Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Sorption Experiments
2.3. Effect of pH
2.4. Effect of Solid/Liquid Ratio
2.5. Effect of Initial Concentration
2.6. Effect of Contact Time
2.7. Leaching Experiments
2.8. Calculation of Characteristic Parameters
2.9. Modeling of Kinetic Data
3. Results and Discussion
3.1. Effect of pH
3.2. Effect of S/L Ratio
3.3. Effect of Contact Time
3.4. Effect of Initial Concentration
3.5. Leaching Properties of the Mercury Saturated Zeolites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Garcia Bravo, A.; Lagerkvist, A.; Bertilsson, S.; Sjöblom, R.; Kumpiene, J. Sources and remediation tehniques for mercury contaminated soil, review. Environ. Int. 2015, 74, 42–53. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.N.; Xing, Y.; Shang, L. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221–222, 1–18. [Google Scholar] [CrossRef]
- Han, C.; Wang, W.; Xie, F. Study of the leaching of mercuric oxide with thiosulfate solutions. Metals 2016, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Tejada Tovar, C.; Villabona Ortiz, Á.; Garcés Jaraba, L.E. Kinetic and adsorption mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) waste modified with citric acid. Ing. Univ. Bogotá (Columbia) 2015, 19, 283–298. [Google Scholar]
- Davis, A.; Bloom, N.S.; Quee He, S.S. The environmental geochemistry and bioaccessibility of mercury in soils and sediments: A review. Risk Anal. 1997, 17, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.; Da’ana, D.; Abu-Dieyeh, M.; Khraisheh, M. Adsorptive removal of mercury from water by adsorbents derived from daze pits. Sci. Rep. 2019, 9, 15327–15340. [Google Scholar] [CrossRef] [Green Version]
- Mayas, D.C.; Scheibe, T.D. Groundwater contamination, subsurface processes, and remediation methods: Overview of the special issue of Water on Groundwater contamination and remediation. Water 2018, 10, 1708. [Google Scholar] [CrossRef] [Green Version]
- Robles, I.; Lakatos, J.; Scharek, P.; Planck, Z.; Hernández, G.; Solís, S.; Bustos, E. Characterization and remediation of soils and sediments polluted with mercury: Occurrence, transformations, environmental considerations and San Joaquin’s Sierra Gorda Case. In Environmental Risk Assessment of Soil Contamination; Hernandez Soriano, M.C., Ed.; IntechOpen: New York, NY, USA, 2014; pp. 827–850. [Google Scholar] [CrossRef] [Green Version]
- Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008, 14, 145–156. [Google Scholar] [CrossRef]
- Silva, H.S.; Ruiz, S.V.; Granados, D.L.; Santángelo, J.M. Adsorption of mercury(II) from liquid solutions using modified activated carbons. Mater. Res. 2010, 12, 129–134. [Google Scholar] [CrossRef]
- Xia, M.; Chen, Z.; Li, Y.; Li, C.; Ahmad, M.N.; Cheema, W.A.; Zhu, S. Removal of Hg(II) in aqueous solutions through physical and chemical adsorption principles, review. RSC Adv. 2019, 9, 20941–20953. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Shi, W.; Shao, H.; Li, H.; Shao, M.; Du, S. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater. 2009, 170, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Misealidis, P. Application of natural zeolites in environmental remediation: A short review. Microp. Mesopor. Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Awad, F.S.; AbouZied, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; El-Shall, M.S. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. 2020, 13, 2659–2670. [Google Scholar] [CrossRef]
