltration on the combustion process.
The obtained results confirm the ability of the new door design to reduce air penetration by up to
50% and to reduce the related fuel consumption by 1.79% to 12%, clearly demonstrating its superior
performance compared to the traditional door design.

The rest of the paper is organized as follows: First, the modified furnace door design is introduced
and its features are explained, along with a description of the laboratory-scale furnace used in the
experiments and the instrumentation employed. The method for calculating the air infiltration rate is
presented, followed by the results obtained and the related discussion. The CFD simulation and its
results are presented in the next part, corroborating the experimental findings. Conclusions sum up
the key findings.

2. Experimental Device

2.1. Modification of the Door

The proposed furnace door modification aimed to reduce the gap between the furnace door and
the furnace body itself, through which air penetrates into the furnace. The existence of the gap results
from the industrial tilting furnace design, because the furnace door remains static while the furnace
body rotates (see Figure 1). The size of the gap area through which air is sucked inside the furnace
can be defined as the area of the cylinder mantle. The novel door design is based on elongating the
perimeter surround of the door, which results in the partial covering of the rotating furnace body. This,
in turn, leads to reduction in the gap area, as it results from Equations (1)–(3), and in the end, reduces air
infiltration, as schematically shown in Figure 2. Additional air infiltration reduction results both from
the increased relative roughness of the opposing walls and from the longer path the penetrating air
must flow through to get inside the furnace. The key feature of the proposed novel door design is that
the elongated part of the door surround is parallel and close to the wall of the rotating furnace body.
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A schematic visualization of the gap width estimation is provided in Figure 2. The width of
the gap between the door and the furnace body can be calculated using Equation (1). If the distance
between the furnace door and body is reduced, the gap width can be calculated using Equations (1)–(3).
For a better understanding, please see the auxiliary scheme provided in Figure 2. It follows from
Equations (1) and (2) that the gap width reduction depends on the sine of angle α. In the ideal case,
with no contact between the furnace door and the furnace body itself, the theoretical angle value is
0◦. In this case, there is no gap and, consequently, zero air infiltration. While this situation is unreal,
it still holds that as the angle α approaches zero, so does the gap width as well. The modified door
design in the experiments yielded an angle α equal to 24.2◦. Such experimental alignment produced a
gap width of 4.1 mm, with the distance between the furnace door and the front of the furnace itself
remaining at 10 mm. Please refer to Figure 1 as well. Figure 3 shows the modified furnace door design
for better visualization.

x0 = sinα× h1 (m) (1)

where x0—width of gap through which air infiltrates into furnace (m); h1—distance between extended
door surround and rotary kiln body (m); α—angle between sloping body of rotary kiln and axis of
furnace (◦).

h2 = h1 − ∆h (m) (2)

x1 = x0 ×
h2

h1
(m) (3)

Figure 4 provides the values of the gap area through which air penetrates into the furnace with
the traditional and with the new door design as a function of the furnace door distance from the
furnace itself. As it can be seen from this figure, a reduction of around 50% in the gap area was
achieved with the new door design. Theoretical calculations using the Bernoulli equation yielded the
expected 50% reduction in air infiltration. The gap area in industrial-size rotary tilting furnaces is
several times larger [13,35] compared with that in the laboratory furnace model, and the proposed door
design modification can lead to a significant reduction in air penetration, improvement in combustion
conditions, and subsequently increased thermal efficiency of the furnace.
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2.2. Experimental Model

Experiments were carried out in a tilting rotary furnace (Figure 5) with an inside diameter of 305
mm and length of 607 mm. The angle of inclination of the experimental model during the measurement
was 7%. In total, 16 thermocouples of type K (NICr-NiAl) PTTK-TKb-60-2-SP (Meratex s.r.o., Košice,
Slovakia) were located in the furnace. The measurement uncertainty stated by the manufacturer is
at the level of +/−2.5 ◦C at the temperature of 1200 ◦C. The objective of the thermocouples was to
continuously monitor the changes in the temperature field in the combustion chamber, lining, stack,
and charge. The experimental model was set-up statically due to the placement of thermocouples
around the circumference of the casing, and it did not rotate during the measurements. The flue gas
composition was analyzed using a TESTO-350XL flue gas analyzer (K-Test, s.r.o., Košice, Slovakia).
The position of the flue gas analyzer and distribution of the thermocouples are shown in Figure 5.
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Flow rates of all gaseous media were measured using Bronkhorst-designed MASS-VIEW series
thermal mass flow meters/regulators. The devices operate on the principle of direct thermal mass
flow measurement. The models utilized during these experiments were MV-308, MV-106, and MV-306
(AREKO s.r.o., Bratislava, Slovakia). Technical specifications of these models are listed in Tables 1
and 2. Other relevant parameters related to the furnace operation were recorded by the furnace
control system.

