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Abstract: Multiphase flows are present in many natural phenomena, processing technologies,
and industries. In the petroleum industry, the multiphase flow is highly relevant, and special
attention is paid to the development of predictive tools that determine flow conditions to guarantee
safe and economic hydrocarbon extraction and transportation. Hydrodynamic aspects such as
pressure drop and holdup are of primary relevance for the field engineer in daily operations like
pumping power calculation and equipment selection and control. Multiphase flow associated with
oil production is usually a mixture of liquids and gas. The hydrodynamic behavior has been studied
in different pipeline configurations (i.e., vertical ascending/descending and horizontal/inclined
pipelines). However, the available information about flow patterns as well as the general conditions
present in horizontal annuli is incomplete, even if they are of fundamental relevance in today’s
horizontal drilling, production, and well intervention in many oil wells around the world. This review
aims to present an in-depth revision of the existing models developed to predict two-phase flow
patterns and hydrodynamic conditions in annuli flow, focusing mainly on, but not limited to,
horizontal configuration. Key flow parameters and effects caused by annuli geometry and the
physical properties of fluids are extensively discussed in the present paper. Different empirical
correlations and mechanistic and numerical models on two-phase flow through horizontal/inclined
pipelines and in both concentric and eccentric annuli are analyzed. Some of these models partially
agree with experimental results and show acceptable predictions of frictional pressure loss and flow
patterns. Limitations in current models and challenges to be faced in the next generation of models
are also discussed.
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1. Introduction

An annulus is a space between two pipes, and this space can be found between the production
tubing and casing, pipe string and the borehole wall, a gas injector and the production tubing,
or between coiled tubing (inside the well) and the production tubing [1]. Multiphase annular flow is
commonly found in various applications related to hydrocarbon recovery processes such as drilling,
production, and well intervention. Although multiphase flow in annuli is common in the petroleum
industry, the understanding of this flow is limited compared to the multiphase flow in circular pipes [2].

In recent decades, the drilling of horizontal wells has become a proven technology for oil and
gas recovery. It is particularly useful in production from thin and naturally fractured reservoirs,
reservoirs with gas and water conning issues, offshore environments, and various enhanced oil recovery
projects [3]. Due to additional challenges associated with the annular geometry, the rigorous prediction

Processes 2020, 8, 1426; doi:10.3390/pr8111426 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0003-4075-044X
http://www.mdpi.com/2227-9717/8/11/1426?type=check_update&version=1
http://dx.doi.org/10.3390/pr8111426
http://www.mdpi.com/journal/processes


Processes 2020, 8, 1426 2 of 24

of two-phase gas–liquid and liquid–liquid flow behavior is essential to provide the continuous and safe
transportation of the production fluid from the downhole to processing facilities. Moreover, in recent
decades, researchers have attempted to create correlations and develop models for predicting key-flow
parameters such as flow patterns, liquid holdup, and pressure drop in these complex flow conditions
with relative success, but there is a significant space for improvements in the models [1,4].

With the computation technologies’ progress, the numerical modeling approach has been in
continuous development, and very realistic numerical results can be obtained in complex multiphase
flows under appropriate assumptions [5,6].

This paper aims to review the current state of research on multiphase annular flow with a focus
on liquid–liquid mixtures through horizontal annuli.

1.1. Empirical and Mechanistic Models in Multiphase Flows: An Overview

Many theoretical and experimental studies have been conducted on two-phase flow in horizontal
pipelines and have developed several models. These models can be divided mainly into two groups:
empirical models or mechanistic models. Early empirical models disregarded the flow patterns and
treated the two-phase flow as it was a one-phase flow [7]. Lockhart and Martinelli [8], Duns and
Ros [9], Hagedorn and Brown [10], Wallis [11], and Beggs and Brill [12] studies are among the most
important empirical models. In this type of model, the average absolute error in the multiphase-flow
pressure-gradient prediction is up to 50.51% [13].

After developing these initial correlations, the focus has been directed to flow pattern
identification [7]. Moreover, significant effort has been placed in developing flow pattern maps
for two-phase flows in pipelines [14]. Most of the studies on flow patterns transition definitions
were conducted using conservation equations, as proposed by Taitel and Dukler [15] and Barnea [16].
Examples from Xiao et al. [17] used the Taitel and Dukler [15] model with some modifications
and developed a comprehensive mechanistic model for the two-phase flow in near-horizontal and
horizontal pipelines. Petalas and Aziz [18] introduced a mechanistic model applicable to all conditions
commonly encountered in the petroleum industry. Moreover, Petalas and Aziz [18] also created
empirical correlations applicable to all pipe layout configurations, fluid properties, and flow directions.
Their correlations were developed using a large amount of field and experimental data to estimate
interfacial friction factors and frictional pressure losses [19]. Caetano et al. [20] developed mechanistic
models for bubble, dispersed bubble, slug and annular flows. The models based on physical phenomena
of the flow include annulus features such as diameters of casing and tubing as well as the degree
of eccentricity. The performance of the models in terms of the average percent error in predicting
the pressure gradient in most flow patterns tend to overestimate the gradient in concentric cases and
a tendency to underestimate in eccentric cases. In general, the prediction of the pressure drop in
mechanistic models has an average absolute error between 30 and 43%.

1.2. Gas–Liquid Two-Phase Annular Flow

Aerated drilling fluid uses a gas–liquid mixture that helps prevent possible reservoir damage, and
it is usually used in low-pressure or depleted reservoirs [21]. During the production stage, gas–liquid
is introduced through the annulus in flowing wells for high production rates or when implementing
gas-lift techniques. Furthermore, extensive studies have been conducted on the gas–liquid annular
flow finding different correlations and developing mechanistic models.

