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Abstract: This study investigated the use of brewing wastewater (BW) as the primary carbon source
in the Postgate medium for the optimisation of sulphate reduction in acid mine drainage (AMD).
The results showed that the sulphate-reducing bacteria (SRB) consortium was able to utilise BW
for sulphate reduction. The response surface methodology (RSM)/Box–Behnken design optimum
conditions found for sulphate reduction were a pH of 6.99, COD/SO4

2− of 2.87, and BW concentration
of 200.24 mg/L with predicted sulphate reduction of 91.58%. Furthermore, by using an artificial
neural network (ANN), a multilayer full feedforward (MFFF) connection with an incremental
backpropagation network and hyperbolic tangent as the transfer function gave the best predictive
model for sulphate reduction. The ANN optimum conditions were a pH of 6.99, COD/SO4

2− of 0.50,
and BW concentration of 200.31 mg/L with predicted sulphate reduction of 89.56%. The coefficient
of determination (R2) and absolute average deviation (AAD) were estimated as 0.97 and 0.046,
respectively, for RSM and 0.99 and 0.011, respectively, for ANN. Consequently, ANN was a better
predictor than RSM. This study revealed that the exclusive use of BW without supplementation with
refined carbon sources in the Postgate medium is feasible and could ensure the economic sustainability
of biological sulphate reduction in the South African environment, or in any semi-arid country with
significant brewing activity and AMD challenges.

Keywords: acid mine drainage; artificial neural network; brewing wastewater; response surface
methodology; sulphate reduction; optimisation

1. Introduction

Of the numerous wastewaters from different food and beverage industries, malting and brewing
wastewaters are especially nutrient-rich. In South Africa alone, the brewing industry’s capacity
is more than 3.1 billion litres of beer per annum [1], which culminates in an industry which is
potable-water-intensive with up to 10 litres of water being used to produce 1 litre of beer [2].
The composition and characteristics of brewery wastewater (BW) vary, albeit with high concentrations
of crude protein (up to 754 mg/L), BOD5 (up to 3980 mg/L), CODtotal (up to 8926 mg/L), and total
nitrogen (up to 1305 mg/L) with minute traces of heavy metals such as lead, nickel, iron, manganese,
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and copper; all of these are suitable for effective biomass growth and to support other beneficial
biological processes [3,4]. Some of these nutrients are from extracts of spent biowaste, as for 1 hectolitre
(hl) of beer produced, approximately 20 kg of spent bio-waste in the form of grains, excess yeast,
and hops ends up in the wastewater. This is equivalent to 85% of all by-products; hence, 15% of the
bio-waste is attributed to surplus hops and yeast [5]. Overall, malting and beer racking have been
determined to contribute the largest CODtotal (up to 3000 mg/L) to BW [6]. Therefore, the disposal
of such nutrient-rich wastewater into municipal wastewater treatment plants (MWTPs) increases
nutrient loading, which can negatively affect the operation of such works. It is advisable to repurpose
such wastewater as a bio-waste-type medium for the remediation of other environmental challenges,
while others prefer that the water be treated—an undertaking which can result in additional costs
to plant operations. Redirecting such wastewater to low-performance and passive processes as a
medium could provide a sustainable mitigation strategy for the bio-waste-containing wastewater
while providing for an environmentally benign approach to remediate significant environmental
pollution [7–9]. A recent example was when BW was used as a fertiliser treatment for crop production,
resulting in yields that resembled those under inorganic fertiliser [10]. This means that BW can provide
an alternative sustainable nutrient source to passively support biological and environmentally benign
processes in other industries while providing remedial action for other unrelated brewery operation
challenges. It was further suggested that BW, when at ambient temperature, has high biodegradability;
however, this assertion was made for aerobic conditions [6].