Table 1. Technical specification of Bronkhorst flowmeters MASS-VIEW MV-106, MV-306, and
MV-308 [36]. FS = full scale; RD = reading.

MV-106, MV-306 MV-308

Accuracy ±2% RD for >50% of max. capacity
±(2% RD + 0.5% FS) on lower flows

Repeatability <0.2% FS typical <0.6% FS typical
Operating pressure 0–10 bar

Operating temperature 0–50 ◦C
Response time 2 s

Table 2. Flow rate specification of Bronkhorst flowmeters MASS-VIEW MV-106, MV-306, and
MV-308 [36].

Model Air, O2 (L/min) CH4 (L/min)

MV-106,
MV-306

range 1 2–200 1–100
range 2 1–100 5–50
range 3 0.5–50 0.2–20
range 4 0.4–20 0.2–10

MV-308

range 1 5–500 2.5–250
range 2 2–200 1.25–125
range 3 1–100 0.625–62.5
range 4 1–50 0.5–25

Effects of 21% to 35% oxygen concentration in the oxidizing agent on heat transfer in the furnace,
flue gas temperature, and emissions produced were studied. At the same time, external effects such as
air infiltration into the furnace were monitored. Table 3 shows the gas and combustion air and oxygen
flow rates required to achieve the desired oxygen concentration in the oxidizing agent. Oxygen was
added to the air input upstream of the burner using a diffuser to produce its uniform distribution. The
addition of oxygen to the air stream has been described by Baukal and is intended for lower levels of
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oxygen enrichment of combustion air [6]. Natural gas was provided from the distribution network.
The composition of this natural gas is presented in Table 4.

Table 3. Volumetric flows of inlet media depending on oxygen concentration in the oxidizing agent.

Concentration of Oxygen (%) 21 22.5 25 27.5 30 32.5 35

Air Flow (m3
·h−1) 14.07 12.88 11.22 9.86 8.72 7.77 6.94

Oxygen Flow (m3
·h−1) 0 0.25 0.6 0.88 1.12 1.32 1.49

Fuel Consumption (m3
·h−1) 1.3 1.3 1.3 1.3 1.3 1.3 1.3

Air Excess coefficient (-) 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Table 4. Natural gas composition in % vol. (adapted from [37]).

CH4 C2H6 C3H8 C4H10 C5H12 C6H14 CO2 N2

% % % % % % % %
95.171 2.7131 0.8729 0.2772 0.0486 0.0207 0.2266 0.6697

2.3. Calculation of Air Infiltration

The volumetric flow of air penetrating into the furnace can be calculated based on the material
balance of the combustion process. The Testo 350XL flue gas analyzer provides concentrations of flue
gas constituents (mainly oxygen) in the produced dry flue gas, which enables air excess coefficient
calculation. Equations (4) and (5) present the calculation of the air excess coefficient and the volumetric
flow of air infiltration.

m = 1 +
VFG,D,min,yo2

Lmin,yo2 ,
×

O2

YO2 −O2
(−) (4)

VAI = m.Lmin × B−V1 ×
(
m3
× h−1

)
(5)

where m is the air excess coefficient (-); VFG,D,min,yo2 is the theoretical volume of flue gas (dry) if m
= 1 (m3

·m−3); Lmin,yo2 is the theoretical volume of the oxidizing agent if m = 1 (m3
·m−3); O2 is the

oxygen content in dry flue gases determined by means of flue gas analysis (% vol.); YO2 is the required
oxygen concentration in oxygen-enriched combustion air for experimental measurement (%); VAI is the
volumetric flow of air infiltration (m3

·h−1); B is the consumption of fuel (m3
·h−1); V1 is the volumetric

flow of oxidizing agent determined on the basis of Table 3 (m3
·h−1).