Caetano et al. [22] conducted a theoretical and experimental study of upward two-phase flow
through vertical concentric and fully eccentric annuli and developed one of the earliest models on the
flow-pattern maps for the flow-through annuli. In the experiments, both air–water and air–kerosene
mixtures were used. They developed flow pattern maps based on visual observations and mechanistic
models for predicting the pressure drop and average liquid holdup for each flow regime in both
concentric and fully eccentric annular passage. Moreover, Hasan and Kabir [23] recognized four
major flow regimes in vertical and inclined annular flow: bubbly, slug, churn, and annular patterns.
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They developed the flow pattern approach that predicts the void fraction in the slug, bubbly, and churn
flow regimes for air–water systems. Das et al. [24] and Sun et al. [25] experimentally studied air–water
upflow through concentric annulus. They investigated the distribution of the two phases in the
bubbly, slug, and churn flow regimes using the signals obtained from several conductivity probes and
impedance void metters, respectively, located at different places in the annular space. Lage et al. [26]
formulated a mechanistic model to predict the two-phase flow behavior in horizontal or slightly
inclined fully-eccentric annuli. Their model was validated against the experimental data collected
for air–water and diesel oil–N2 mixtures, and the absolute average percentage error of the friction
loss was 14.1%, with the average percent error being around −2.3%, indicating a slight tendency to
underestimate pressure losses. Ozbayoglu and Yuksel [27] performed an experimental study of the
two-phase eccentric horizontal annulus. They used artificial intelligence techniques (like the decision
tree, nearest neighbor, and back-propagation neural networks (NN)) to estimate the flow pattern and
liquid holdup for air–water flow. The best performance was found with the backpropagation NN
with over 90% of correct flow pattern determination, and the nearest neighbor NN technique had the
highest accuracy in the estimation of the liquid holdup with 17% of the average absolute error. Osgouei
et al. [7] developed a mechanistic model that was used to estimate the frictional pressure losses for a
two-phased liquid–gas flow through a horizontal eccentric annular configuration. They estimated
the frictional pressure losses with three different methods based on (a) experimental data; (b) the
modified Lockhart–Martinelli pressure loss correction factor; and (c) computational intelligence models
(regression trees, nearest neighbor, multilayer perceptron, and support vector machines). According
to the results, the computational intelligence models had better results than the mechanistic model
in predicting the pressure drop with an average absolute percent error of 9.79%, which is a major
improvement compared to the modified Lockhart–Martinelli model that can estimate frictional pressure
loss with an error of 20%.

1.3. Liquid–Liquid Two-Phase Flow in Pressurized Conduits

The simultaneous flow of oil and water is standard in hydrocarbon recovery. The amount of
water in the extracted crude oil increases as wells age [28]; moreover, the importance of this water
ratio increase is growing because there are many mature oil wells around the world. Additionally,
the liquid–liquid flow is also introduced during the secondary recovery stage, when water is injected to
support reservoir pressure. The flow characterization generally includes the following parameters: flow
pattern identification and transition, effective viscosity estimation, pressure drop prediction, droplet
formation, phase-inversion identification, and droplet size(s) distribution [29]. Trallero et al. [30] noted
a large liquid–liquid momentum transfer, small buoyancy of the oil–water flow, and low free energy at
the interface, which leads to a small droplet size of the dispersed phase. They also highlighted the
diversity of oil properties, e.g., the oil can be more or less dense than water; it can be Newtonian or
non-Newtonian; and the viscosity ratio in the oil–water flow can vary by several orders of magnitude.
Moreover, Trallero et al. [30] also emphasized that understanding the flow behavior is critical in
measuring the amount of free water that is in contact with the pipe, which can promote corrosion or
erosion issues. Besides, a correct interpretation of the production logging tools response is dependent
on the flow behavior.

Russell and Charles [31] conducted a series of early experimental studies on the liquid–liquid
two-phase flow which resulted in the equations for flow rates calculation of two immiscible
incompressible Newtonian fluids flowing in laminar regime. Charles et al. [32] studied horizontal
oil–water flow with different oil densities, oil and water velocities and oil–water ratios. They identified
five different flow patterns; found the dependence of holdup ratios on the contact with the pipe
wall of either oil or water; in addition, established a relation between oil–water ratio and pressure
drop. Charles et al. served as a reference for subsequent developments in the field [33]. However,
despite a large amount of in-depth research of liquid–liquid flow in pipelines [34–40], fewer efforts
have been made on understanding the liquid–liquid flow in the annulus configuration. Nevertheless,
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the next section is devoted to the relevant investigation in the annulus configuration focusing on its
characterization in pressure drop, flow pattern, and liquid holdup.

2. Flow Pattern Characterization in Annular Flow

The flow pattern identification is a critical factor in estimating the pressure drop in multiphase
flows accurately [41]. Many studies have developed flow pattern maps for two-phase flow in pipes,
but little work has been done for the flow in the annulus [42]. Osgouei et al. [42] noted that the common
approach for developing a flow pattern map in annular geometry is the researcher’s interpretation,
as there is no standard flow pattern classification method and, consequently, a variation among
recognized flow regimes may exist. The description of two-phase flow patterns in annuli is more
complicated than for pipe flow since the annulus section has additional characteristics such as the
eccentricity and inner/outer diameters along with the parameters that are considered for circular
cross-sections [22]. Rouhani and Sohal [43] made one of the first reviews on various aspects of
two-phase flows. They discussed experimental methods for the direct and indirect determination of
flow regimes, including direct viewing, photography, X-ray and the statistical analysis of fluctuations.
In addition, the impact of wall roughness, heat flow and flow acceleration on the transitions between
flow regimes are considered in the review. Sadatomi and Sato [44] and Furukawa and Sekoguchi [45]
performed experiments on air–water flow in vertical annular passages, which were one of the first
studies using two-phase flow patterns in annuli. Sadatomi and Sato [44] found that channel geometry
does not significantly affect the flow pattern transitions when the hydraulic diameter (Dh) is greater
than 10 mm. On the other hand, Furukawa and Sekoguchi [45] analyzed the void fraction distribution
for the air–water flow in the annulus with three different radius ratios and a derived equation for
evaluating cross-sectional average void fraction. Kelessidis and Dukler [46] distinguished five major
flow patterns in an experiment with air–water two-phase flow regimes associated with the co-current
vertical upflow in an annulus: slug, bubbly, churn, annular, and annular-with-lumps.

Besides, Osamasali and Chang [47] conducted experimental studies on air–water two-phase flow
in horizontal annuli; furthermore, they inserted rods of different diameters along the central axis of an
acrylic pipe and identified stratified-smooth, stratified-wavy, plug, slug, and annular flow patterns.
Trallero et al. [30] studied oil–water flow regimes in horizontal pipes and characterized six different flow
patterns analyzing the patterns description, holdup, pictures, and pressure loss measurements of the
existing works. These flow patterns can be divided into two main categories: stratified and dispersed.
The stratified flow patterns consist of a stratified flow with a mixing layer at the interface, and the
dispersed flow patterns are divided into the dispersion of oil in water and water in oil, water in oil
emulsion, and oil in water emulsion. Wongwises and Pipathattakul [48] identified the following flow
regimes for air–water flow in a horizontal concentric annulus: annular, churn, dispersed-bubble, plug,
slug, annular/slug, bubble/plug, bubbly/slug-plug, and slug/bubble flow. Their experiments [48] were
conducted in a concentric annular test section at the length of 880 mm with an outer diameter of 1.25 cm
and an inner diameter of 0.8 cm. Jeong et al. [49] discovered that small bubbles tend to move toward the
wall, and large bubbles toward the center during the experimental study of vertical, air–water upward
flows in an annular passage. Wu et al. [50] extensively examined 3947 published experimental data
points for gas–liquid flow maps in vertical pipes and annuli. They examined existing measurement
techniques used to identify bubble, slug, churn, and annular flow regimes. During experimental
investigations of gas–liquid flows at the horizontal concentric and fully eccentric annulus, Ibarra et
al. [1] identified four main flow regimes together with transitional regions (flow with features of more
than one regime) that depend on the range of gas and liquid flow rates, and those flow regimes are
dispersed-bubble flow, churn flow, slug flow, and rolling waves (see Figure 1). This classification
has been made according to visual observations from high-speed imaging and the cross-sectional
holdup data’s probability density function. Ibarra et al. [1] found that, unlike the dispersed-bubble
flow regime, the other three flow patterns are commonly more common in the eccentric annuli than in
the concentric geometry.
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Figure 1. Flow regimes observed in a horizontal annulus during the experimental campaign. Adapted
from [1].