South Africa is a semi-arid country with limited water resources, with increasingly reduced
rainfall and number of rainy days during autumn, a season associated with high rainfall [11];
current groundwater-sourced acid mine drainage (AMD) water production is high due to previous
mining activity, with an example being the 2500 m3 AMD/day draining into the West Rand
Goldfields [12]. Instead of disposing of the BW into MWTPs, it can be redirected to support the
passive treatment of AMD for the effective removal of sulphates. Current technologies and research
studies in the nexus of BW and AMD are largely focusing on (1) the use of sludge containing
sulphate-reducing bacteria treating BW for the anaerobic treatment of AMD in bioreactors [13] and
(2) mine tailing treatment in bioreactors supported by anaerobic sludge generated using BW [14],
with no studies focusing on the BW being used directly to support a passive system for the treatment
of AMD—in particular, sulphate reduction using bacteria supported on BW while remediating AMD
for water recovery to be used elsewhere, of which the primary step is sulphate removal. Furthermore,
optimising such treatment systems adapted for local conditions, i.e., taking into account the unique
characteristics of the AMD in South Africa, has never been attempted. For biological system model
development, artificial neural networks (ANNs) and response surface methodology (RSM) have been
reported as effective tools for process optimisation [15,16]. Therefore, an artificial neural network and
a Box–Behnken design RSM were used to determine the better predictor of the performance of an
anaerobic bioreactor designed specifically to treat South African AMD using BW as the primary carbon
source in the Postgate medium. Furthermore, the novelty of using BW lies in the fact that it is usually
discarded and not used for AMD remediation.

2. Materials and Methods

2.1. Chemical Reagents

Postgate medium B, herein referred to as Postgate medium, constitutes monopotassium phosphate
(0.5 g/L), ammonium chloride (1.0 g/L), sodium sulphate (1.0 g/L), calcium chloride dihydrate
(0.1 g/L), magnesium sulfate (2.0 g/L), yeast extract (1.0 g/L), ascorbic acid (0.1 g/L), thioglycolic
acid (0.1 g/L), ferrous sulphate heptahydrate (0.5 g/L), sodium chloride (26 g/L), and sodium lactate
(5 mL). The medium pH was 7–7.5. Sodium bromoethane sulphonate (98%, Merck, Modderfontein,
South Africa) and sodium DL-lactate solution (60% w/w, Sigma-Aldrich, Modderfontein, South Africa)
were used as received from the suppliers.
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2.2. Bacterial Inoculum

The AMD sample was collected using a previously described procedure from a mining facility in
South Africa [17]. The sulphate-reducing consortium was activated using selective modified Postgate
isolation medium for the propagation of sulphate-reducing bacteria (SRB) at 35 ◦C and pH of 7 ± 0.2 in
an anaerobic reactor. The constituents of the modified Postgate medium were as described earlier [17].
The black-grey colour of the medium signified positive growth of the sulphate-reducing consortium.
The experiments were conducted in triplicate.

2.3. Carbon Source Limiting Growth Test

A sterile bioreactor containing 100 mL AMD (8080 mg SO4
2−/L) was inoculated with 20% (v/v)

SRB consortium in the Postgate medium. The characteristics of the AMD were as described in
Akinpelu et al. [17]; i.e., the AMD had an E0 value of 229.5 mV, which is high, a fairly acidic pH of 2.98,
and electrical conductivity of 7.84 mS/cm. SRB growth was observed on both the lactate (L) and BW, used as
carbon sources at a feed rate of 0.05 g/L h in the Postgate medium. To minimise methanogenic activities,
sodium bromoethane sulphonate (3.2 g/L) was added to the bioreactors. The bioreactors were incubated
anaerobically at 35 ◦C, pH of 7 ± 0.2, in a rotary ZHICHENG shaker (model ZHYWY-1102) at 160 rpm
(ZHICHENG Analytical Instruments Manufacturing Co. Ltd, Shanghai, China). The bioreactors were
purged with nitrogen gas to displace the dissolved oxygen and then sealed with Parafilm tape to sustain the
anaerobic conditions. Bioreactors without inoculum served as a control. The BW, collected from a beer plant
in South Africa, contained protein (3.3 ± 0.01 mg/mL), glucose (5 ± 0.02 mg/mL), fat (2.6 ± 0.03 mg/mL),
lactose (5 ± 0.02 mg/mL), maltose (5 ± 0.03 mg/mL), sucrose (5 ± 0.02 mg/mL), fructose (5 ± 0.03 mg/mL),
and dry matter (4.2 ± 0.02 mg/mL), as measured using a high-performance liquid chromatograph
(HPLC, Agilent 1290 Infinity) (Chemetrix Export (Pty) Ltd, Johannesburg, South Africa); equipped with a
300 m × 7.8 mm Aminex HPX-97H column. The HPLC columns used isocratic conditions with water as the
mobile phase at 0.6 mL/min and temperature as the main variable for control of the resolution (60–70 ◦C),
according to the manufacturer’s manual for the separation of carbohydrates. Samples were taken at
predetermined intervals for turbidity measurement in a GENESYSTM 10S UV/Visible spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 600 nm. All procedures were performed
in triplicate. Experimental errors were estimated as the standard deviation of a set of data (n = 3).