The pressure difference between the ambient air and the inside of the furnace is related to the
volumetric flow of air infiltration by Equation (6) if the frictional pressure losses are neglected. Their
effect transposes into the measured oxygen content in the flue gases and, following that, into the
calculated air infiltration.

∆p =

(VAL/3600
Sx

)2
× ρAL

2
(Pa) (6)

where ∆p is the pressure difference (Pa); Sx is the gap area (m2); ρAL is the density of ambient air
(kg·m−3).

3. Results and Discussion

Figure 6 shows the measured oxygen concentration values (% vol.) in dry flue gas at various
adjusted gap widths. Its linear increase with the increasing gap width can be observed, while the use
of OEC had no visible effect on it. Based on Equations (4)–(6), it can be stated that underpressure in the
furnace does not depend on the gap width; thus, the linear oxygen concentration increase results from
the increasing gap area (see Figure 4). The oxygen concentration increase in the combustion air due to
OEC technology use reduces the pressure difference between the furnace interior and the ambient air
and reduces the air infiltration accordingly. The optimal oxygen concentration range in the dry flue gas
with varying oxygen content in the enriched air (21 to 35% vol.) at the optimum air excess coefficient of
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m = 1.1 is depicted in Figure 6 (orange and red lines). Oxygen concentration values above the red line
indicate air infiltration into the furnace. The difference between the red line and the measured oxygen
concentration value at zero gap width (door touching the furnace body) results from the imperfect
equipment geometry, worn-down refractory lining, or possibly from air infiltration through another,
undetected, gap.
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On the basis of flue gas analysis, the values of air infiltration volumetric flow were calculated
depending on the gap width and oxygen concentration in the enriched air (21 to 35% vol.), standardized
to fuel consumption of B = 1 (m3

·h−1). The obtained trends are shown in Figure 7.
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Results depicted in Figures 6 and 7 demonstrate the possible situation occurring in real furnaces,
where the expected gap width between the furnace door and the furnace body is much larger than that
(10 mm) in the laboratory furnace employed during aluminum melting experiments.
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Air infiltration increases combustion air excess and leads to increased thermal losses in flue gases
exiting the furnace. At the same time, it leads to a decrease in the overall oxygen concentration in the
oxidizing agent (sum of combustion air and air infiltration).

Figure 8 shows computational results of how the oxygen concentration in the oxidizing agent
changes as air infiltrates into the combustion chamber. The optimum oxygen concentration in the
oxidizing agent for melting aluminum in a rotary tilting furnace was found to be 35% based on
experimental studies [19,24]. However, in the case of the estimated calculated air infiltration of up to
4.5 m3

·h–1 (see Figure 7), this concentration value can be reduced by up to 14%.
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air (mathematical modeling).

The effects of the change in oxygen concentration in the oxidizing agent and that in excess
combustion air can be transposed to the change in combustion temperatures through the statics of
combustion. Figure 9 illustrates the impact of air infiltration on natural gas combustion temperature.
Theoretical temperature, including the dissociation of CO2 and H2O components, is shown by the blue
line. It is evident that the theoretical temperature decreases by more than 500 ◦C as the combustion
conditions change due to air infiltration. Actual temperature in the furnace was calculated by applying
the pyrometric efficiency factor of the experimental model (ηpyr = 0.45) determined by experimental
measurements. Similarly, the actual temperature in the furnace decreases by more than 200 ◦C with
the increasing air leakage. The charge material is thus heated by cooler flue gases, which increases the
processing time of the charge, reduces the furnace productivity, and increases the fuel consumption.
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Figure 9. Dependence of temperature change with air infiltration.

Figure 10 provides measured flue gas temperature data from an experimental run during which
the gap between the furnace door and body was decreased. Thermocouples T1 to T4 were placed in
axial positions in the furnace; thus, they had the quickest response to changes in combustion conditions.
Measured flue gas temperatures of around 700 ◦C increased to around 900 ◦C after the reduction in air
infiltration intensity, which is in good agreement with the calculated temperatures shown in Figure 9.
Axial distances of individual thermocouples from the burner are listed in Table 5.
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Table 5. Axial distances of individual thermocouples from the burner.