3. Pressure-Drop in Annular Flow

The pressure drop prediction is among the most critical factors in oil and gas pipeline transportation,
and it helps to predict the continuity and safety of the hydrocarbon’s conveyance. Due to the
cross-section geometry complexity, the pressure loss estimation in the annulus flow is more challenging
to the model compared with the circular pipe flow. The common practice to represent the annular
geometry is to calculate an effective diameter. Anifowoshe and Osisanya [51] reviewed seven different
definitions of equivalent diameter to calculate the frictional pressure losses in an annulus, and they
theoretically investigated their effect on wellbore hydraulics. These authors distinguished four widely
used equivalent diameter definitions: the hydraulic diameter, slot approximation, Crittendon criteria,
and the Lamb approach (see Table 1). However, the hydraulic diameter definition was recognized as
the most used in the industry due to its simplicity.

Table 1. Equivalent diameter definitions (adapted from [51]).

Definition Formula

The hydraulic diameter dH = do − di

Slot approximation de = 0.816(do − di)

Crittendon criteria de =
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On the other hand, Metin and Ozbayoglu [52] formulated a mechanistic model to predict the
gas–liquid flow pattern and frictional pressure losses in both circular and annular geometries. In their
model, a “representative diameter” term (see Equation (1)) is introduced that gives up to six times
more accurate results for intermittent flow and 4.5 times better accuracy for stratified flow than the
hydraulic diameter method for annular geometries:

dr =

√
(d2

o − d2
i ) (1)

Additionally, it was found that the liquid phase viscosity, along with the geometry of the pipeline,
significantly affects the frictional pressure losses and flow pattern transition, while the liquid density
had a small effect on those two parameters [19].

Arirachakaran et al. [34] noted that variations in the pressure gradient could be significantly
related to phase inversion or flow pattern transitions. Phase inversion occurs when two immiscible
liquids change their continuity in the flow. It is a broad area of study for flows in the dispersed regime.
Despite the critical effects associated with phase inversion, its mechanism of generation is the least
understood phenomena in dispersions [53]. Ngan et al. [53] also noted that the phase inversion changes
the mixture properties like its rheology and drop size. Therefore, the phase inversion point, which is
the phase fraction where inversion occurs, needs to be known to process the dispersions. Moreover,
Arirachakaran et al. [34] also found that a dramatic change in pressure drop occurs at the phase
inversion point and that the magnitude of this change depends on the mixture velocity and oil viscosity.
Furthermore, Plasencia and Nydal [54] noted the influence of temperature and chemical composition
of the phases on the dispersion’s stability that also affects the phase inversion point. In addition,
it has been found that increasing the pipe wall wettability expands the range of phase fractions for the
continuous fluid, meaning that the wetting properties of the pipe wall are a relevant factor [55].

Moises and Shah [56] conducted an experimental study of the eccentricity effect on pressure drop
calculations for the drilling and the stimulation fluids that flow through annuli. They found that
when the annular pressure losses in a fully eccentric annulus are compared to the pressure losses in
the concentric annulus, it can be reduced by 60%. Moreover, the effect of eccentricity becomes more
evident with the increase in fluid concentration. Pina and Carvalho [57] proposed a model to study
the effect of the eccentricity along the well and developed a more precise description of the geometric
configuration of directional wells. Moreover, Pina and Carvalho simplified and turned the governing
equations into a two-dimensional differential equation using the lubrication theory. Their results show
the effect of the maximum and minimum axial velocity in each cross-section, eccentricity on the friction
factor, and the presence of azimuthal flow even when the inner cylinder is not rotating.

4. Liquid Holdup in Annular Flow

Experimental studies of two-phase flow in full-pipe systems for various fluid properties,
inclinations, and pipe diameters have led to the development of several correlations and mechanistic
models; some of them are summarized in Table 2.
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Table 2. Existing holdup correlations for two-phase flow in horizontal and inclined pipes.

Author Equation

Gregory et al. [58] HLS = 1

1+
( UM
α

)β
Malnes [59] HLS = 1− UM

83
(

gσ
ρL

)0.25
+UM

Marcano et al. [60] HLS = 1
1.001+0.0587UM+0.0118U2

M

Abdul-Majeed [61]

HLS = (1.009−CUM)A
where the parameter A accounts for the effect of the inclination angle:

C = 0.006 + 1.3377µG
µL

A = 1.0 if γ ≤ 0
A = 1.0 − sin ϕ if γ > 0

Angeli and Hewitt [35]

ε0 = 1
A

∫ A
0 ε′0dA = 1

A
∑
i
ε′oiAi, and

∑
i

Ai = A

where Ai is the area of the pipe cross-section surrounding point i:

X2 =

( dp
dz

)
0( dp

dz

)
w

Gomez et al. [62]
RS = 1.0e−(0.45θR+2.48 ∗ 10−6ReLS) 0 ≤ γR ≤ 1.57

where the slug Reynolds number is:
ReLS =

ρLVMD
µL

Zhang et al. [63]

HLS = 1
1+

TSM

3.16[(ρL−ρg)gσ]1/2

where Tsm has the same units as the shear stress, and it includes both
the wall shear stress and the contribution from the momentum

exchange between the liquid slug and the liquid film in a slug unit:

Tsm = 1
Ce
[

fs
2 ρsU2

M + d
4
ρLHL f (UT−UF)(UM−UF)

ls
]

where Ce is the coefficient dependent on pipe inclination angle, and
it is calculated with the equation below:

Ce =
2.5−|sin(γ)|

2

Al-Safran et al. [64]

HLS = 0.85− 0.075ϕ+ 0.057
√
ϕ2 + 2.27

where ϕ is the independent correlation parameter and is calculated
with the equation below:

ϕ =
(
NFrN0.2

µ − 0.89
)

A liquid holdup is a volume fraction of a fluid present in a given interval of a pipeline; this value
cannot be estimated analytically, and it is a function of pipe geometry, flow pattern, and liquid
properties [33]. Only a few studies can be found on liquid holdup estimation for the two-phase
flow in a horizontal annular configuration [27]. For example, the liquid holdup can be estimated
using mechanistic model measurements or calculations through empirical correlations. In addition,
Ozbayoglu and Yuksel [27] were one of the first who used an image-processing technique to determine
the liquid holdup. Their model measured a holdup in all flow patterns with an average absolute error
rate of 0.078 (a fraction of the real value) in the best case. Zhang et al. [65] compared the liquid holdup
in high-viscosity oil–gas two-phase flow to low-viscosity liquid–gas flow. They found the liquid holdup
in the flow with high-viscosity oil to be considerably higher due to the slowdown of the oil phase.
Besides, Ibarra et al. [1] revealed slightly higher holdup values in the eccentric annulus flow compared
to concentric cases, which they associated with low velocity due to small clearance between the two
pipes. Their experimental data also showed minor differences in liquid holdup between gas–oil and
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gas–water two-phase flows, except when liquid velocities are low. This difference may be due to the
development of different flow regimes affected by geometric parameters and fluid physical properties.

