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Abstract: This study investigates the use of a non-linear autoregressive exogenous neural network
(NARX) model to investigate the nexus between energy usability, economic indicators, and carbon
dioxide (CO2) emissions in four Association of South East Asian Nations (ASEAN), namely Malaysia,
Thailand, Indonesia, and the Philippines. Optimized NARX model architectures of 5-29-1, 5-19-1,
5-17-1, 5-13-1 representing the input nodes, hidden neurons and the output units were obtained from
the series of models configured. Based on the relationship between the input variables, CO2 emissions
were predicted with a high correlation coefficient (R) > 0.9. and low mean square errors (MSE)
of 3.92 × 10−21, 4.15 × 10−23, 2.02 × 10−19, 1.32 × 10−20 for Malaysia, Thailand, Indonesia, and the
Philippines, respectively. Coal consumption has the highest level of influence on CO2 emissions in
the four ASEAN countries based on the sensitivity analysis. These findings suggest that government
policies in the four ASEAN countries should be more intensified on strategies to reduce CO2 emissions
in relationship with the energy and economic indicators.

Keywords: ASEAN; CO2 emissions; energy consumption; economic indicator; gross domestic product;
NARX neural network

1. Introduction

In the past three decades, there has been rapid urbanization and industrialization among the
Association of Southeast Asian Nations (ASEAN), which invariably has translated to economic growths,
and high energy demand and consumption [1]. The increasing energy demand amongst the ASEAN
countries is often meet with energy derived from fossil sources most especially coal, natural gas,
and oil [1,2]. The share of coal in the energy mix of ASEAN has been on the rise and has been projected
to continue to increase in a long time [3,4]. Recent energy outlook by the international energy agency
revealed that the rising fuel demands among Southeast Asian countries have surpassed the regional
production hence, the possibility of becoming a net importer of fuel [5]. Although, the high energy
demand is seen as the powerhouse that drives industrial and economic activities within the region,
and it often comes with the cost of high carbon dioxide (CO2) emissions [6]. As shown in Figure 1,
the increase in economic indicators and energy demand also translated into energy-related CO2

emissions. To this effect, several energy economists have investigated the relationship between CO2

emissions, economic growth and energy consumption, as summarized in Table 1. Proper understanding
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of this relationship would help in finding lasting solutions to the age-long dilemma of sustainable
economic growth and environmental pollution.
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emissions [5].

In the last one-decade various modelling techniques have been employed to investigate
the causal relationship between CO2 emissions, economic indicators, and energy consumption
in various countries [7–10]. Modelling techniques, such as panel quantile regression approach,
Simultaneous Equation Modelling, system of simultaneous equations using seemingly unrelated
regression, and Cointegration-Vector Error Correction Modelling have been widely applied.
Zhu et al. [11] and Heidari et al. [12] employed panel quantile regression model to investigate the
effect of foreign direct investment (FDI), economic growth, and energy consumption on CO2 emissions
in Malaysia, Philippines, Indonesia, Malaysia, Singapore, and Malaysia. The study revealed that
FDI, economic growth, and energy consumption have a heterogeneous effect on CO2 emissions.
However, the level of importance of the input variables, as well as the prediction of the CO2 emissions,
based on the variables, could not be ascertained using the panel quantile regression model. In a recent
study, Salman et al. [13] also employed panel quantile regression for modeling the impact of export
and import on carbon emissions in seven ASEAN countries namely Brunei, Indonesia, Malaysia,
Philippines, Singapore, Thailand, and Vietnam. Using datasets between 1990–2017, the study revealed
that CO2 emissions in the seven ASEAN countries were significantly influenced by export and import.
Besides export and import, the authors reported that CO2 emissions increased by population size and
energy intensity. However, the extent of influence and the level of importance of these variables were
not reported. Also, the technique could not predict CO2 emissions based on the non-linear relationship
between the variables.

Beside panel quantile regression, other modelling techniques that have been employed in
investigating relationship between CO2 emissions, economic indicator, and energy consumption
include Cointegration and Vector Error Correction Model [14], Auto-Regressive Integrated Moving
Average (ARIMA) and Simple Exponential Smoothing Models [15], Autoregressive Distributive Lag
(ARDL) model [16], Linear regression [17], Backpropagation neural network [17], non-linear dynamic
neural network [17], and Simultaneous Equation Models [18]. These techniques were effective in
explaining the causal relationship between CO2 emissions and the various input variables investigated.
However, one major shortcoming of these techniques is their inability to accurately predict CO2

emissions based on the various input variables and their level of importance on the prediction,
due to the non-linear relationship that exists between them. This shortcoming can be overcome
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using the nonlinear autoregressive networks with exogenous input (NARX) [17]. The NARX model
is a time series recurrent dynamic feedback neural networks that have the capability to model the
interrelation between input and output variable for prediction purposes [19]. Moreover, the level
of importance of these variables could also be determined using the vector weights that connect
the input variables with the output [20]. Xu et al. [17] employed NARX technique to model the
prediction of CO2 emissions peak in China. Using datasets from 1978–2016, the study revealed that
the NARX model was robust in predicting the CO2 emissions in China with GDP having the highest
level of influence based on the sensitivity analysis. To the best of the authors’ knowledge, the use of
NARX model for predictive modeling and to investigate the nonlinear relationship between economic
indicators, energy consumptions and CO2 emissions in ASEAN countries such as Malaysia, Thailand,
Indonesia and the Philippines have not reported in the literature. This study is aimed at employing the
NARX techniques for modelling the prediction of CO2 emissions in Malaysia, Thailand, Indonesia and
Philippines based on the nonlinear relationship that exist between them and to determine the level of
importance of the prediction.

