Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the NiO Samples
2.2. Electronic Sensing of the Sample by Steady-State Rössler Attractors
2.3. Laser Ablation Controlled by a T-Type Flip-Flop with a Steady-State Rössler Attractor as an Input Signal
2.4. Nonlinear Optical Absorption Studies by a Vectorial Two-Wave Mixing
2.5. Photothermal Distribution in the Film due to Laser Heat Source
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, Y.; Zhang, J.; Singh, S.; Garcell, E.; Vorobyev, A.Y.; Lam, B.; Zhan, Z.; Yang, J.; Guo, C. Maskless laser nano-lithography of glass through sequential activation of multi-threshold ablation. Appl. Phys. Lett. 2019, 114, 133107. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.G.; Ren, H.; Jia, A.; Tian, Z.N.; Wang, L.; Juodkazis, S.; Chen, Q.D.; Sun, H.B. Convex silica microlens arrays via femtosecond laser writing. Opt. Lett. 2020, 45, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.A.; Lai, B.; ElKabbash, M.; Zhang, J.; Garcell, E.M.; Singh, S.; Guo, C. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci. Appl. 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Jiang, Y.; Zhang, P.; Wei, H.; Fan, W.; Li, X.; Zhu, J. Numerical and Experimental Investigation of Morphological Modification on Fused Silica Using CO2 Laser Ablation. Materials 2019, 12, 4109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, D.W.; Fox, T.; Grützmacher, P.G.; Suarez, S.; Mücklich, F. Applying Ultrashort Pulsed Direct Laser Interference Patterning for Functional Surfaces. Sci. Rep. 2020, 10, 3647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Lechuga, M.; Utéza, O.; Sanner, N.; Grojo, D. Evidencing the nonlinearity independence of resolution in femtosecond laser ablation. Opt. Lett. 2020, 45, 952–955. [Google Scholar] [CrossRef]
- Huang, F.; Lei, M.; Wang, J.; Chen, D.; Gao, T.; Wang, X. Sound waves generated by nanosecond and femtosecond laser ablation on different metals. Optik 2019, 178, 1131–1136. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Chen, Z.; Lu, Y.; Shi, H.; Wang, G.; Xiao, D.; Ding, N.; Li, X.; Jia, S.; et al. Plasma formation and ablation dynamics of stainless steel cylindrical liner. Phys. Plasmas 2020, 27, 62709. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Z.; Xu, Y.; Song, X.; Wang, Y.; Peng, H.; Wang, Y.; Zuo, J.; Shu, X.; Yin, A. Nanosecond Laser Ablation of Ti-6Al-4V under Different Temperature. Appl. Sci. 2020, 10, 4657. [Google Scholar] [CrossRef]
- Takahashi, T.; Tani, S.; Kuroda, R.; Kobayashi, Y. Precision measurement of ablation thresholds with variable pulse duration laser. Appl. Phys. A 2020, 126, 582. [Google Scholar] [CrossRef]
- Parimon, N.; Mamat, M.H.; Shameem Banu, I.B.; Vasimalai, N.; Ahmad, M.K.; Suriani, A.B.; Mohamed, A.; Rusop, M. Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball-flower-like structure films. J. Mater. Sci. Mater. Electron. 2020, 31, 11673–11687. [Google Scholar] [CrossRef]
- Wu, W.; Wang, M.; Ma, J.; Cao, Y.; Deng, Y. Electrochromic Metal Oxides: Recent Progress and Prospect. Adv. Electron. Mater. 2018, 4, 1800185. [Google Scholar] [CrossRef]
- Banerjee, W. Challenges and Applications of Emerging Nonvolatile Memory Devices. Electronics 2020, 9, 1029. [Google Scholar] [CrossRef]
- Diao, C.C.; Huang, C.Y.; Yang, C.F.; Wu, C.C. Morphological, Optical, and Electrical Properties of p-Type Nickel Oxide Thin Films by Nonvacuum Deposition. Nanomaterials 2020, 10, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ghamdi, A.A.; Abdel-wahab, M.S.; Farghali, A.A.; Hasan, P.M.Z. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films. Mater. Res. Bull. 2016, 75, 71–77. [Google Scholar] [CrossRef]
- Amin, R.S.; Hameed, R.M.A.; El-Khatib, K.M.; Youssef, M.E.; Elzatahry, A.A. Pt-NiO/C anode electrocatalysts for direct methanol fuel cells. Electrochim. Acta 2012, 59, 499–508. [Google Scholar] [CrossRef]