In the experimental study of gas–water and gas–oil slug flow in pipes with concentric and fully
eccentric annuli, Ibarra et al. [66] found that the eccentricity has a limited effect on the slug liquid
holdup. Nevertheless, in the case of gas–water flow in concentric annular space, a more effective
gas encapsulation in the liquid slug is detected due to the chaotic flow behavior. The reason for this
behavior may lie in the wetting characteristics of the pipe, as oil tends to create a continuous thin film
around the pipe in the gas region, while water does not fully wet the pipe in the gas region for high
gas velocities, leading to chaotic behavior. In addition, the slug frequency was investigated and found
to be similar for both geometries; however, for gas–oil flows at low gas velocities and medium to high
liquid velocities, the slug frequency is considerably higher in the concentric annular space. They also
concluded that the experimental data presented in the study supports the effectiveness of full tube
models when estimating the gas–liquid flow in the annuli.

5. Numerical Modeling

The numerical modeling of multiphase pipe flow is usually done with one-dimensional (1D)
simulation tools in the oil industry [6]. Large-scale models with a lower resolution based on these tools
can model the whole system, from the reservoir to the production facilities. One-dimensional tools are
practical for the industry as they provide a fast response to technical problems; however, current 1D
simulators cannot capture hydrodynamic instabilities of the flow and transient phenomena, which is
critical for defining slug flow regimes [6].

In contrast to 1D simulation tools, the computational fluid dynamics (CFD) technique is a great
tool that allows us to investigate and understand flow-field characteristics deeply. This approach is
widely used in different energy-related sectors as it reduces the uncertainty at the development stage
and optimizes engineering designs; moreover, it provides a high resolution of velocity profiles and
phase distribution [5,28]. The application of CFD technologies, together with the fast development of
computer hardware, has sharply accelerated the investigation of a vast range of industrial problems in
recent decades [67].

On the other hand, Eulerian–Lagrangian (E–L) and Eulerian–Eulerian (E–E) approaches are
typically used in multiphase flow simulations. The E–L approach can model dispersed phases spread
in a continuous phase-like droplets, bubbles, or sand particles. The continuous phase is treated via
the Eulerian framework, and the disperse phase is treated via the Lagrangian framework, and the
collisions of particles are treated statistically.

The advantage of the E–L approach is that it can provide information on the residence time
and behavior of particles for a relatively wide range of particle sizes and velocities. However,
for high particle concentration, the E–L approach’s advantages might be neutralized by a prohibitive
computational cost [6]. Therefore, the E–L approach is frequently employed in conditions when the
number of particles is relatively small, and when it is necessary to move an individual particle [68].

On the other hand, the E–E approach treats both phases as a continuum, and the conservation
equations for mass, momentum, and energy are phase-averaged within each control cell, resulting
in separate conservation equation sets coupled by phase interaction terms [28]. The velocity and
temperature field are calculated for each phase, but both phases share the pressure field. Even though
the E–E method can only lead to the spatial distribution of flow parameters, there are fewer calculation
requirements; therefore, there are no restrictions on the volume or the number of fractions of dispersed
phases, which makes this method more effective in large dispersions [68]. However, the E–E approach
becomes computationally expensive when simulating many particle sizes/classes, as it is required to
solve conservation equations for each of the sizes/classes [6].

Several numerical studies have been conducted on multiphase flow in horizontal annular geometry.
For example, Sorgun [69] used CFD simulations with experimental validations to investigate the effects
of pipe eccentricity on axial and tangential velocity, frictional pressure loss, and the effective viscosity
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of water and non-Newtonian fluids; moreover, Sorgun [69] found that when the pipe eccentricity rises,
the frictional pressure loss inside the annulus is reduced. Furthermore, Sorgun [69] found that the
tangential velocity for both Newtonian and non-Newtonian fluids increases dramatically. It was also
noted that the effect of pipe eccentricity on tangential velocity became more severe with increased fluid
viscosity. In addition, results suggest that the axial velocity and effective viscosity inside the annulus
increase with the increase in the pipe eccentricity. On the other hand, McCaslin and Desjardins [14]
conducted a numerical examination of the gravitational effects in horizontal liquid–gas flows from first
principles, and they presented the governing parameters through dimensional analysis and described
the behavior of three simulations using those parameters. They deduced that the gravitational effect
has more impact than inertial effects. Busahmin et al. [70] proposed a numerical model for hole cleaning
in the horizontal well-bores. When numerically solving the cutting transport equation to determine the
cutting concentrations it was found that the concentration of cutting increases with an increasing rate
of penetration and decreases with increasing drilling mud flow rate and time. Erge et al. [71] applied
experimental, analytical, and numerical approaches to study the dependence of the annular pressure
loss on drill-pipe eccentricity during the circulation of non-Newtonian drilling fluids, and they found
that the effect of eccentricity on pressure loss has been under-estimated by all the models. Moreover,
Sultan et al. [72] developed a numerical model of multiphase (gas–liquid–solid) flow and validated
it by comparing CFD simulation results with previously collected experimental data and empirical
correlations in both pipeline and annular geometries. Their model predicted that the average difference
of pressure loss for the different cross-sectional areas of the pipelines and annuli is usually less than
15%, with a maximum value of 30%. Friedemann et al. [73] conducted numerical simulations of
gas–liquid flow in a horizontal concentric annulus in 3, 5, and 7 m long domains. Moreover, they used
the experimental results gathered at the Institute for Energy Technology in Norway as a comparison,
and, for all cases, the maximum error considering any of the extreme values or the mean value was
within 30%.