Thermocouple T1 T2 T3 T4

Distance (m) 0.05 0.2 0.35 0.5

The effect of decreasing air infiltration intensity during an experimental run can be further
monitored by thermocouple T1 showing a decrease in flue gas temperature. The explanation is given
above (p. 2): Penetrating air can be considered as secondary air, which accelerates creation of the
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combustible mixture by enhanced mixing of the fuel with the oxidizing agent. The flame front distance
from the burner is reduced as a result. Decreasing air infiltration intensity slows down the creation of
the combustible mixture and the flame front moves further away from the burner.

Measurement results in Figure 7 show that the operation of rotary tilting furnaces is inevitably
coupled with significant air infiltration into the combustion chamber. The proposed new design of
the furnace door leads to an around 50% decrease in the volumetric flow of air penetrating into the
furnace, which represents a substantial change in the furnace operation. The resulting fuel saving rate
can be partly calculated using Equations (7) and (8). Additional fuel savings, resulting from the shorter
charge melting time, must be estimated experimentally case by case.

QAI =
.

LAI ×CpAI × ∆T(kJ·day−1) (7)

x =
QAI

QnNG
× (m3

·day−1) (8)

where
.

LAI is the flow rate of air infiltration per day (m3
·day−1); cpAI is the specific heat capacity of

infiltrating air (kJ m−3 K−1); ∆T is the difference in temperature (K); QnNG is the calorific value of
natural gas (kJ m−3); x is the natural gas equivalent (m3 day−1).

Data provided in Figure 7 (at oxygen concentration of 35%) at the ∆T value of 650 K, estimated by
means of experimental measurements, permit the deduction that 0.6 to 3.68 m3/day of natural gas can be
saved by the proposed novel furnace door design. This represents around 1.79 to 12% of the total daily
natural gas consumption of the laboratory furnace. In the case of industrial-sized rotary tilting furnaces,
the gap area is approximately 2.5 to 6 times larger compared to the laboratory-scale furnace used in this
study [38] depending on the furnace throughput. The average natural gas consumption in this type of
furnace is 35 m3 per ton of charge. Applying the results obtained from the laboratory-scale furnace
model, the air infiltration rate into a typical industrial furnace ranges between 17 and 120·m3

·h−1. The
calculated air infiltration rate into a real furnace [6] was 23 m3/h, which led to an additional natural
gas consumption of 10 m3

·day−1. This represents approximately 1.6% of the average natural gas
consumption in that furnace, or around 0.56 m3 of natural gas per ton of charge. Halving this amount
by means of the proposed novel furnace door design produces a saving of almost 0.3 m3 per ton of
charge on average.

In the case of furnaces using pure oxygen for natural gas combustion, the oxygen concentration
in the combustible mixture is reduced to around 80% of its original value due to air infiltration. The
theoretical combustion temperature, taking CO2 and H2O dissociation into account, then drops by
around 150 ◦C.

4. Mathematical Modeling

The effects of air infiltration into a furnace can be illustrated using mathematical modeling with
CFD simulation. Nieckele et al. [38] described the numerical modeling of an industrial aluminum
melting furnace. Zhou et al. [39] performed the modeling of aluminum scrap processing in a rotary
furnace. Khoei et al. [40] modeled the operation of a rotary furnace in aluminum recycling processes.
Rimar et al. [41] developed a mathematical model of a heating furnace implemented with volumetric
fuel combustion. The mathematical model of the furnace shown in Figures 3 and 5 was developed
in ANSYS. Boundary conditions were defined based on the heat balance result and in accordance
with Table 3. Gas and oxidizing agent were defined in terms of the mass flow rate. The boundary
condition of the chimney was specified as an opening with pressure condition “−5 Pa,” which was
defined as negative pressure created by the exhaust fan. The furnace border (surround) was defined
by the boundary condition “Opening,” where the specified pressure was equal to the atmospheric
one, and the air composition was 21% of O2 and 79% of N2. The mesh of the mathematical model was
created from tetrahedral, hexahedral, and prism cells. Meshing in the vicinity of the furnace walls was
supported by the inflation function with the inflation option “Smooth transition” and a maximum of
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five layers, and growth rate of 1.2. Figure 11 provides a visualization of the mesh of the mathematical
model. The total number of cells was 2,086,018. In order to simplify the mathematical model, the
furnace was modeled in the empty state, i.e., with no charge inside.Processes 2020, 8, x FOR PEER REVIEW 12 of 17 
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Results of the mathematical modeling presented in Figure 12 confirm that when melting aluminum
in the physical model, air infiltrates into the furnace combustion chamber. Analysis of the results
shows that the actual measurement of emissions with the probe in the stack of the physical model is
also influenced by air infiltration. There is a layer of unburned oxygen close to the chimney walls,
which is diluted with flue gases created during natural gas combustion. Thus, the optimum location of
the flue gas analysis probe is along the stack axis near the combustion chamber, i.e., exactly where it
was placed during our experiments.
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Figure 12. Model results: Distribution of oxygen mass fraction contours.