2.4. Experimental Set-Up

The experiments were done in 250 mL anaerobic bioreactors (35 ◦C, 160 rpm, N2 purged) and were
initiated with 20% (v/v) inoculum in 100 mL Postgate medium for 48 h. Sodium bromoethane sulphonate
(3.2 g/L) was added to the bioreactor to minimise methanogenic activity. Subsequently, 50 mL of AMD
(8080 mg SO4

2−/L) was added, and the bioreactor was operated for 72 h at various pH, COD/SO4
2−,

and BW levels specified by the Box–Behnken design in Table 1. All bioreactors, with or without inoculum,
were conditioned to the various specified pre-set testing variables, and the pH of the cultures was
adjusted using 0.1 M HCl (Lasec SA, Cape Town, South Africa); or 0.1 M NaOH (Lasec SA, Cape Town,
South Africa); accordingly. The sulphate removal efficiency was estimated using Equation (1):

Removal (%) = [(Ci − Cf)/Ci)] × 100, (1)

where Ci and Cf are concentrations of sulphate (mg/L) in the initial and treated AMD, respectively.

Table 1. Experimental design variables.

Variable Code Unit
Coded Factor Level

1 0 −1

pH A - 7 5 3
COD/SO4

2− B - 3 1.75 0.5
Brewing wastewater C mg/L 500 350 200
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2.5. Design of Experiment—Box–Behnken

To optimise the process and investigate the dynamics among the key process parameters for
biological sulphate reduction, RSM was used. It has been previously used in optimising numerous
environmental processes, having been determined to be superior in the extended optimisation of such
processes [18]. RSM is a collection of statistical methods for the design of an experiment involving
several variables, leading to peak system performance at minimal cost to establish the optimum
response [19,20]. Amongst the numerous RSM designs, there is the Box–Behnken design (BBD),
which is an efficient quadratic design where variable combinations are at the lower, centre and higher
levels, usually coded as −1, 0, and +1, respectively, to give a minimum number of experimental
runs. The centre points are used to calculate the experimental deviations [21,22]. Three operational
parameters (pH, COD/SO4

2−, and BW concentration) were designated as input variables, and the
sulphate removal efficiency after 120 h was the dependent parameter. The ranges of the variables
(pH and COD/SO4

2−) were determined based on the optimum values reported for most biological
sulphate-reducing systems [19,23]. The concentration of brewing wastewater was chosen based on the
exponential phase in substrate limitation of the SRB consortium. Design-Expert® software version 12
(Stat-Ease Inc., Minneapolis, MN, USA, 2019) was used for the design of experiments (DoE) and data
analysis. Seventeen points, comprising 5 centre points and 12 factorial points, were examined, and
bioreactors without inoculum served as controls at various specified conditions (see Table 2). A COD
meter and Multiparameter Bench Photometer HI 83,099 (Hanna Instruments Inc., Woonsocket, RI,
USA) were used to measure both the COD and sulphate concentration in the AMD samples. This was
done via a photometric chemical procedure that is based on the absorption of a compound using special
subminiature tungsten lamps and a narrow bandwidth from a specific chemical reaction between
the sample and reagents, so that high performance and reliable results can be guaranteed. Based on
the Lambert–Beer Law, the molar concentration of the sample can be estimated. All reagents were
of analytical grade. The COD and sulphate were measured using Hanna’s reagents HI 93754C-25
and HI 93751-01, respectively. All experiments were performed in triplicate, and the mean values of
experimental data were fitted into the following polynomial quadratic model (Y):

Y = βo +
∑

βixi +
∑

βiix2
ii +

∑
βi jxix j + ε, (2)

where xi, xj, and xii are independent coded factors; βo is the offset term; βi, βii, and βij are linear, square,
and interaction effects, respectively; and ε is the error.