- Varghese, B.; Reddy, M.V.; Yanwu, Z.; Lit, C.S.; Hoong, T.C.; Subba Rao, G.V.; Chowdari, B.V.R.; Wee, A.T.S.; Lim, C.T.; Sow, C.H. Fabrication of NiO nanowallelectrodes for high performance lithium ion battery. Chem. Mater. 2008, 20, 3360–3367. [Google Scholar] [CrossRef]
- Ren, Y.; Chim, W.K.; Guo, L.; Tanoto, H.; Pan, J.; Chiam, S.Y. The coloration anddegradation mechanisms of electrochromic nickel oxide. Sol. Energy Mater. Sol. Cells 2013, 116, 83–88. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Zhu, J.; Zhao, W.; Ma, J.; Mhaisalkar, S.; Maria, T.L.; Yang, Y.; Zhang, H.; Hng, H.H.; et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. P-Type semiconducting nickel oxide as an efficiency-enhancing anode interfaciallayer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2783–2787. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sens. Actuators B 2011, 156, 251–262. [Google Scholar] [CrossRef]
- Ying, K.; Liang, H.; Chen, D.; Sun, Y.; Pi, H.; Wei, F.; Yang, F.; Cai, H. Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect. Opt. Express 2020, 28, 23717–23727. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh-Nejad, F.; Fleury, R. Topological analog signal processing. Nat. Commun. 2019, 10, 2058. [Google Scholar] [CrossRef]
- Martines-Arano, H.; García-Pérez, B.E.; Vidales-Hurtado, M.A.; Trejo-Valdez, M.; Hernández-Gómez, L.H.; Torres-Torres, C. Chaotic Signatures Exhibited by Plasmonic Effects in Au Nanoparticles with Cells. Sensors 2019, 19, 4728. [Google Scholar] [CrossRef] [Green Version]
- Rosalie, M. Templates and subtemplates of Rössler attractors from a bifurcation diagram. J. Phys. A Math. Theor. 2016, 49, 315101. [Google Scholar] [CrossRef]
- Wang, B.; Zou, F.C.; Cheng, J. A memristor-based chaotic system and its application in image encryption. Optik 2018, 154, 538–544. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130. [Google Scholar] [CrossRef] [Green Version]
- Sprott, J.C. Some simple chaotic flows. Phys. Rev. 1994, 50, 647. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ueda, T. Yet Another Chaotic Attractor. Int. J. Bifurcat. Chaos 1963, 9, 1465. [Google Scholar] [CrossRef]
- Rössler, O.E. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397. [Google Scholar] [CrossRef]
- Shekhar, S.C.; Gary, R.; Jin, J.; Mingyan, L.; Andrew, M.K.; Imants, D.S.; Stuart, C. Chaotic Sensing. IEEE Trans. Image Process. 2018, 27, 12. [Google Scholar]
- Naruse, M.; Terashima, Y.; Uchida, A.; Kim, S.J. Ultrafast photonic reinforcement learning based on laser chaos. Sci. Rep. 2017, 7, 8772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, G.; Huang, X. A novel block chaotic encryption scheme for remote sensing image. Multimed. Tools Appl. 2016, 75, 11433. [Google Scholar] [CrossRef]
- Huang, X.; Ye, G. An image encryption algorithm based on hyper-chaos and DNA sequence. Multimed. Tools Appl. 2014, 72, 57–70. [Google Scholar] [CrossRef]
- Chang, C.Y.; Choi, D.; Locquet, A.; Wishon, M.J.; Merghem, K.; Ramdane, A.; Lelarge, F.; Martinez, A.; Citrin, D.S. A multi-GHz chaotic optoelectronic oscillator based on laser terminal voltage. Appl. Phys. Lett. 2016, 108, 191109. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, J.; Xie, T. Cryptanalyzing a RGB image encryption algorithm based on DNA encoding and chaos map. Opt. Laser Technol. 2014, 60, 111–115. [Google Scholar] [CrossRef] [Green Version]
- González-Salas, J.S.; Shbat, M.S.; Ordaz-Salazar, F.C.; Simón, J. Analyzing Chaos Systems and Fine Spectrum Sensing Using Detrended Fluctuation Analysis Algorithm. Math. Probl. Eng. 2016, 18, 2865195. [Google Scholar] [CrossRef] [Green Version]