Due to the small pressure difference between the ambient air and the furnace interior, the pressure
contours range had to be rescaled to ±5 Pa. Figure 13 clearly shows the overpressure in the burner,
which quickly diminishes due to the flue gas outflow into the stack. Areas with lowest pressure are
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located close to the burner and further toward the stack as a result of the flue gas fan operation drawing
off produced flue gas.Processes 2020, 8, x FOR PEER REVIEW 13 of 17 
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Figure 13. Model results: Pressure contours distribution.

From the results of the mathematical model, the extent to which air infiltration affects the natural
gas combustion process can also be determined. Figure 14 shows the distribution of infiltrating air in
the combustion chamber by means of streamlines. The exhaust fan creates negative pressure in the
chimney, and therefore, a large portion of the penetrating air is drawn directly into the flue gas, creating
an air layer on the chimney walls. In proximity of the burner, the penetrating air is propelled into the
combustion chamber by the flue gas flow. Thus, an excess of oxygen is generated in the combustion
chamber, creating an oxidizing atmosphere above the charge.
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Figure 14. Model results: Infiltrating air flow contours in the combustion chamber.

Data presented in Figure 15 validate the model and calculation results of air infiltration volumetric
flow through their comparison with values obtained using the method proposed by Baukal [35]. Both
modeling approaches yielded similar results to those from the calculation based on experimental
measurements. Thus, the method used for mathematical model creation in ANSYS can be considered
as correct, and the results obtained are relevant and can be used for fuel consumption reduction
estimation resulting from the proposed furnace door design change.
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Figure 15. Comparison of air infiltration volumetric flow: Calculated using experimental data
(orange); obtained from modeling in ANSYS (yellow); and calculated using the approach proposed
by Baukal [35] (green).

5. Conclusions

The authors have proposed and experimentally tested an improved design for a rotary tilting
furnace door. Its ability to reduce air infiltration into the furnace was confirmed both experimentally
and by numerical simulations in ANSYS. Temperatures in the combustion chamber and oxygen content
in dry flue gas were measured in order to document the changes in the combustion process with
varying gap width around the furnace door. The calculated air infiltration volumetric flow values based
on the measured data agree well with the results of numerical simulations performed in ANSYS, as
well as with the reference calculation procedure used in relevant literature. The achieved air infiltration
reduction of up to 50% translates into fuel savings amounting to around 1.8 to 12% of the total natural
gas consumption in the laboratory-scale furnace. Applying the results obtained here to industrial-scale
furnaces permits us to state that typical air infiltration rates vary in the range from 17 to 120 m3

·day−1

and cause a fuel consumption increase of 1.6% on average, which represents around 0.56 m3 of natural
gas per ton of charged material. Based on these experimental results, it can be concluded that this
value can be halved by means of the novel furnace door design.

Based on the results of both experimental measurement and mathematical modeling of the rotary
tilting furnace device, it can be concluded that the infiltration of air into the combustion chamber
causes serious impact on the combustion process and reduces the energy efficiency of rotary furnaces.
From the environmental point of view, the main disadvantage is the associated increase in greenhouse
gas emissions into the atmosphere and the increase in fuel consumption. The results obtained reflect
the trends in EU energy policy aimed strictly at industrial carbon footprint reduction, and research in
this area is, therefore, very useful and highly topical.
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23. Blašková, K.; Trpčevská, J.; Kuchárová, M. Characterization of Zn-Mg-Al Based Drosses from the Continuous
Galvanizing. Manuf. Technol. 2016, 16, 879–883. [CrossRef]