Table 2. Design matrix with actual and predicted response values via response surface methodology
(RSM) and artificial neural network (ANN).

Run
Variables Sulphate Removal (%)

A B C Actual RSM Predicted ANN Predicted

1 1 1 0 77.80 80.56 79.27
2 −1 −1 0 30.70 27.94 29.40
3 0 1 −1 68.80 68.43 68.81
4 0 1 1 61.60 64.25 60.02
5 1 0 1 84.60 79.19 84.94
6 1 0 −1 87.90 85.51 87.58
7 −1 0 −1 25.70 31.11 25.63
8 0 0 0 51.62 51.62 51.95
9 0 0 0 51.62 51.62 51.93
10 −1 1 0 42.90 37.86 42.95
11 0 −1 1 63.50 63.88 63.21
12 0 0 0 51.62 51.62 51.93
13 0 0 0 51.62 51.62 51.93
14 −1 0 1 35.60 37.99 37.19
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Table 2. Cont.

Run
Variables Sulphate Removal (%)

A B C Actual RSM Predicted ANN Predicted

15 1 −1 0 75.80 80.84 75.82
16 0 0 0 51.62 51.62 51.93
17 0 −1 −1 61.80 59.15 62.08

ANN training set: normal numbers, ANN testing set: bold numbers.

2.6. Artificial Neural Network (ANN) Analysis

Neural Power (CPC-X Software, version 2.5, Carnegie, PA, USA, 2019) was used for the neural
network analysis in this study. This software is a Windows-based package that supports several types
of training algorithms. The optimum artificial neural network conditions reported by Betiku and
Taiwo [16] were used to predict the percentage of sulphate reduction in the treatment of South African
AMD. The ANN training algorithm chosen in the present study was a multilayer full feedforward
(MFFF) connection with an incremental backpropagation network and hyperbolic tangent (tanh) as the
transfer function. The ANN framework consisted of three input layers, three hidden neurons, and one
output layer, forming a 3-3-1 topology (Figure 1). After several trials, an optimal network topology,
with only one hidden layer, three hidden neurons with tanh as the transfer function, and an output layer
with Linear as the transfer function, was iteratively used in training the network. The neural network
was trained until the root-mean-square error (RMSE) was less than 0.0001, with the average correlation
coefficient (R2) and the average determination coefficient (DC) tending towards unity (1). Other ANN
parameters were chosen as the standard settings of the software. In this study, data generated from
the BBD (Table 1) were deployed in ANN model development. Experimental data sets from the
Box–Behnken design (BBD) were split into training and testing sets. The data were divided in a ratio
of 1 to 5 with training sets comprising 14 data sets (70%) and testing sets (30%) comprising 3 data
sets, making a total of 17 experimental runs. The details of all other conditions and techniques used
in the ANN analysis for prediction and optimisation in bioprocessing have been reported in detail
elsewhere [16].
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Figure 1. Artificial neural network (ANN) architecture for the estimation of sulphate reduction in the
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2.7. Appraisal of Artificial Neural Network Predictability

To measure the model fit for predictability in the ANN, it was necessary to do a controlled training
for estimation of the ANN output error between the actual and predicted outputs. Equations (3)–(6)
show the predictive measures used for the model evaluation: the mean squared error (MSE), root mean
square error (RMSE), R2, and absolute average deviation (AAD) [24]. The predicted and actual
responses are denoted yi and ydi, respectively. The number of the experimental runs is n, and ym is the
average of the experimental values. The network having minimum errors (MSE, RMSE, AAD) and R2

closest to unity was taken as the best neural network model [25–27].

