Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Wastewater Characteristics
2.2. Culture Conditions
2.3. Determination of Growth Parameters
2.4. Determination of Biochemical Composition
2.5. Determination of the Lipid Profile
2.6. Nutrient Removal and Wastewater Characterization
2.7. Morphological Changes
2.8. Statistic Analysis
3. Results
3.1. Determination of Growth Parameters
3.2. Determination of the Composition of Biomass
3.3. Determination of the Lipid Profile
3.4. Morphological Changes
3.5. Nutrient Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emsbo-Mattingly, S.D.; Litman, E. Polycyclic aromatic hydrocarbon homolog and isomer fingerprinting. In Standard Handbook Oil Spill Environmental Forensics, 2nd ed.; Stout, S., Wang, Z., Eds.; Academic Press: Cambridge, UK, 2016; pp. 255–312. [Google Scholar] [CrossRef]
- Kiang, Y. Fuel Property Estimation and Combustion Process Characterization. Conventional Fuels, Biomass, Biocarbon, Waste Fuels, Refuse Derived Fuel, and Other Alternative Fuels, 1st ed.; Academic Press: Cambridge, UK, 2018. [Google Scholar]
- Gautam, P.; Kumar, S.; Lokhandwala, S. Energy-Aware Intelligence in Megacities. In Current Developments in Biotechnology and Bioengineering. Waste Treatment Processes for Energy Generation, 1st ed.; Kumar, S., Kumar, R., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–238. [Google Scholar] [CrossRef]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Chang. 2011, 106, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Canté, F. Renta negativa y decrecimiento económico. Apunt. CENES 2018, 37, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Rather, M.A.; Bano, P. Third Generation Biofuels: A Promising Alternate Energy Source. In Integrating Green Chemistry and Sustainable Engineering; Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–21. [Google Scholar]
- Datta, A.; Hossain, A.; Roy, S. An Overview on Biofuels and Their Advantages and Disadvantages. Asian J. Chem. 2019, 31, 1851–1858. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2007: China and India Insights; OECD Publishing: Paris, France, 2007. [Google Scholar] [CrossRef]
- Naqvi, M.; Yan, J. First-Generation Biofuels. In Handbook of Clean Energy Systems; Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 1, pp. 1–18. [Google Scholar]
- Raghavendra, H.; Mishra, S.; Upashe, S.P.; Floriano, J.F. Research and Production of Second-Generation Biofuels. In Bioprocessing for Biomolecules Production, 1st ed.; Molina, G., Gupta, V., Singh, B., Gathergood, N., Eds.; Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 383–400. [Google Scholar]
- Richmond, A. Biological Principles of Mass Cultivation. In Handbook of Microalgae Culture: Biotechnology and Applied Phycology, 1st ed.; Richmond, A., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2004; pp. 125–177. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef]
- Moravvej, Z.; Makarem, M.A.; Rahimpour, M.R. The fourth generation of biofuel. In Second and Third Generation of Feedstocks, 1st ed.; Basile, A., Dalena, F., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2019; pp. 557–597. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Randrianarison, G.; Ashraf, M.A. Microalgae: A potential plant for energy production. Geol. Ecol. Landsc. 2017, 1, 104–120. [Google Scholar] [CrossRef]
- Zullaikah, S.; Utomo, A.T.; Yasmin, M.; Ong, L.K.; Ju, Y.-H. Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. In Advances in Eco-Fuels for a Sustainable Environment, 1st ed.; Kalam Azad, A., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 237–276. [Google Scholar]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strat. Glob. Chang. 2013, 18, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.D.; Rizza, L.S.; Di Palma, A.A.; Dublan, M.D.L.A.; Salerno, G.L.; Rubio, L.M.; Curatti, L. Cyanobacterial biological nitrogen fixation as a sustainable nitrogen fertilizer for the production of microalgal oil. Algal Res. 2015, 12, 142–148. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.; Xin, Y.; Wei, L.; Huang, S.; Xu, J. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J. 2016, 88, 1071–1081. [Google Scholar] [CrossRef]