Friedemann et al. [74] ran two-phase flow simulations in an eccentric annulus with the OpenFoam
CFD platform using periodic boundary conditions. They compared numerical data with the results of
experiments conducted in a fully concentric/eccentric geometries, and they found that the numerical
results of the holdup pattern corresponded within reasonable accuracy to the experimental data.
However, the change of eccentricity led to a significant discrepancy in the pressure gradient results.
The annulus eccentricity in simulations was set to 0.5, while the experiments were at E = 0 and E = 1.0.

5.1. Modeling of Turbulence

The CFD’s accuracy in modeling multiphase flow strongly depends on the approach used to model
the turbulence. One of the most precise approaches for turbulent multiphase flow modeling is the direct
numerical simulation (DNS) that solves the full three-dimensional, time-dependent Navier–Stokes
equations without using a turbulence model. Furthermore, the absence of a turbulence model assumes
a numerical solution of all the spatial and temporal scales of turbulence, resulting in its unrivaled
accuracy compared to other methods. Although the DNS is great for the study of the enhancement
and development of turbulence models, turbulence mechanisms, and the evaluation of point-to-point
closure theories, the method is too expensive for practical flow conditions. Furthermore, DNS usage is
limited to flows of low to moderate Reynolds numbers even with modern supercomputers [75].

Reynolds-averaged Navier–Stokes (RANS) models are time-averaged equations of fluid flow
motion. These equations govern the averaged flow quantities’ transport, within the full spectrum of
the turbulence scales, and significantly reduce the computational effort and resources required. It is
the most practical and widely used approach for industrial flows. The RANS equations are frequently
applied to compute time-dependent flows. The unsteadiness of these flows may be imposed externally
or self-sustained [76].

The traditional linear-eddy-viscosity RANS models can be categorized into the following four
main groups:
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1. Algebraic (zero-equation) models: it is the oldest class, and it uses partial differential equations to
calculate only the mean fields, and for the turbulence values, it only uses algebraic expressions.
Currently, the model is applied only for the initial prediction of the flow field before more accurate
models are explored [77].

2. Half-equation model: it is a two-layer model for studying separated flows controlled by pressure
(also known as the Johnson and King model) [75].

3. One-equation models: these models can be distinguished because they formulate one extra
transport equation to compute the magnitude of the turbulence, usually the kinetic energy (k).
For all of the one-equation models, there is still a need to assign a distribution along the length
scale (L), which is algebraically determined and is commonly based on available experimental
data. The one-equation models have been developed to enhance turbulent flow predictions by
solving one additional transport equation [75].

4. Two-equation models: besides the mean-flow Navier–Stokes equations, the models use two
transport equations for two turbulence properties. The first property is usually the turbulence
kinetic energy (k), while the second varies according to the model, and among the properties that
can be used are the dissipation rate of turbulent kinetic energy (ε), the length scale (l), and the
specific dissipation rate (ω). These models are preferred by the industry, being the first choice for
general CFD calculations, with the most widely used standard models being k–ε (Launder and
Sharma [78]) and k–ω (Wilcox [79]) [70].

Moreover, the turbulent k–ω shear stress transport-model (SST) introduced by Menter [80] merges
the advantages of k–ε and k–ωmodels. Thus, in free turbulent flow, the Menter model behaves like k–ε,
thus avoiding the common issues associated with the k–ω model, which is too sensitive to the initial
conditions of turbulent flow [81]. Table 3 presents a summary of the most popular CFD turbulence
models used in two-phase flows.

Table 3. Turbulence models used in two-phase flow computational fluid dynamics (CFD).

Turbulence Model Comment

k–εmodel

• It is the most widely tested and used two-equation model;
• Inability to accurately predict flows with unfavorable pressure

gradients and additional deformations. It can lead to poor results
for separated flows.

k–ω model • Achieves higher accuracy for boundary layers;
• More accurate for free shear flows and separated flows.

Shear stress transport (SST) • Near-wall regions are evaluated with k–ω, and free-streams are
calculated with k–ε.

Large eddy simulation (LES) is another modeling approach that fully resolves large scales of the
turbulent flow while the small sub-grid scales are modeled. The LES approach is especially practical for
studying turbulence at high Reynolds numbers, the prediction of complex flows, development, and the
evaluation of new turbulence models. The LES’s impact on industrial flow modeling is moderate and
mostly limited to free shear flows, even if this method has been around for many decades. However,
the LES model’s use is limited as most engineering applications use wall boundary layers, and the cost
of applying LES in flow-modeling in these regions is too high [82].

5.2. Governing Equations

When simulating two-phase flow by applying the E–E approach, the following governing
equations are solved:

The mass continuity equation:
∇•(Uα) = 0 (2)
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Conservation of momentum equation:

∇•(rα(ραUα ⊗Uα)) = −rα∇p +∇•
(
rαµα

(
∇Uα + (∇Uα)

T
))
+ rαραg + Mα (3)

where p is the static pressure of either phase, and Mα is the sum of interfacial forces like the lift force,
drag force, buoyancy, and wall lubrication force [83].

The primary factor that includes the interaction between disperse and continuum phases is an
interfacial drag force, which is part of Mα (Equation (3)). The interfacial drag force is calculated using
Equation (4):

FD =
3
4

CD
rβρα
dβ

∣∣∣Uα −Uβ

∣∣∣(Uα −Uβ

)
(4)

where CD is the drag force, which is correlated in terms of the non-dimensional drag coefficient
(Equation (5)):

CD =
D

1
2ρα

(
Uα −Uβ

)2
A

(5)

where D is the drag force magnitude, α is the continuous phase, β is the dispersed phase, (Uα − Uβ)
is the relative speed, and A is the projected area of the body [76]. Due to the deformable shape of
bubbles/droplets, several semi-empirical equations can be used to adjust the shapes of an ellipse,
sphere, and spherical caps that can be applied to calculate the drag coefficient.

In addition to the drag acting in the direction of flow, the so-called non-drag forces act mainly
perpendicular to the direction of the flow and should also be considered; for example, the lifting force,
the wall force, and the turbulent dispersion force [84]. The lifting force accounts for the interfacial
momentum exchange between the bubbles and the liquid field while the wall force considers the
hydrodynamic impulse acting on the bubble moving in the immediate vicinity of the solid wall [85].
The lifting force effect is the movement of bubbles towards or away from the pipe wall and the wall
force effect is generally a sharp spike in the void fraction of the bubble near the wall [85].

Chuang and Hibiki [86] reviewed the progress made in the development of an interphase force
model and the recent advancement in an interphase transportation model. Moreover, Chuang and
Hibiki extensively reviewed the progress in modeling the interfacial force, presenting the recent
advance of the interfacial area transport equation. They pointed out several concerns with the accuracy
of the current two-phase flow CFD models. For example, they mentioned that there were limited
data for validation, noticing that existing two-phase flow data mostly have been taken in relatively
simple flow channels with low-pressure conditions (near atmospheric). Moreover, they emphasized
the importance of creating a code benchmark process. Additionally, Chuang and Hibiki [86] discussed
both the framework of the bubble-wall collision force and the structure of the bubble collision force
while considering the effect of bubble coalescence on the bubble collision frequency.