MSE =
1
n

n∑
i=1

(
yi − ydi

)2
(3)

RMSE = MSE1/2 (4)

AAD =


 n∑

i=1

(∣∣∣yi − ydi
∣∣∣/ydi

)/n

 (5)

R2 = 1−
n∑

i=1

 (yi − ydi)
2

(ydi − ym)
2

 (6)

3. Results and Discussion

3.1. Effect of Carbon Substrate Limitation on the SRB Consortium

The SRB consortium’s growth increased with increasing substrate concentration up to a saturation
point of 0.3 g/L for both lactate and BW used as a carbon source. Nevertheless, the maximum biomass
growth in BW was greater than the growth in lactate (Figure 2). Although previous reports have shown
that lactate shows superior biomass growth when compared to other carbon sources, the scenario in
this study can be attributed to the several readily available reducible sugars in the BW for sustained
microbial growth [19,28]. Hence, BW was assessed as being important for its interaction and ability in
combination with other factors and environmental conditions in the optimisation of sulphate removal
in AMD.
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3.2. RSM Modelling: Box–Behnken Design

The result of individual factors and their interactive effects on the biological sulphate removal
is given in Table 2. The responses demonstrated random variations in the results measured that
indicated the effect of operational parameters on the SRB consortium’s metabolic activity and, perhaps,
process instability. The highest sulphate removal was observed at a factorial point (Run 6), at pH of 7,
COD/SO4

2− of 1.75, and BW of 200 mg/L, where sulphate removal of 87.9% from an initial sulphate
concentration of 8080 mg SO4

2−/L was observed 72 h after introducing the AMD. The residual sulphate
concentration of 978 mg SO4

2−/L was well below the discharge standard (1500 mg SO4
2−/L) for South

Africa. This is also within the range reported for sulphate reduction by diverse carbon sources in
Postgate medium, including cheese whey supplemented with calcite tailings, which resulted in 80%
sulphate removal [23,29]. Most of the peak performance (removal percent > 75%) corresponds to a
neutral pH, and the BW concentration was within the exponential phase of the consortium’s growth,
as shown in Figure 2. Studies have shown that optimum sulphate reduction can only be achieved when
the pH is >5 in an anaerobic environment [23,29]. Since the pH criterion was met, it created amiable
conditions for SRB activity, allowing consumption of the carbon source, i.e., BW and sulphate reduction.
However, some runs (2, 7, 10, and 14) displayed extremely low sulphate reduction, a confirmation of
slow microbial activity as a result of low-pH conditions.

Statistical analysis of the data was performed using analysis of variance (ANOVA) to assess the
significance of each variable in the model developed (Table 3). The quadratic polynomial model of
sulphate removal in terms of coded values was as follows:

Y = 51.62 + 23.9A + 2.41B + 0.14C− 0.15A2 + 5.33B2 + 6.89C2
− 2.55AB− 3.3AC− 2.23BC (7)

where A, B, and C are coded values for pH, COD/SO4
2−, and brewing wastewater concentration, respectively.

Table 3. ANOVA of the sulphate removal response quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 5048.90 9 560.99 26.12 0.0001 significant
A—pH 4569.68 1 4569.68 212.78 <0.0001 significant

B—COD/SO4 46.56 1 46.56 2.17 0.1844
C—BW 0.1512 1 0.1512 0.0070 0.9355

AB 26.01 1 26.01 1.21 0.3075
AC 43.56 1 43.56 2.03 0.1974
BC 19.80 1 19.80 0.9221 0.3689
A2 0.0916 1 0.0916 0.0043 0.9498
B2 119.50 1 119.50 5.56 0.0504
C2 204.99 1 204.99 9.55 0.0176 significant

Residual 150.33 7 21.48
Lack of Fit 150.33 3 50.11
Pure Error 0.0000 4 0.0000
Cor Total 5199.23 16

The R2 (0.9711), adjusted R2 (0.9339), predicted R2 (0.5374), and adequate precision (16.199), including the low
standard deviation (4.63). “Prob > F” of less than 0.05 indicated model terms that were significant, with any values
greater than 0.1 indicating model terms that were not significant.