- Choong, Y.J.; Yokoyama, H.; Matsumura, Y.; Lam, M.K.; Uemura, Y.; Dasan, Y.K.; Kadir, W.N.A.; Lim, J.W. The potential of using microalgae for simultaneous oil removal in wastewater and lipid production. Int. J. Environ. Sci. Technol. 2020, 17, 2755–2766. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Cheng, J.J.; Mos, M.; Daroch, M. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. New Biotechnol. 2015, 32, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, Z.H.; Hiltunen, E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Res. Int. 2016, 2016, 8792548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aratboni, H.A.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramirez, J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Factories 2019, 18, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komolafe, O.; Orta, S.B.V.; Monje-Ramirez, I.; Noguez, I.Y.; Harvey, A.P.; Ledesma, M.T.O. Biodiesel production from indigenous microalgae grown in wastewater. Biores. Technol. 2014, 154, 297–304. [Google Scholar] [CrossRef]
- Lackner, M. 3rd-Generation Biofuels: Bacteria and Algae as Sustainable Producers and Converters. In Handbook of Climate Change Mitigation and Adaptation, 2nd ed.; Chen, W.Y., Suzuki, T., Lackner, M., Eds.; Springer: Berlin, Germany, 2016; pp. 3173–3210. [Google Scholar]
- Álvarez, X.; Otero, A. Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413. Environ. Biol. Fishes 2020, 7413, 1–10. [Google Scholar] [CrossRef]
- Benemann, J.; Vanolst, J.; Massingill, M.; Carlberg, J.; Weissman, J.; Brune, D. The controlled eutrophication process: Using Microalgae for CO2 utilization and agricultural fertilizer recycling. In Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, BC, Canada, 5–9 September 2004; pp. 1433–1438. [Google Scholar] [CrossRef]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The Use of Microalgae for Coupling Wastewater Treatment with CO2 Biofixation. Front. Bioeng. Biotechnol. 2019, 7, 42. [Google Scholar] [CrossRef]
- Allen, M.M. Simple Conditions for Growth of Unicellular Blue-Green Algae on Plates. J. Phycol. 1968, 4, 1–4. [Google Scholar] [CrossRef]
- Álvarez, X. Modulación de la Producción y Caracterización Estructural de los Exopolisacáridos en Cianobacterias Diazotróficas, y Estudio de su Utilización para el Tratamiento del Digestato Líquido de la Digestión Anaeróbica de Efluente Efluentes de una Procesadora de Pescado. Ph.D. Thesis, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, 2016. [Google Scholar]
- International Council for Standardization in Haematology. Recommended Methods for the Visual Determination of White Blood Cell Count and Platelet Counts, 1st ed.; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Arredondo, B.; Voltolina, D.; Zenteno, T.; Arce, M.; Gómez, G. Métodos y Herramientas Analíticas en la Evaluación de la Biomasa Microalgal, 2nd ed.; Centro de Investigaciones Biológicas del Noroeste: La Paz, Mexico, 2017. [Google Scholar]
- Zhu, C.J.; Lee, Y.K. Determination of biomass dry weight of marine microalgae. Environ. Biol. Fishes 1997, 9, 189–194. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Herbert, D.; Phipps, P.; Strange, R. Chapter III Chemical Analysis of Microbial Cells. Methods Microbiol. 1971, 5, 209–344. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, J.B.; Weinstein, D.B. Simple charring method for determination of lipids. J. Lipid Res. 1966, 7, 574–576. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- D’Elia, C.F.; Steudler, P.A.; Corwin, N. Determination of total nitrogen in aqueous samples using persulfate digestion1. Limnol. Oceanogr. 