Quality of Sugar Beets under the Effects of Digestate Application to the Soil
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Quality of digestate from process of anaerobic digestion of sugar beet pulp makes possible its utilization as soil amendment in terms of heavy metals content and pathogen occurrence.
- Application of nitrogen at the rate of 120 kg N ha−1 in the form of digestate resulted in high quality of sugar beet roots as a crop and as well as a stock material for sugar factory.
- Analysis of variance showed significant effects of weather conditions on quality of sugar beets irrespectively of fertilization treatment. It was shown that values of majority of studied parameters were related to variability of conditions during growing seasons.
- Digestate application to the soil did not negatively affect no quality parameter important for processing of sugar beet roots in sugar factory.
- Soil application of digestate obtained from digestion of sugar beet pulp may be treated as a sustainable alternative solution for conventional technology of sugar beet growing and can be economically feasible.
Author Contributions
Funding
Conflicts of Interest
References
- Połeć, B.; Baryga, A.; Szymański, T.; Wołyńska, W.; Toboła, A. Możliwość wytwarzania biogazu w procesie fermentacji metanowej wysłodków buraczanych. Gaz. Cukrow. 2011, 4, 107–112. [Google Scholar]
- Brooks, L.; Parravicini, V.; Svardal, K.; Kroiss, H.; Prendl, L. Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factorie. Water Sci. Technol. WST 2008, 58, 1498–1504. [Google Scholar]
- Dulcet, E.; Ledochowski, P. Technique of ensilage of beetroot marc in the form of cylindrical beams wrapped in foil. J. Res. Appli. Agri. Eng. 2007, 52, 37–39. [Google Scholar]
- Herrmann, C.; Prochnow, A.; Heiermann, M.; Idler, C. Biomass from landscape management of grassland used for biogas production: Effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci. 2013, 69, 549–566. [Google Scholar] [CrossRef]
- Hutnan, M.; Drtil, M.; Derco, J.; Mrafkova, L.; Hornak, M.; Mico, S. Two-step pilot-scale anaerobic treatment of sugar beet pulp. Pol. J. Environ. Stud. 2001, 10, 237–243. [Google Scholar]
- Khanna, M.; Dhungana, B.; Clifton-Brown, J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 2008, 32, 482–493. [Google Scholar] [CrossRef]
- Murphy, J.D.; Power, N. Technical and economic analysis of biogas production in Ireland utilizing three different crop rotation. Appl. Energy 2009, 86, 25–36. [Google Scholar] [CrossRef]
- Seppälä, M.; Paavola, T.; Lehtomäki, A.; Pakarinen, O.; Rintala, J.A. Biogas from energy crops—Optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions. Water Sci. Technol. 2008, 58, 1857–1863. [Google Scholar] [CrossRef]
- Ziemiński, K.; Kowalska-Wentel, M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour. Technol. 2015, 180, 274–280. [Google Scholar] [CrossRef]
- Frąc, M.; Ziemiński, K. Methane fermentation process for utilisation of organic waste. Intern. Agrophys. 2012, 26, 317–330. [Google Scholar] [CrossRef]
- Lalak, J.; Kasprzycka, A.; Murat, A.; Paprota, E.M.; Tys, J. Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej. Acta Agrophys. 2014, 21, 51–62. [Google Scholar]
- Myszograj, S. Metan—Gaz cieplarniany i źródło energii. Ekotechnika 2005, 3, 53–55. [Google Scholar]
- Kasprzak, A.; Krzysiak, L. Biomasa jako cenny surowiec do produkcji biogazu. Lab. Przegląd Ogólnopolski 2007, 9, 60–62. [Google Scholar]
- Kacprzak, A.; Michalska, K.; Romanowska-Duda, Z.; Grzesik, M. Rośliny energetyczne jako cenny surowiec do produkcji biogazu. KosmoProbl. Nauk Biol. 2012, 61, 281–293. [Google Scholar]
- Bachmann, S.; Gropp, M.; Eichler-Löbermann, B. Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry. Biomass Bioenergy 2014, 70, 429–439. [Google Scholar] [CrossRef]
- Berruto, R.; Busato, P.; Bochtis, D.; Sørensen, C.A.G. Comparison of distribution systems for biogas plant residual. Biomass Bioenergy 2013, 52, 139–150. [Google Scholar] [CrossRef]
- Cirne, D.G.; Lehtomäki, A.; Björnsson, L.; Blackall, L.L. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crop. J. Appl. Microbiol. 2007, 103, 516–527. [Google Scholar] [CrossRef]
- Chen, R.; Blagodatskaya, E.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Kuzyakov, Y. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy 2012, 45, 221–229. [Google Scholar] [CrossRef]
- Paprota, E. Proces fermentacji metanowej sposobem otrzymywania pełnowartościowego nawozu organicznego. In Materiały z Seminarium Naukowego Popularyzacja Prac Badawczo-Rozwojowych z Zakresu Odnawialnych Źródeł Energii; Ekspert-SITR Spólka z o.o.: Lublin, Poland, 2012. [Google Scholar]
- Jędrczak, A. Biologiczne Przetwarzanie Odpadów; PWN: Warszawa, Poland, 2008; p. 456. ISBN 978-83-01-15166-9. [Google Scholar]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Lindén, B.; Gertsson, U. Biodigestion of plant material can improve nitrogen use efficiency in a red beet crop sequence. HortScience 2011, 46, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Nges, I.A.; Björn, A.; Björnsson, L. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresour. Technol. 2012, 118, 445–454. [Google Scholar] [CrossRef]
- Artyszak, A. Ile zostaje z buraków cukrowych? Nowocz. Uprawa 2009, 11, 24–25. [Google Scholar]
- Nowacki, J. Available online: http://kalkulacje.wodr.poznań.pl/buraki1.htm (accessed on 16 December 2016).