Similarly, the coefficient of interaction was estimated from the mean of the two confidence
levels. Since the predicted R2 was not close to the adjusted R2, a model reduction was considered,
i.e., removal of terms with p-values of >0.1, to improve the model to the following:

Y = 51.62 + 23.9A + 5.33B2 + 6.89C2. (8)
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The p-value and the F-value of 26.12 implied that the model was significantly relevant, and there
was only a 0.01% probability that an F-value this large could occur due to noise. The R2 further showed
the precision of the fitted model to the data, as a model with R2 > 0.8 is considered to be well fitted to
the experimental data [30]. In this study, the R2 of 0.9711 implies that 97% of variations in the predicted
and actual values are clarified by the model. This indicated the applicability and accuracy of the
model for forecasting biological sulphate removal using BW. The adequate precision ratio of 16.199 is a
sufficient signal that can be used to explore the design space in this model. The non-significance of the
F-value of lack of fit further supported the suitability of the model. The diagnostic investigation of
the model showed a normal distribution of errors, shown in Figure 3a, with an average value of zero.
Similarly, a study of the residual showed evenly distributed scatters above and below the horizontal
axis, validating the sufficiency of the model (Figure 3b). Also, the plot of predicted values against the
actual experimental value showed clustering of points around the diagonal line, an indication of the
high correlation and robustness of the model (Figure 3c). To validate the model, a plot of the standard
error in sulphate removal as a function of the pH and COD/SO4

2− is shown in Figure 3d. The shape of
the standard error plot was well fitted on the design points, as well as presenting symmetrical shapes
and circular contours around the centre point, signifying ideal conditions. The standard error value
around the centre point was 0.5 and increased away from the optimisation point.
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3.3. Graphical Representation of the Model

The effects of changes in all the three variables on sulphate removal are shown in the perturbation
diagram (Figure 4a). The effect of Parameter A on sulphate removal was shown to be close to linear
and deviate farther from the centre point, though predictably. The influence of Parameters B and C is
non-linear, and their values are similar and of the same order of magnitude; however, the effect of
Parameter C is more notable in lower values. Besides this, for ease of clarification of these results and
the forecasting of optimal conditions, 3-D plots of the system response were analysed by comparing any
two factors while keeping the third factor constant, which allowed for the analysis of any interactive
effects the three independent factors have on the system’s response. For the pairs involving pH,
the sulphate removal increased with increasing pH value, while for the two other factors, sulphate
removal increased away from the centre point (Figure 4b–d). The pair pH and BW at constant
COD/SO4

2− resulted in the highest sulphate removal.
In certain instances, RSM was determined to have a lesser prediction ability of biologics, with ANN

models presenting higher predictive coefficient of determination and minor RMSE and mean absolute
deviation (MAD), thus having a higher model resolution than RSM [31]. Therefore, ANN analysis
of sulphate reduction is warranted, particularly if BW in AMD remediation is to be used on an
industrial scale.
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3.4. Artificial Neural Network Analysis of Sulphate Reduction Using Brewery Wastewater

The multilayer full feedforward (MFFF) interaction with an incremental backpropagation network
and hyperbolic tangent (tanh) as the transfer function used for the ANN modelling proved to be
effective, with the coefficient of determination being close to unity. ANN analysis showed that the
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percentages of controlled variable contributions for sulphate removal in the treatment of the South
African AMD were 44.3, 32.09, and 23.61%, for BW, pH, and COD/SO4

2−, respectively. This shows
that BW was the most impactful variable in the experimental studies. Table 4 shows that all the
error measurements (MSE, RMSE, and AAD) for both the training and testing datasets were less than
1, while R2 for the model fitness neared unity for both datasets. A comparison of the actual and
predicted values showed the competency of the ANN in the prediction of unknown data [16] (Figure 5).
This suggests that the model generated by the ANN can sufficiently explain the relationship between
the operating parameters and sulphate reduction.

Table 4. ANN model predictive measurements for model fit in the training and testing sets.

ANN Model Predictive Tool Training Set Testing Set

MSE 0.53 0.76
RMSE 0.73 0.87
AAD 0.011 0.0093

R2 0.99 0.99
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3.5. Optimum Comparison of RSM and ANN

For RSM, numerical analysis in Design-Expert® version 12 software was deployed for the
optimisation of the sulphate removal. Independent variables COD/SO4

2− and BW were set within range,
with pH being set between 5 and 7 for a maximum outcome, i.e., sulphate removal. Design-Expert®

generated a set of 89 solutions that matched the criteria from most to least desirable. The optimum
point with maximum sulphate reduction of 91.59% was found at a pH of 6.99 (which is within the
South African discharge standards), COD/SO4

2− of 2.874, and BW concentration of 200.24 mg/L.
The experiment conducted at this optimum culminated in the reduction of the sulphate concentration
by 90%.