1977, 22, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Tandon, H.L.S.; Cescas, M.P.; Tyner, E.H. An Acid-Free Vanadate-Molybdate Reagent for the Determination of Total Phosphorus in Soils. Soil Sci. Soc. Am. J. 1968, 32, 48–51. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Evans, S.J.; Johnson, M.S.; Leah, R.T. Determination of mercury in fish tissue: A rapid automated technique for routine analysis. Varian Instrum. Work 1986, 60, 1–6. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2019. [Google Scholar]
- Deaker, M.; Maher, W. Determination of arsenic in arsenic compounds and marine biological tissues using low volume microwave digestion and electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 1999, 14, 1193–1207. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Dai, X.; Sun, Y.; Chen, F. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 2010, 12, 187–192. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Srinuanpan, S.; Mandik, Y. Efficient harvesting of microalgal biomass and direct conversion of microalgal lipids into biodiesel. In Microalgae Cultivation for Biofuels Production, 1st ed.; Yousuf, A., Ed.; Academic Press: Cambridge, UK, 2010; Volume 1, pp. 83–96. [Google Scholar] [CrossRef]
- Osundeko, O.; Dean, A.P.; Davies, H.; Pittman, J.K. Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity. Plant Cell Physiol. 2014, 55, 1848–1857. [Google Scholar] [CrossRef]
- Wollmann, F.; Dietze, S.; Ackermann, J.; Bley, T.; Walther, T.; Steingroewer, J.; Krujatz, F. Microalgae wastewater treatment: Biological and technological approaches. Eng. Life Sci. 2019, 19, 860–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.S.; Dahms, H.-U.; Won, E.-J.; Lee, J.-S.; Shin, K.-H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Bibi, I.; Niazi, N.K.; Shahid, M.; Nawaz, M.F.; Farooqi, A.; Naidu, R.; Rahman, M.M.; Murtaza, G.; Lüttge, A. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 2018, 199, 737–746. [Google Scholar] [CrossRef]
- Nagi, M.; He, M.; Li, D.; Gebreluel, T.; Cheng, B.; Wang, C. Utilization of tannery wastewater for biofuel production: New insights on microalgae growth and biomass production. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Koreivienė, J.; Valčiukas, R.; Karosienė, J.; Baltrėnas, P. Testing of Chlorella/Scenedesmus Microalgae Consortia for Remediation of Wastewater, CO2 Mitigation and Algae Biomass Feasibility for Lipid Production. J. Environ. Eng. Landsc. Manag. 2014, 22, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Wang, Z.; Wang, X.; Yuan, Z. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Biores. Technol. 2015, 192, 382–388. [Google Scholar] [CrossRef]
- Marazzi, F.; Bellucci, M.; Fantasia, T.; Ficara, E.; Mezzanotte, V. Interactions between Microalgae and Bacteria in the Treatment of Wastewater from Milk Whey Processing. Water 2020, 12, 297. [Google Scholar] [CrossRef] [Green Version]
- Whitton, R.; Le Mével, A.; Pidou, M.; Ometto, F.; Villa, R.; Jefferson, B. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res. 2016, 91, 371–378. [Google Scholar] [CrossRef]
- Jebali, A.; Acién, F.; Gómez, C.; Fernández-Sevilla, J.; Mhiri, N.; Karray, F.; Dhouib, A.; Molina-Grima, E.; Sayadi, S. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Biores. Technol. 2015, 198, 424–430. [Google Scholar] [CrossRef]
- Sweiss, M. Microalgas para Tratamiento de Aguas Residuales y Producción de Biomasa Desde Bioprospección Hasta Biotecnología. Ph.D. Thesis, Universidad de Bath, Inglaterra, UK, 2017. [Google Scholar]
- Hena, S.A.; Abida, N.; Tabassum, S. Screening of facultative strains of high lipid producing microalgae for treating surfactant mediated municipal wastewater. RSC Adv. 2015, 5, 98805–98813. [Google Scholar] [CrossRef]