- Doula, M.K. Removal of Mn2+ ions from drinking water by using Clinoptilolite and a Clinoptilolite-Fe oxide system. Water Res. 2006, 40, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Dimirkou, A. Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite. Case study of heavily drinking water samples. Water Res. 2007, 41, 2763–2773. [Google Scholar] [CrossRef]
- Doula, M.K. Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity. Chemosphere 2007, 67, 731–740. [Google Scholar] [CrossRef]
- Han, R.; Zou, L.; Zhao, X.; Xu, Y.; Xu, F.; Li, Y.; Wang, Y. Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem. Eng. J. 2009, 149, 123–131. [Google Scholar] [CrossRef]
- Kragović, M.; Daković, A.; Sekulić, Ž.; Trgo, M.; Ugrina, M.; Perić, J.; Gatta, G.D. Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite. Appl. Surf. Sci. 2012, 258, 3667–3673. [Google Scholar] [CrossRef]
- Ugrina, M.; Vukojević Medvidović, N.; Daković, A. Characterization and environmental application of iron-modified zeolite from the Zlatokop deposit. Desalin. Water Treat. 2015, 53, 3557–3569. [Google Scholar] [CrossRef]
- Chojancki, A.; Chojancka, K.; Hoffmann, J.; Górecki, H. The application of natural zeolites for mercury removal: From laboratory tests to industrial scale. Miner. Eng. 2004, 17, 933–937. [Google Scholar] [CrossRef]
- Gebremedhin-Haile, T.; Olguín, M.T.; Solache-Ríos, M. Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Pollut. 2003, 148, 179–200. [Google Scholar] [CrossRef]
- Misealides, P.; Godelitsas, A. Removal of heavy metals from aqueous solutions using pretreated natural zeolitic materials: The case of mercury(II). Toxicol. Environ. Chem. 1995, 51, 21–29. [Google Scholar] [CrossRef]
- Doušová, B.; Grygar, T.; Martaus, A.; Fuitová, L.; Koloušek, D.; Machovič, V. Sorption of AsV on aluminosilicates treated with FeII nanoparticles. J. Colloid Interface Sci. 2006, 302, 424–431. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Cation-Exchange Capacity of Soils (Ammonium Acetate): Test Methods for Evaluating Solid Waste. SW-846, Method 9080; US EPA, Office of Solid Waste and Emergency Response: Washington, DC, USA, 1986.
- DIN 38414 S4 German Standard Procedure for Water, Wastewater and Sediment Testing—SLUdge and Sediment. Determination of Leachability; Institute Institut für Normung: Berlin, Germany, 1984.
- Kumar Vasanth, K. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. B 2006, 137, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Gaur, J.P. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a phormidium sp.-dominated cyanobacterial mat. Bioresour. Technol. 2011, 102, 633–640. [Google Scholar] [CrossRef]
- Bangham, D.H.; Sever, V. An experimental investigation of the dynamical equation of the process of gass-sorption. Philos. Mag. 1925, 49, 935–944. [Google Scholar] [CrossRef]
- Helferich, F. Ion Exchange; Mc Graw-Hill Inc.: New York, NY, USA, 1962; pp. 250–322. [Google Scholar]