5.3. Coalescence and Breakup

In recent decades, great effort was given to study the phenomenon of fluid droplets/bubbles
coalescence and breakup [87]. Moreover, the resulting theoretical and experimental studies seek
to determine the collision and coalescence efficiency [88–90], as well as the breakup frequency and
daughter size distribution function [91–94].

The treatment of the coalescence and breakup mechanisms and their effects on the energy, species,
and momentum transport processes is one of the most significant challenges in modeling multiphase
flow [85]. Understanding the interaction between phases is important, as there is a strong relation of
the mean motion of two-phase flow with the small-scale motion. These interactions are commonly
dependent on the flow conditions, fluid properties, and geometry of the flow conduit [85]. Liao and
Lucas [95] stated that the breakup mechanism, on the whole, can be stated as the balance between
external stresses from the continuous phase and which, as the external stresses try to destroy the fluid
particle, the surface stress of the particle, along with the viscous stress of the fluid, restores its form.
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Consequently, the hydrodynamic conditions in the surrounding liquid and the fluid characteristic
determine the breakup of a particle. Liao and Lucas [95] divided the breakup mechanisms into four
categories: interfacial instability, viscous shear stress, shearing-off process, and turbulent fluctuation
and collision.

There are several ways of interaction recognized between dispersed droplets/bubbles and turbulent
eddies within the continuous phase depending on their relative size [35], and those interactions can
change the key parameters of multiphase flow.

Montoya et al. [85] categorized the breakup and coalescence mechanisms expected to affect a
two-phase flow regime as follows:

1. Fluid particle coalescence caused by random collisions due to turbulent eddies;
2. Fluid particle coalescence caused by wake entrainment;
3. Collision due to velocity gradient near the wall region;
4. Collision due to different rise velocity of fluid particles with different sizes;
5. Large-cap and churn-turbulent fluid particles’ breakup driven by flow instabilities;
6. Fluid particles breakup due to the turbulent eddy impact;
7. Small fluid particles shearing-off at the rim of large-cap, churn-turbulent, or slug fluid particles;
8. Breakup caused by a laminar viscous force.

The most recognized and commonly used models that can be found in the literature are the Prince
and Blanch [88] model for bubble breakup and the Luo and Svendson [92] model for coalescence.
These models have been employed either with their original formulation or with certain modifications
in several important studies [96]. However, these modifications were ineffective in the prediction of
high void fraction regimes due to the insufficient consideration of the whole range of mechanisms for
breakup and coalescence [85].

5.4. Models for Breakup Frequency

Coulaloglou and Tavlarides [97] developed the pioneer breakup kernel that is applicable for
liquid–liquid dispersions. The main idea is that a deformed oscillating drop will break if the drop
surface energy is lower than the turbulent kinetic energy transmitted from drop-eddy collisions.
The breakup rate is defined as

ΩB(V) =

(
1

breakage time

)(
f raction o f

drops breaking

)
=

1
tB

∆N(V)

N(V)
(6)

where N is the total number of drops, and tB is the breakup time.
The drops’ kinetic energy distribution is presumed to be the same as that of the turbulent eddies.

Moreover, assuming that the distribution of kinetic energy is a normal function, the equation for
breakage frequency of a droplet is expressed as

ΩB(V) = CIV−2/9ε1/3 exp

− CIIσ

ρdV
5
9 ε

2
3

 (7)

where CI and CII are breakup constants, σ is the interfacial tension, and ρd is the dispersed phase density.
In the resulting equation, the breakup rate is presented as a function of the dispersed phase density.

Prince and Blanch [88] compared Equation (7) with the experimental data for gas–liquid systems
and revealed that the breakup rate values were several orders of magnitude lower than experimental
observations. Moreover, Prince and Blanch [88] established a bubble breakup model based on the
continuous phase density. They drew an analogy to collisions in ideal gases and studied the bubbles
and turbulent eddies interaction to define the breakup frequency. In addition, they calculated the
breakup rate similarly to the coalescence rate by multiplying the collision frequency with a collision
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efficiency, which is defined as a function of the time bubbles remain in contact and the time required
for bubbles to coalesce [95]. The total breakup rate for all bubbles is determined with Equation (8):

ΩBT =
∑

i

∑
e

Γie exp

−u2
ci

u2
ie

 (8)

where ΩBT is the total breakup rate, Γie is the collision rate, uci is the critical eddy velocity (i.e., eddy
velocity required to cause a bubble’s break-up), and ute is the turbulent eddy velocity.

Prince and Blanch [88] also noted the need to obtain data about the bubble concentration and
bubble size distribution to use the model:

ni =
ΦR2

THT

4
3 r3

bi

xi (9)

where xi is the fraction of bubbles, and rbi is the bubble’s radius.
Similar to Prince and Blanch [88], Luo and Svendsen [91] proposed a novel theoretical model

based on the kinetic gas theory to calculate breakup frequency (Equation (10)). They pointed out
the cost of the experiments required to determine unknown parameters, thus criticizing all previous
models [95]. To develop the model, they assumed the following simplifications [92]:

1. The turbulence to be isotropic;
2. Consider only the binary breakage of fluid particles in a turbulent dispersion;
3. The breakage volume fraction to be a stochastic variable;
4. Determine the occurrence of breakup by the energy level of the arriving eddy. Moreover,

the frequency of the particle oscillation to be greater than the eddies’ arrival frequency;
5. The oscillations of a particle can only be caused by eddies of a length scale smaller than or equal

to the particle diameter:

ΩB(V : V fBV) =

∫ d

λmin

PB(V : V fBV,λ)ώB,λ(V)dλ (10)

where ώB,λ(V) is the arrival frequency of eddies, λ is the eddy size (length-scale), V is the particle size
(volume), PB(V:VI,λ) is the probability that particles of size V break into two when an arriving eddy
hits the particle, and f BV is an independent variable with a range of (0.1) [92]. Given the random nature
of the eddies motion, the collision frequency can be expressed as

ώB,λ(d) =
π
4
(d + λ)2uλṅλn (11)

where ṅλ is the number of eddies per unit reactor volume, d is the particle diameter, and vλ is the
turbulent velocity of eddies. The conditional probability for a particle to break up (PB(V:VfBV,λ)) can
be expressed as

PB(V : V fBV,λ) = 1−
∫ Xc

0
exp(−χ)dχ = exp(−χc) (12)

The total breakup rate obtained by integrating the resulted equation for the breakup rate of
particles over the whole interval can be expressed as

ΩB(V) =
1
2

∫ 1

0
ΩB(V : V fBV)d fBV (13)

where 1/2 factor considers the effective range of f BV = 0–0.5 or 0.5–1.
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Luo and Svendsen’s model is widely used in later applications. It does not include any unknown
or empirical parameters; moreover, it also normalizes the partial breakup frequency by the total
breakup frequency, which allows the calculation of the daughter distribution directly [95].