- Ling, Y.; Sun, L.-P.; Wang, S.-Y.; Lin, C.S.K.; Sun, Z.; Zhou, Z.-G. Cultivation of oleaginous microalgae Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem. Eng. J. 2019, 148, 162–169. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Li, X.; Yu, Y.; Hu, H.-Y.; Zhang, T.-Y.; Li, F.-M. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Biores. Technol. 2013, 144, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Hena, S.; Fatimah, S.; Tabassum, S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res. Ind. 2015, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-M.; Chen, T.-Y.; Lin, T.-H.; Kao, C.-Y.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Biores. Technol. 2015, 194, 326–333. [Google Scholar] [CrossRef]
- Jeong, D.; Jang, A. Exploration of microalgal species for simultaneous wastewater treatment and biofuel production. Environ. Res. 2020, 188, 109772. [Google Scholar] [CrossRef]
- Shen, Q.-H.; Jiang, J.-W.; Chen, L.-P.; Cheng, L.-H.; Xu, X.-H.; Chen, H.-L. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Biores. Technol. 2015, 190, 257–263. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ravindran, B.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J. Environ. Manag. 2019, 240, 293–302. [Google Scholar] [CrossRef]
- Ho, S.-H.; Kondo, A.; Hasunuma, T.; Chang, J.-S. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Biores. Technol. 2013, 143, 163–171. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Morales, M.; Novelo, E.; Revah, S. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Biores. Technol. 2013, 130, 652–658. [Google Scholar] [CrossRef]
- Choi, H.-J. Dairy wastewater treatment using microalgae for potential biodiesel application. Environ. Eng. Res. 2016, 21, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Ambat, I.; Bec, S.; Peltomaa, E.; Srivastava, V.; Ojala, A.; Sillanpää, M. A synergic approach for nutrient recovery and biodiesel production by the cultivation of microalgae species in the fertilizer plant wastewater. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yao, X.-D.; Miao, M.-S.; Chen, Q.-F.; Kong, Q.; Shang, D.-W.; Yu, J.-N.; Fu, X.-M. Effects of urban wastewater dilution on growth and biochemical properties of Scenedesmus sp. Desalin. Water Treat. 2016, 57, 29363–29370. [Google Scholar] [CrossRef]
- European Committee for Standardization. Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods; European Standard 14214; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Dijkstra, A.J. Revisiting the formation of-trans isomers during partial hydrogenation of triacylglycerol oils. Eur. J. Lipid Sci. Technol. 2006, 108, 249–264. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Castillo, O.S.; Torres-Badajoz, S.G.; Núñez-Colín, C.A.; Peña-Caballero, V.; Herrera, C.H.; Rodríguez-Núñez, J.R. Producción de biodiésel a partir de microalgas: Avances y perspectivas biotecnológicas. Hidrobiológica 2017, 27, 337–352. [Google Scholar]
- Quevedo, C.; Sonia, M.; Acosta, A. Crecimiento de Scenedesmus sp. en diferentes medios de cultivo para producción de proteína microalgal. Vitae-Columbia 2008, 15, 25–31. [Google Scholar]
- Verduga, M.E. Cultivo en Batch de Scenedesmus spp. en Aguas Residuales de Industrias Lácteas: Crecimiento, Productividad y Composición Bioquímica. Bachelor’s Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2020. Available online: http://repositorio.ug.edu.ec/bitstream/redug/48682/1/CD_TESIS_ELOIZA.pdf (accessed on 15 May 2020).
- Tuantet, K.; Temmink, H.; Zeeman, G.; Janssen, M.; Wijffels, R.H.; Buisman, C.J. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res. 2014, 55, 162–174. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B. Ankit. Phycoremediation of nutrients and valorisation of microalgal biomass: An economic perspective. In Application of Microalgae in Wastewater Treatment, 1st ed.; Gupta, S., Bux, F., Eds.; Springer: Cham, Switzerland, 2019; Volume 2, pp. 1–15. [Google Scholar] [CrossRef]