- Apiratikul, R.; Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 2008, 144, 245–258. [Google Scholar] [CrossRef]
- Wilczak, A.; Keinath, T.M. Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon. Water Environ. Res. 1993, 65, 238–244. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insight into the modelling of adsorption isotherm systems, review. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. B1 2006, 33, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Nazarenko, V.A.; Antonovich, V.P.; Nevskaja, E.M. Metal Ions Hydrolysis in Dilute Solutions; Atomizad: Moscow, Russia, 1979; pp. 34–47. [Google Scholar]
- Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. Chemical speciation of environmentally significant heavy metals with inorganic ligands part 1: The Hg2+– Cl−, OH−, CO32−, SO42−, and PO43− aqueous systems. Pure Appl. Chem. 2005, 77, 739–800. [Google Scholar] [CrossRef] [Green Version]
- Minceva, M.; Fajagar, R.; Markovska, L.; Meshko, V. Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. Equilibrium and adsorption. Sep. Sci. Technol. 2008, 43, 2117–2143. [Google Scholar] [CrossRef]
- Strumm, W.; Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1996; pp. 533–573. [Google Scholar]
- Chai, L.; Wang, Q.; Wang, Y.; Li, Q.; Yang, Z.; Shu, Y. Thermodynamic study on reaction path of Hg(II) with S(II) in solution. J. Cent. South Univ. Technol. 2010, 17, 289–294. [Google Scholar] [CrossRef]
- Lu, X.; Huangfu, X.; Ma, J. Removal of trace mercury(II) from aqueous solution by in situ formed Mn-Fe(hydro)oxides. J. Hazard. Mater. 2014, 280, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Misealides, P.; Godelitsas, A.; Charistos, V.; Ioannou, D.; Charistos, D. Heavy metal uptake by zeoliferous rocks from Metaxades, Thrace, Greece: An exploratory study. J. Radioanal. Nucl. Chem. 1994, 183, 159–166. [Google Scholar] [CrossRef]
Kinetic Model | Parameters | NZ | FeZ |
qe (mmol/g) | 0.277 | 0.534 | |
Pseudo-first-order model (PFO) | qm (mmol/g) | 0.248 | 0.488 |
k1 (1/min) | 0.016 | 0.025 | |
r2 | 0.945 | 0.943 | |
RMSE | 0.019 | 0.046 | |
χ2 | 2.205 × 10−3 | 4.358 × 10−3 | |
Pseudo-second-order model (PSO) | qm (mmol/g) | 0.268 | 0.526 |
k2 [g/(mmol∙min)] | 0.073 | 0.064 | |
r2 | 0.981 | 0.982 | |
RMSE | 0.014 | 0.025 | |
χ2 | 6.697 × 10−4 | 6.923 × 10−4 | |
Bangham model | α | 0.300 | 0.275 |
kb | 0.005 | 0.012 | |
r2 | 0.974 | 0.970 | |
RMSE | 0.015 | 0.032 | |
χ2 | 1.060 × 10−3 | 4.225 × 10−3 | |
Vermeulen’s approximation | qm (mmol/g) | 0.277 | 0.534 |
Di × 107 (cm2/min) | 5.391 | 9.532 | |
r2 | 0.993 | 0.993 | |
RMSE | 0.185 | 0.387 | |
χ2 | 12.102 × 10−2 | 10.102 × 10−2 | |
Weber–Morris intra-particle diffusion model | kWM1 [mmol/(g∙min1/2)] | 0.017 | 0.034 |
Di1 × 107 (cm2/min) | 4.165 | 4.632 | |
I (mmol/g) | 0.087 | 0.056 | |
RC (%) | 3.140 | 10.426 | |
R2 | 0.973 | 0.984 | |
kWM2 [mmol/(g∙min1/2)] | 0.007 | 0.008 | |
Di2 × 108 (cm2/min) | 5.879 | 2.642 | |
R2 | 0.986 | 0.960 | |
Double-exponential model | qm (mmol/g) | 0.277 | 0.526 |
kB1 × 103 (1/min) | 59.000 | 127.000 | |
B1 (mmol/L) | 1.006 | 1.997 | |
kB2 × 103 (1/min) | 3.738 | 6.644 | |
B2 (mmol/L) | 1.683 | 3.212 | |