Table 5 shows the statistical tool used in model evaluation between the actual and predictive
data sets for both RSM and ANN. Although both models performed well with respect to the R2

and AAD values, with stable responses, the ANN-based approach was superior in terms of data
estimation and fitting when MSE and RMSE were considered. This was also confirmed by the parity
plots between the predicted and actual values (Figure 5). Genetic optimisation (GA) was used as the
optimal algorithm in the ANN analysis, while RSM optimisation was carried out as embedded in
the BBD design. The optimal results, presented also in Table 5, show about a 2% difference in the
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percentage of sulphate reduction in RSM when compared to the ANN. However, it is worth noting
that there was a 2% decrease in the optimal value of COD/SO4

2− in the ANN optimisation variables.

Table 5. Statistical measurement of the RSM and ANN data sets for model fitting.

Statistical Tool RSM Whole Data Set ANN Whole Data Set Optimisation Variable RSM ANN

MSE 8.84 0.57 Sulphate reduction (%) 91.59 89.56
RMSE 2.97 0.75 pH 6.99 6.99
AAD 0.046 0.011 COD/SO4

2− 2.87 0.50
R2 0.97 0.99 BW (mg/L) 200.24 200.31

3.6. Overall Effect of Individual Parameters

The effect of pH can be seen in both Table 3 and Figure 4. An increase in pH increased the sulphate
removal efficiency, and the maximum removal rate was observed at pH around 7. This aligns with the
available data in the literature showing that most SRB grow optimally at pH values between 6 and
8 [29,32], as a reduced level of removal was observed in low pH. This may be attributed to acidotolerant
and acidophilic SRB that have been reported [33–35], which made it possible to treat AMD without
prior neutralisation. Similarly, at low pH, there are more protons than at neutral pH, which causes
diffusion pressure on the cell membrane due to higher Gibbs free energy at low pH during sulphate
reduction; hence, growth can be achieved at low pH [36]. However, a higher retention time is required
to achieve substantial sulphate removal at low pH.

The COD/SO4
2− plays a major role in the oxidation–reduction reactions during sulphate removal.

The SRB oxidise the BW, and the released electron is used to reduce the sulphate. Hence, the number
of electrons transferred between the two reactions determines the sulphate removal efficiency [37].
In this study, the sulphate removal increased away from the centre point for both COD/SO4

2− and
BW. Although there are reports that have indicated that COD/SO4

2− should not be greater than
2.72 to prevent methanogenic activity [38,39], sodium bromoethane sulphonate was added to the
reactor, and the COD/SO4

2− corresponding to optimum sulphate reduction in this study was 1.75.
Since the carbon source determines bacterial proliferation, irrespective of the carbon source selected,
the minimum amount of organic compound needed for reducing sulphate should be a little more than
the theoretical stoichiometric ratio since a portion of the energy dissipates into microbial maintenance
and growth [40]. The BW amount (carbon source) for optimum sulphate reduction in this study was
200 mg/L.

4. Conclusions

The SRB consortium growth on BW containing Postgate medium showed that BW is a suitable
carbon source that can be deployed in a system designed for environmental remediation of AMD
and the recovery of such water for other purposes. The analysis of response from Box–Behnken RSM
showed that pH is the most significant factor, while ANN analysis indicated carbon source (BW) as
the most significant factor. The optimised conditions for BBD in RSM were pH of 6.99, COD/SO4

2−

of 2.87, and BW concentration of 200.24 mg/L with sulphate reduction of 91.58%, while those for
ANN were pH of 6.99, COD/SO4

2− of 0.50, and BW concentration of 200.31 with sulphate reduction
of 89.56%. The performance of both models was very good with respect to the R2 and AAD values,
with stable responses; nonetheless, the ANN-based approach was superior in terms of data estimation
and fitting. The residual sulphate concentration (680 mg SO4

2−/L) of the optimised conditions is within
the discharge limit in South Africa. This study recognises that BW could function as a suitable feedstock
in biological sulphate reduction in South Africa and in semi-arid regions with high BW production
and AMD challenges.
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