- Choudhary, P.; Assemany, P.P.; Naaz, F.; Bhattacharya, A.; Castro, J.D.S.; Couto, E.D.A.D.C.; Calijuri, M.L.; Pant, K.K.; Malik, A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci. Total. Environ. 2020, 726, 137961. [Google Scholar] [CrossRef]
- Shen, L.; Ndayambaje, J.D.; Murwanashyaka, T.; Cui, W.; Manirafasha, E.; Chen, C.; Wang, Y.; Lu, Y. Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production. Biores. Technol. 2017, 245, 386–393. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, T.; Zhu, W.; Zhao, Y. Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. Environ. Biol. Fishes 2016, 29, 833–841. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Ansari, F.A.; Shriwastav, A.; Sahoo, N.K.; Rawat, I.; Bux, F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016, 115, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Zhao, F.; Cao, Y.; Xing, L.; Liu, W.; Mei, S.; Li, S. Cultivation of Microalgae in Dairy Farm Wastewater Without Sterilization. Int. J. Phytoremed. 2015, 17, 222–227. [Google Scholar] [CrossRef]
- Rani, A.S.; Rao, H.R.V.N.G.; Kumar, A.B.; Shruthi, M. Eco-Friendly Approach for Treating Dairy Effluent and Lipid Estimation Using Microalgae. Br. Biotechnol. J. 2015, 7, 33–39. [Google Scholar] [CrossRef]
- Brar, A.; Kumar, M.; Pareek, N. Comparative Appraisal of Biomass Production, Remediation, and Bioenergy Generation Potential of Microalgae in Dairy Wastewater. Front. Microbiol. 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value |
---|---|
TN | 2.22 mM |
PO43− | 0.20 mM |
pH | 5.5 |
COD | 3500 mg O2 L−1 |
As | 0.0060 mg L−1 |
Cd | 0.00047 mg L−1 |
Hg | 0.0890 mg L−1 |
Pb | 0.0001 mg L−1 |
Culture Medium | Xm (Cell mL−1) | µ (day−1) | Qx (g L−1 day−1) |
---|---|---|---|
BG11 | 4.3 × 107 ± 3.4 × 106 | 0.51 ± 0.06 | 1.84 ± 0.93 |
DIWW 100% | 4.4 × 107 ± 1.4 × 106 | 0.54 ± 0.14 | 1.75 ± 0.60 |
Fatty Acid Methyl Esters (FAMEs) | % Total Fatty Acids |
---|---|
Saturated Fatty Acids | |
Myristic (C14:0) | 8.13 |
Palmitic (C16:0) | 18.79 |
Stearic (C18:0) | 0.32 |
Arachidic (C20:0) | 1.58 |
Monounsaturated Fatty Acids | |
Oleic (C18:1) | 9.71 |
Polyunsaturated Fatty Acids | |
Linoleic (C18:2) | 20.05 |
Linolenic (C18:3) | 23.79 |
Eicosapentaenoic (EPA) (C20:5) | 0.00 |
Docosahexaenoic (DHA) (C18:3) | 0.00 |
Total saturated fatty acids | 28.95 |
Total monounsaturated fatty acids | 20.82 |
Total polyunsaturated fatty acids | 44.29 |
Trans fat | 5.94 |
Culture Medium | Length (µm) | Width (µm) | Area (µm2) | Volume (µm3) |
---|---|---|---|---|
BG11 | 17 | 6 | 80.1 | 1814.9 |
DIWW 100% | 14 | 13 | 142.9 | 2666.9 |
Parameter | Initial Concentration | Final Concentration | Removal (%) |
---|---|---|---|
TN (mM) | 20.80 | 2.41 | 88.41 |
PO43− (mM) | 1.67 | 0.049 | 97.07 |
COD (mg O2 L−1) | 3500 | 374.15 | 89.31 |
Heavy Metal | This Research | WHO 1 | NEMA 2 | EPA 3 |
---|---|---|---|---|
As (mg L−1) | 0.0060 | 0.010 | NM* | 0.05 |
Cd (mg L−1) | 0.00047 | 0.003 | 0.01 | 0.01 |
Hg (mg L−1) | 0.0890 | 0.001 | 0.005 | 0.00003 |
Pb (mg L−1) | 0.0001 | 0.010 | 0.01 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado, I.; Álvarez, X.; Verduga, M.-E.; Cruz, A. Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry. Processes 2020, 8, 1458. https://doi.org/10.3390/pr8111458
Mercado I, Álvarez X, Verduga M-E, Cruz A. Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry. Processes. 2020; 8(11):1458. https://doi.org/10.3390/pr8111458
Chicago/Turabian StyleMercado, Ingrid, Xavier Álvarez, María-Eloiza Verduga, and Andrea Cruz. 2020. "Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry" Processes 8, no. 11: 1458. https://doi.org/10.3390/pr8111458
APA StyleMercado, I., Álvarez, X., Verduga, M. -E., & Cruz, A. (2020). Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry. Processes, 8(11), 1458. https://doi.org/10.3390/pr8111458