r1 × 103 [mmol/(g∙min)] | 214.000 | 501.000 | |
r2 × 103 [mmol/(g∙min1/2)] | 1.356 | 3.768 | |
r × 103 [mmol/(g∙min1/2)] | 215.356 | 504.768 | |
RF (%) | 31.41 | 38.34 | |
SF (%) | 62.59 | 61.66 | |
r2 | 0.994 | 0.996 | |
RMSE | 0.007 | 0.011 | |
χ2 | 7.194 × 10−6 | 1.306 × 10−4 |
Element | O | Na | Mg | Al | Si | K | Ca | Fe | Hg |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | 55.71 | - | 0.48 | 5.13 | 28.52 | 0.64 | 1.23 | 0.40 | 7.89 |
Sp 2 | 52.48 | 0.35 | 0.48 | 5.29 | 30.35 | 0.72 | 1.52 | 0.60 | 8.20 |
Sp 3 | 47.42 | - | 0.40 | 7.19 | 34.46 | 0.74 | 2.09 | - | 7.69 |
Sp 4 | 53.06 | - | 0.55 | 4.46 | 21.54 | 0.51 | 0.95 | 10.85 | 7.63 |
Sp 5 | 48.02 | - | - | 7.94 | 33.17 | 0.85 | 2.27 | - | 7.74 |
Sp 6 | 49.88 | - | 0.43 | 5.63 | 32.07 | 1.11 | 1.96 | - | 8.93 |
Sp 7 | 55.74 | - | 0.56 | 5.21 | 28.00 | 0.70 | 1.40 | 0.40 | 8.00 |
Sp 8 | 56.73 | - | 0.46 | 4.69 | 30.05 | 0.59 | 1.14 | - | 6.35 |
Sp 9 | 49.45 | - | 0.58 | 6.05 | 32.00 | 0.76 | 2.11 | - | 9.05 |
Mean | 52.05 | 0.12 | 0.49 | 5.73 | 30.02 | 0.74 | 1.63 | 1.36 | 7.94 |
Element | O | Na | Mg | Al | Si | K | Ca | Fe | Hg |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | 48.92 | 0.37 | 0.38 | 4.95 | 27.84 | 0.60 | 0.75 | 1.87 | 14.32 |
Sp 2 | 53.39 | 0.33 | 0.46 | 4.91 | 25.95 | 0.48 | 0.56 | 0.55 | 13.37 |
Sp 3 | 48.62 | - | 0.43 | 5.62 | 28.10 | 0.66 | 0.66 | 0.77 | 15.15 |
Sp 4 | 44.68 | - | 0.33 | 5.65 | 30.42 | 0.76 | 0.75 | 0.81 | 16.59 |
Sp 5 | 48.98 | - | 0.39 | 4.59 | 25.98 | 0.62 | 0.46 | 5.02 | 13.60 |
Sp 6 | 49.14 | - | 0.30 | 3.46 | 21.18 | 0.44 | 0.36 | 15.11 | 9.72 |
Sp 7 | 54.86 | 1.30 | - | 4.14 | 24.37 | 0.33 | 1.61 | 0.80 | 12.60 |
Sp 8 | 48.26 | - | 0.32 | 5.29 | 31.67 | 0.48 | 0.82 | 1.35 | 11.83 |
Mean | 49.61 | 0.25 | 0.33 | 4.83 | 26.94 | 0.55 | 0.75 | 3.29 | 13.40 |
Spectrum | O | Mg | Al | Si | K | Ca | Hg |
---|---|---|---|---|---|---|---|
Sp 1 | 13.91 | - | - | 4.92 | - | - | 81.16 |
Sp 2 | 16.15 | - | 0.37 | 4.91 | - | - | 77.20 |
Sp 3 | 56.55 | 0.71 | 5.48 | 28.95 | 0.48 | 1.44 | 6.39 |
Mean | 28.87 | 0.24 | 2.20 | 38.78 | 0.16 | 0.48 | 54.92 |
Spectrum | O | Mg | Al | Si | K | Ca | Fe | Hg |
---|---|---|---|---|---|---|---|---|
Sp 1 | 25.79 | - | 1.01 | 5.32 | - | - | 2.49 | 64.73 |
Sp 2 | 23.37 | - | 0.96 | 4.26 | - | - | 1.85 | 69.56 |
Sp 3 | 49.51 | 0.48 | 2.72 | 20.97 | 0.36 | 0.28 | 10.74 | 12.93 |
Mean | 32.89 | 0.16 | 1.56 | 10.18 | 0.12 | 0.09 | 5.03 | 49.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrina, M.; Čeru, T.; Nuić, I.; Trgo, M. Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite. Processes 2020, 8, 1523. https://doi.org/10.3390/pr8111523
Ugrina M, Čeru T, Nuić I, Trgo M. Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite. Processes. 2020; 8(11):1523. https://doi.org/10.3390/pr8111523
Chicago/Turabian StyleUgrina, Marin, Teja Čeru, Ivona Nuić, and Marina Trgo. 2020. "Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite" Processes 8, no. 11: 1523. https://doi.org/10.3390/pr8111523
APA StyleUgrina, M., Čeru, T., Nuić, I., & Trgo, M. (2020). Comparative Study of Mercury(II) Removal from Aqueous Solutions onto Natural and Iron-Modified Clinoptilolite Rich Zeolite. Processes, 8(11), 1523. https://doi.org/10.3390/pr8111523