http://dx.doi.org/10.2965/jswe1978.14.437
http://dx.doi.org/10.1016/j.jclepro.2018.11.036
http://dx.doi.org/10.1016/j.energy.2019.01.130
http://dx.doi.org/10.1016/j.apenergy.2020.114848
http://dx.doi.org/10.1016/j.jclepro.2019.05.251
http://dx.doi.org/10.1016/j.coche.2019.09.001
http://dx.doi.org/10.1016/j.apenergy.2020.114946
http://dx.doi.org/10.3390/en9100833
https://www1.eere.energy.gov/manufacturing/resources/metalcasting/pdfs/advancedmeltingtechnologies.pdf
https://www1.eere.energy.gov/manufacturing/resources/metalcasting/pdfs/advancedmeltingtechnologies.pdf
http://dx.doi.org/10.1016/j.fuel.2010.02.002
https://uloz.to/file/ZPAXaG9LqLd5/monografia-jablonsky-spolu-pdf
https://uloz.to/file/ZPAXaG9LqLd5/monografia-jablonsky-spolu-pdf
http://dx.doi.org/10.1515/amm-2016-0309
http://dx.doi.org/10.1016/j.ijggc.2017.03.020
http://dx.doi.org/10.1016/j.jclepro.2020.122997
http://dx.doi.org/10.2172/765375
http://dx.doi.org/10.3390/app9081614
http://dx.doi.org/10.1016/j.mineng.2007.09.009
http://dx.doi.org/10.1016/j.applthermaleng.2018.01.009
http://dx.doi.org/10.1016/j.applthermaleng.2018.04.012
http://dx.doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/5/879


Processes 2020, 8, 1292 16 of 16

24. Jepson, S.; Kampen, P.V. Oxygen-enhanced combustion provides advantages in Al-melting furnaces. Ind.
Heat. 2005, 72, 29–35.

25. Gripenberg, H.; Johansson, A.; Eichler, R.; Rangmark, L. Optimised oxyfuel melting process at sapa heat
transfer ab. In Proceedings of the Light Metals 2007 at the TMS 2007 Annual Meeting & Exhibition,
Orlando, FL, USA, 25 February–1 March 2007; Sorlie, M., Minerals, Metals and Materials Society, Eds.; TMS:
Warrendale, PA, USA, 2007; pp. 597–601.

26. Gripenberg, H.; Falk, O.; Olausson, R.; Niedermair, F. Controlled melting of secondary aluminum in rotary
furnaces. In Proceedings of the Light Metals 2003 at the 132nd TMS Annual Meeting, San Diego, CA, USA,
2–6 March 2003; Crepeau, P.N., Minerals, Metals and Materials Society, Eds.; TMS: Warrendale, PA, USA,
2003; pp. 1083–1090.

27. Furu, J.; Buchholz, A.; Bergstrøm, T.H.; Marthinsen, K. Heating and melting of single Al ingots in an
aluminum melting furnace. In Proceedings of the Light Metals 2010 at the TMS 2010 Annual Meeting &
Exhibition, Seattle, WA, USA, 14–18 February 2010; Johnson, J.A., Ed.; TMS-AIME: Warrendale, PA, USA,
2010; pp. 679–684.

28. Rimar, M.; Kulikov, A. NOx formation in combustion of gaseous fuel in ejection burner. In The Application of
Experimental and Numerical Methods in Fluid Mechanics and Energy, Proceedings of the XX. Anniversary
of International Scientific Conference, Terchova, Slovakia, 27–29 April 2016; AIP Publishing: College Park,
MD, USA, 2016; Volume 1745, p. 20051.

29. Kulikov, A.; Fedák, M.; Abraham, M.; Váhovský, J. Study of the gaseous fuel combustion respect to the O2
concentration and NOx formation. Adv. Therm. Process. Energy Transform. 2018, 1, 23–26.

30. Capuzzi, S.; Timelli, G. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 2018, 8, 249.
[CrossRef]

31. Osoba, L.O.; Owolabi, O.B.; Talabi, S.I.; Adeosun, S.O. Review on oxide formation and aluminum recovery
mechanism during secondary smelting. J. Cast. Mater. Eng. 2018, 2, 45–51. [CrossRef]

32. Baukal, C. The John Zink Hamworthy Combustion Handbook; CRC Press: Boca Raton, FL, USA, 2012. [CrossRef]
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