5.5. Models for Coalescence Frequency

The coalescence is commonly divided into three steps: (1) two bubbles collide, and there is a
small quantity of liquid trapped in between; (2) the bubbles make contact until the liquid film reduces
to a critical thickness; (3) the liquid film breaks resulting in bubble coalescence. Coalescence only
occurs if the bubbles interact for enough time for the intervening liquid film to reach the critical
rupture thickness.

There are three main theories/criteria proposed for the coalescence process: the critical value of
the relative velocity, the film drainage model, and the critical approach velocity model [87]. In any
case, the conditions for coalescence are contact and collision.

Over the years, several models have been used to calculate the collision frequency and coalescence
efficiency; some used an empirical approach, while some are based on physical quantities to determine
each collision’s mechanisms.

5.6. Collision Frequency

Liao and Lucas [87] presented a comprehensive literature review on the mechanisms and models
of coalescence of fluid particles. They have identified five primary sources of motion leading to
the collision in turbulent bubble flow: buoyancy, eddy capture, global velocity gradients, turbulent
fluctuations, and wake effect. Moreover, one of the primary reasons for bubble collisions are the
fluctuations in the turbulent velocity of the liquid phase, and the collision is commonly assumed to be
alike to particle collisions in an ideal gas (Prince and Blanch [88]). However, compared to the turbulent
fluctuations, the other significant sources of motion leading to collisions are usually neglected in
the research.

Nevertheless, Prince and Blanch [88] developed a phenomenological model for the bubble
coalescence rate in turbulent gas–liquid dispersions. The model considers bubble collisions caused by
the buoyancy, laminar shear, and turbulence.

5.7. Turbulent Collision Rate

The collision rate was derived following Kennard [98] and expressed as a function of bubble size,
concentration, and velocity as

θT
i j = nin jSi j

(
u2

ti + u2
t j

)1/2
(14)

where ni and nj are concentrations of bubbles of radius rb, and rbj, respectively, ūt is the average
turbulent fluctuating velocity of the bubble, and Sij is the collision cross-sectional area of the bubbles.

There are also assumptions required to determine the turbulent velocity of a bubble:
(1) the turbulence is isotropic, and (2) the bubble size lies in the inertial subrange.

Prince and Blanch [82] expressed the turbulent velocity as (Rotta [99]):

ut = 1.4ε(
1
3 )d

( 1
3 )

b (15)

The energy dissipation per unit mass was derived by dividing the expression for the power input
to gas sparged vessels developed by Bhavaraju et al. [100] by the mass of the system:

ε =
Qg

πR2
T

P2 ln
(P1

P2

)
(P1 − P2)

: P1 = P2 + ρlgHT (16)
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Subscript 1 and 2 correspond to the position in the column. During the experiment, bubble
samples were taken at two different points in the column, 80 and 180 cm above the gas bubblers.

Substituting all these values in Equation (14) allows us to calculate the turbulent collision rate:

θT
i j = 0.089πnin j

(
dbi + dbj

)2
ε1/3

(
d2/3

bi + d2/3
bj

)1/2
(17)

5.8. Buoyancy-Driven Collision Rates

The buoyant collision rate is given by Friedlander [101]:

θB
ij = nin jSi j

(
uri − urj

)
(18)

The rise velocity can be expressed as a function of size (Clift et al. [102]):

Ur = [(2.14σ)/ρldb + 0.505gdb]
1/2 (19)

5.9. Laminar Shear Collision Rate

The functional form of the collision rate due to laminar shear is given by Friedlander [101] as

θLS
i j = nin j

4
3

(
rbi + rbj

)3
dUl

dR

 (20)

where U is the liquid circulation velocity, and R is the radial coordinate of the column.
The velocity profile for this condition is:

Ul = Ul max

 1−R2

(αRT)
2

 (21)

where αRT is the transition point, Ulmax is the velocity in the center of the column.
The maximum circulating velocity is predicted using the Miyauchi and Shyu [103] model:

Ul max =
(1− 0.75Φ

1−Φ

)ΦgD2
T

48υt
(22)

where Φ is the gas holdup, and υ is the turbulent kinetic viscosity.

5.10. Collision Efficiency

Existing experimental studies indicate that the majority of collisions do not lead to coalescence
and colliding bubbles separate from each other after the collision. Thus, a collision efficiency parameter
must be introduced, which is a function of the contact time that passes while bubbles touch and the time
required for bubbles to coalesce. The collision efficiency is given by Coulaloglou and Tavlarides [97]:

λi j = exp
(
−

ti j

τi j

)
(23)

where tij is the time required for bubbles’ coalescence, and τij is the contact time of two bubbles.
To avoid the model’s cumbersomeness, Prince and Blanch [88] used a simplified model for

calculating the thinning of the film without considering the Hamaker contribution since it is only
noticeable at very low film thicknesses before the bubbles’ rupture. The coalescence time was
determined by applying the approach velocity between the bubbles.
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Thus, the coalescence rate of bubbles is expressed by the total collision frequency multiplied by
the efficiency:

Γi j =
{
θT

ij + θB
ij + θLS

ij

}
× exp

{
−

ti j

τi j

}
(24)

The overall coalescence rate is then:

ΓT =
1
2

∑
i

∑
j

{

(
θT

ij + θB
ij + θLS

ij

)
× exp(−

ti j

τi j
)} (25)

where the 1/2 factor is included to avoid the double counting of coalescence between bubble pairs.
The modeling of bubbles’/droplets’ coalescence and breakup requires the solution of a population

balance equation. There are many model concepts in the literature based on the two-fluid model
approach, and one of the most widely used is the discretized population balance method; nevertheless,
it requires significant extra calculations [84]. Wang et al. [90] performed a comparison of the predicted
bubble size distributions using four common bubble breakup and coalescence models (Lehr et al.,
Luo and Svendsen, Prince and Blanch, and Wang et al.), and they found that the use of different models
resulted in considerable distinction in the prediction of both the bubble size distributions and the flow
regimes transition [68].

5.11. Multiple-Size Group Approach

Since the modeling of breakup and coalescence mechanisms are the weaknesses in simulations
of poly-dispersed flows [15,84], a multiphase flow modeling method called the multiple size group
(MUSIG) approach was implemented. In the MUSIG approach, the dispersed phase has a wide variety
of bubbles/droplet sizes, and it is based on the Eulerian–Eulerian framework. It provides an efficient
method for solving the conservation equations, closure equations for the interfacial transport of mass,
energy, momentum, population balance equations, and bubble/droplet coalescence and breakup [104].