- Butwiłowicz, A. Metody Analityczne Kontroli Produkcji w Cukrowniach; Fundacja Rozwój SGGW: Warszawa, Poland, 1997. [Google Scholar]
- Garg, R.N.; Pathak, H.; Das, D.K.; Tomar, R.K. Use of Flyash and Biogas Slurry for Improving Wheat Yield and Physical Properties of Soil. Environ. Monit. Assess. 2005, 107, 1–9. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2013, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Dobrzycki, J. Chemiczne Podstawy Technologii Cukru [Chemical Basis of Sugar Production—In Polish]; WNT: Warszawa, Poland, 1984; p. 395. ISBN 978-83-20-40634-4. [Google Scholar]
- Waleriańczyk, E. Kompendium Praktycznego Prowadzenia Procesu Ekstrakcji w Aparacie Korytowym; STC: Warszawa, Poland, 1996. [Google Scholar]
- Laudański, A. Układ Cieplno-Technologiczny, Organizacja i Sposób Oceny. Energetyka Cieplna Cukrowni. cz. 1; Wydawnictwo Naukowe Askon: Warszawa, Poland, 2001. [Google Scholar]
Parameters | Units | Seasons of Studies | Permissible Level * | ||
---|---|---|---|---|---|
2013 | 2014 | 2015 | |||
pH | pH | 7.8 | 7.5 | 7.6 | – |
Dry matter (DM) | g kg−1 fresh weight | 25 | 5 | 3 | – |
Organic substances | g kg−1 DM | 558 | 516 | 309 | – |
Cadmium (Cd) | mg kg−1 DM | 2.7 | 2.2 | 5.2 | ≤20 |
Lead (Pb) | mg kg−1 DM | 17.1 | 42.4 | 22.1 | ≤750 |
Nickel (Ni) | mg kg−1 DM | 5.5 | 8.8 | 5.5 | ≤300 |
Chromium (Cr) | mg kg−1 DM | 29.6 | <25.0 | 26.3 | ≤500 |
Mercury (Hg) | mg kg−1 DM | 0.543 | 0.357 | 0.426 | ≤16 |
Copper (Cu) | mg kg−1 DM | 108 | 88 | 115 | ≤1000 |
Zinc (Zn) | mg kg−1 DM | 446 | 295 | 470 | ≤2500 |
Calcium (Ca) | g kg−1 DM | 129 | 82 | 134 | – |
Magnesium (Mg) | g kg−1 DM | 4.02 | 8.4 | 11.4 | – |
Kjeldahl’s total nitrogen (N) | g kg−1 DM | 138.4 | 170.4 | 207.0 | – |
Total phosphorus (P) | g kg−1 DM | 12.6 | 15.9 | 12.6 | – |
Total potassium (K) | g kg−1 DM | 10.3 | 11.9 | 12.3 | – |
Salmonella | in 100 g−1 DM | none | none | none | 0 |
Living eggs of parasites: Atrichuris sp., Trichuris sp., Toxocara sp. | none | none | none | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baryga, A.; Połeć, B.; Klasa, A. Quality of Sugar Beets under the Effects of Digestate Application to the Soil. Processes 2020, 8, 1402. https://doi.org/10.3390/pr8111402
Baryga A, Połeć B, Klasa A. Quality of Sugar Beets under the Effects of Digestate Application to the Soil. Processes. 2020; 8(11):1402. https://doi.org/10.3390/pr8111402
Chicago/Turabian StyleBaryga, Andrzej, Bożenna Połeć, and Andrzej Klasa. 2020. "Quality of Sugar Beets under the Effects of Digestate Application to the Soil" Processes 8, no. 11: 1402. https://doi.org/10.3390/pr8111402
APA StyleBaryga, A., Połeć, B., & Klasa, A. (2020). Quality of Sugar Beets under the Effects of Digestate Application to the Soil. Processes, 8(11), 1402. https://doi.org/10.3390/pr8111402