- Xi, T.; Zheng-Mao, W.; Jia-Gui, W.; Tao, D.; Jian-Jun, C.; Li, F.; Zhu-Qiang, Z.; Guang-Qiong, X. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express 2015, 23, 33130–33141. [Google Scholar]
- Bueno, J.; Maktoobi, S.; Froehly, L.; Fischer, I.; Jacquot, M.; Larger, L.; Brunner, D. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 2018, 5, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Bentley, C.L.; Perry, D.; Unwin, P.R. Stability and Placement of Ag/AgCl Quasi-Reference Counter Electrodes in Confined Electrochemical Cells. Anal. Chem. 2018, 90, 7700–7707. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.G. Nonlinear Instabilities in Chemical and Electrochemical Systems. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2017. [Google Scholar]
- Ibrahim, K.M.; Jamal, R.K.; Ali, F.H. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors. J. Phys. Conf. Ser. 2018, 1003, 12099. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Acosta, M.A.; Martines-Arano, H.; Soto-Ruvalcaba, L.; Martínez-González, C.L.; Martínez-Gutiérrez, H.; Torres-Torres, C. Fractional thermal transport and twisted light induced by an optical two-wave mixing in single-wall carbon nanotubes. Int. J. Therm. Sci. 2020, 147, 106136. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.; Hagan, D.J.; Stryland, E.W.V. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.E.; Kim, S.; Ko, J.; Yeom, H.I.; Byun, C.W.; Lee, S.H.; Joe, D.J.; Im, T.H.; Park, S.H.K.; Lee, K.J. Skin-Like Oxide Thin-Film Transistors for Transparent Displays. Adv. Funct. Mater. 2016, 26, 6170–6178. [Google Scholar] [CrossRef]
- De Melo, R.P., Jr.; da Silva, B.J.P.; dos Santos, F.E.P.; Azevedo, A.; de Araújo, C.B. Nonlinear refraction properties of nickel oxide thin films at 800 nm. J. Appl. Phys. 2009, 106, 93517. [Google Scholar] [CrossRef]
- Cesca, T.; Michieli, N.; Kalinic, B.; Balasa, I.G.; Rangel-Rojo, R.; Reyes-Esqueda, J.A.; Mattei, G. Bidimensional ordered plasmonic nanoarrays for nonlinear optics, nanophotonics and biosensing applications. Mat. Sci. Semicond. Proc. 2019, 92, 2–9. [Google Scholar] [CrossRef]
- Torres-Torres, R. Extracting characteristic impedance in low-loss substrates. Electron. Lett. 2011, 47, 191–193. [Google Scholar] [CrossRef]
- Hernández-Acosta, M.A.; Trejo-Valdez, M.; Castro-Chacón, J.H.; Torres-SanMiguel, C.R.; Martínez-Gutiérrez, H.; Torres-Torres, C. Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors. N. J. Phys. 2018, 20, 23048. [Google Scholar] [CrossRef]
- Sambas, A.; Sanjaya, M.; Mamat, M.; Halimatussaiyah, W.S. Design and Analysis Bidirectional Chaotic Synchronization of Rossler Circuit and Its Application for Secure Communication. App. Math. Sci. 2013, 1, 11–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martines-Arano, H.; Vidales-Hurtado, M.A.; Palacios-Barreto, S.; Trejo-Valdez, M.; García-Pérez, B.E.; Torres-Torres, C. Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells. Processes 2020, 8, 1377. https://doi.org/10.3390/pr8111377
Martines-Arano H, Vidales-Hurtado MA, Palacios-Barreto S, Trejo-Valdez M, García-Pérez BE, Torres-Torres C. Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells. Processes. 2020; 8(11):1377. https://doi.org/10.3390/pr8111377
Chicago/Turabian StyleMartines-Arano, Hilario, Mónica Araceli Vidales-Hurtado, Samara Palacios-Barreto, Martín Trejo-Valdez, Blanca Estela García-Pérez, and Carlos Torres-Torres. 2020. "Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells" Processes 8, no. 11: 1377. https://doi.org/10.3390/pr8111377
APA StyleMartines-Arano, H., Vidales-Hurtado, M. A., Palacios-Barreto, S., Trejo-Valdez, M., García-Pérez, B. E., & Torres-Torres, C. (2020). Sequential Photodamage Driven by Chaotic Systems in NiO Thin Films and Fluorescent Human Cells. Processes, 8(11), 1377. https://doi.org/10.3390/pr8111377