The MUSIG model was developed to process polydisperse multiphase flows, providing a
framework for the inclusion of the population balance model into three-dimensional calculations [105].
The model was first proposed by Lo [106], with only one common momentum equation solved for
all size groups and the diameter range of the dispersed phase divided into M size (homogeneous
MUSIG). Mathematically, the MUSIG model is based on the two-fluid modeling approach and the
population balance method. Furthermore, the population balance equation is applied to account
for the mass conservation of the size fractions while considering the inter-fraction mass transfer
resulting from bubble coalescence and breakup [84]. Due to the accurate calculation of coalescence and
breakup for big-sized groups, the multiple size group model has been applied successfully on several
occasions. However, the homogeneous model’s limitation was soon discovered, as it assumes that the
slip velocities of bubbles are independent of bubble size [107].

Moreover, it is necessary to consider different velocity fields for bubbles of different sizes, and one
of the ways to do it is using a multi bubble-size class test solver developed by Lucas et al. [84,108].
As a result of these studies, the concept of an inhomogeneous MUSIG model based on the Eulerian
modeling framework proposed by Krepper et al. [109] was incorporated into CFD analyses, which is
an enhancement of the existing homogeneous MUSIG model. Within this inhomogeneous MUSIG
model, the dispersed gaseous phase is divided into N inhomogeneous velocity groups (phases) with a
particular velocity field for each of the velocity groups, and the bubble diameter range within each of
the velocity groups being subdivided into Mj bubble size classes. The corresponding models consider
the processes of bubbles’ breakup and coalescence between all classes of bubble sizes Mj [84].

Huang et al. [110] performed a numerical study for three bubble-column ascending configurations
occurring in the churn turbulent flow regime in a vertical circular column. They examined the
effect of various bubble size models on numerical predictions. The results showed no improvement
in homogenous nor inhomogeneous MUSIG models compared to the single bubble size models.
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Thus, Huang et al. [110] stated the need to improve breakup and coalescence closure descriptions and
have experimental data to validate such models.

On the other hand, Lucas et al. [111] proposed an extension of the inhomogeneous MUSIG model,
including the phase transfer effects. They stated that additional source and sink terms related to
evaporation or condensation must be added to the continuity equation to simulate poly-dispersed
flows with phase transfer. In addition, Lucas et al. [111] specified three phenomena to consider:

(a) Shrinkage or expansion of bubbles caused by temporal and spatial pressure variation.
(b) Mass transfer between the bubble size group and liquid phase.
(c) Shrinkage or expansion of bubbles caused by mass transfer.

6. Concluding Remarks

Even though extensive theoretical and experimental studies have been conducted on multiphase
annulus flow, currently there are still questions and challenges that need to be addressed. Some of
these limitations and challenges in the study of annular flow are listed below:

- Despite several available studies on two-phase flow at circular pipes, there is still a lack of studies
on the two-phase flow through the annulus [7].

- The need to develop correlations that work with several flow characteristics and fluid properties,
as well as a wide range of velocities [112].

- More attention should be paid to interfacial friction coefficient, entrainment fraction, effective
viscosity, oil–water dispersion inversion, gas trapping in liquid [65].

- The lack of general agreement in available flow pattern maps due to the diversity of
oil properties [28].

- Research on the slug characteristics in two-phase gas–liquid flows in annuli is limited, particularly
in nearly horizontal geometries [66].

- The lack of physics-based models in the commercial dynamic multiphase flow simulators and
lack of industry-relevant high-quality multiphase flow data [1].

- The effect of using different closure laws needs to be further studied. Moreover, the investigation
of the CFD model capability to predict more complex flow patterns is also required [28].

- The investigation of the eccentricity effect and presence of the secondary phase’s variable
concentration upon the effect of the transition needs a proper consideration [113].

- It is still challenging to consider and simulate a realistic number of particle size classes, which would
increase simulation accuracy, using either Eulerian–Eulerian or Eulerian–Lagrangian frameworks [6].

- Computational limitations still prevent an in-depth study that combines a fully turbulent gas
phase with the effects of a deformable interface and non-unity density and viscosity ratios of a
liquid–gas two-phase flow inside a horizontal pipe [28].

- Improvements in the modeling of breakup closures must be made [95]. Moreover, most of the
existing breakup closure equations are at their initial development stage and need improvement.

- More fundamental and consistent coalescence models are required, which can be used in
practice in the vast flow conditions and will consider all significant collisions [87]. Moreover,
extensive experimental work needs to be conducted for a better understanding of the microscopic
coalescence process.

- The closure model for breakup and coalescence is the weakest point, limiting the application of
the MUSIG approach [107].
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Nomenclature

A pipe cross-sectional area
CI, CII breakup constants
CD drag coefficient
Ce coefficient
D diameter
d particle diameter
db bubble diameter
de equivalent diameter
dH hydraulic diameter
di tubing outer diameter
do casing inner diameter
dr representative diameter
FB calibration coefficient
FD drag force
fBV breakage volume fraction
fs friction factor at the pipe wall for the liquid slug
g gravitational acceleration
HLF liquid holdup in the film zone
HLS liquid slug holdup
HT unaerated height of liquid
ls length of the liquid slug
M sum of interfacial forces
N total number of drops
NFr dimensionless number for inertia forces
Nµ dimensionless number for viscous forces
n eddy or bubble concentration per volume
PB probability for a particle to breakup
p static pressure
Q volumetric gas flow rate
R radial coordinate of the column
ReLS slug Reynolds number
RT radius of the column
r volume fraction
rb bubble’s radius
S collision cross-sectional area
SM momentum interfacial drag forces
t time
U fluid velocity
UF velocity in the film zone
UM mixture velocity
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USG gas superficial velocity
USL liquid superficial velocity

UT
translational velocity at which the slug unit is
traveling

uc critical eddy velocity
ut turbulent velocity
V particle size (volume)
X Lockhart–Martinelli parameter
xi fraction of particles of radius rbi

Greek letters
α, β constants
Γ collision rate
γ pipe inclination angle from horizontal
γR inclination angle in radians
ε dissipation rate
εo cross-sectional average oil volume fraction

ε’oi
local oil volume fraction at a point in a pipe
cross-section

θB buoyancy driven collision rate
θLS collision rate due to laminar shear
θT collision rate due to turbulence
κ turbulent kinetic energy
λ eddy size (length scale);
µ dynamic viscosity
υ kinematic viscosity
ρ density
Σ turbulence model constant
σ interfacial tension
τ contact time
Φ gas holdup
ϕ correlation independent parameter
χ dimensionless energy
ώ collision frequency
ΩB breakup rate

Subscripts
α, β phases
b bubble
g gas
e eddy
i,j particle i,j
l liquid
o oil
r rise
t turbulent
T total
w water
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