Table 1. Summary of literature on modelling of CO2 emissions.

Countries Investigated Methods Variables Reference

ASEAN (Malaysia,
Thailand, Indonesia and

the Philippines)

Autoregressive Exogenous
Neural Network Modeling

Energy Consumption per
capita, Population,

GDP per capita
This study

ASEAN (Brunei,
Indonesia, Malaysia,

Philippines, Singapore,
Thailand, Vietnam)

Panel quantile
regression approach Export and Import [13]

Indonesia Cointegration and Vector Error
Correction Model

Energy Consumption, GDP,
House Expenditure [14]

Asian countries (Japan,
Bangladesh, China,
Pakistan, India, Sri

Lanka, Iran, Singapore,
and Nepal)

Auto-Regressive Integrated
Moving Average (ARIMA) and

Simple Exponential
Smoothing Models

Heat and electricity,
manufacturing industries,

residential and commercial
buildings, transport

[15]

Asia countries Autoregressive Distributive
Lag model. Fossil fuel, FDI, GDP [16]

China

Linear regression,
Backpropagation neural

network, non-linear dynamic
neural network

GDP, total population,
urbanization rate, total energy

consumption, percentage of
coal consumption, percentage

of non-fossil consumption

[17]

Mediterranean countries
System of simultaneous

equations using seemingly
unrelated regression.

Research and Development
Stocks, GDP.

Electricity Consumption,
[18]

Croatia Environmental Kuznets Curve
(EKC) model GDP [18]

ASEAN (Malaysia,
Indonesia, Philippines,

Singapore, and Thailand)
Panel quantile regression model Foreign Direct Investment,

GDP, Energy Consumption [11]

ASEAN (Malaysia,
Indonesia, Philippines,

Singapore, and Thailand)

Panel smooth transition
regression model

Energy Consumption
and GDP [12]

India Directed acyclic graphs
Energy Consumption, GDP,

fixed capita formation,
and Trade openness

[21]

Middle East, North
Africa and Sub-Sahara

Africa
Simultaneous Equation Models Foreign direct investment, [22]

China System Dynamic Modelling Energy Consumptions [23]

Russia Environmental Kuznets Curve
(EKC) model

Energy Consumptions
and GDP [24]

India System Dynamic Modelling Energy Consumption
and GDP [25]

Turkey
autoregressive distributed lag

bounds testing approach
of cointegration

Energy consumption and
economic indicator [26]
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2. Materials and Methods

2.1. Data Description

The variables used in this study for the NARX modelling were carefully selected based on
previous literature summarized in Table 1. The CO2 emissions as a function of kg per $US of
GDP, energy consumption per capita measured in kWh, GDP per capita (current $US), population,
oil consumption, coal consumption, were annual data from 1965–2018 obtained from World Bank
Open database and British Petroleum energy database. The CO2 emission (kg per 2010 $US of GDP)
represents the CO2 emissions from industrial and human activities in the utilization of fossil fuel.
The energy consumption per capita, which is one of the fundamental markers of economic development
of any country, explains energy utilization by an individual per year. The causal relationship between
energy consumption, CO2 emissions and economic growth has been investigated by several authors
using various modelling techniques as shown in Table 1. The annual coal consumption is the amount of
coal required for electricity generation. The rapid industrialization of the four ASIAN countries requires
high energy demand which heavily dependent on coal. Liu et al. [27] employed coal consumption
as one of the variables in the scenario analysis of energy consumption and CO2 emission in China
using system dynamic model. Similarly, Chandran Govindaraju and Tang [28] also investigated the
dynamic link between CO2 emissions, coal consumption and economic growth in China and India.
Oil consumption is the amount of crude oil utilized for refining purposes. There has been a steady
increase in oil consumption in the four ASEAN countries over the years. The GDP per capita is an
indicator of a country’s economic growth as a function of the population. Over the years, the GDP
per capita of the four ASEAN countries has increased steadily. This could be attributed to the rapid
industrialization and economic growth of the region.

2.2. The NARX Neural Network Modelling

Artificial Neural Networks are biological system inspired learning models comprised of inbuilt
algorithms with a number of interlinked neurons between the input and the output [29]. The network
usually receives input signals which are transformed to output signals. The NARX is a time series
feedback artificial neural networks represented in Equation (1) [30]. It comprises interconnected
feedback synaptic and delays that provides a flow of signals between the neurons [31]. The major
advantage of the NARX as a robust time-series modeling technique is the significance of the delay that
supply the precise historical information of a set of data at the current moment and the feedback loop
that help to filter the historical data thereby allowing for the prediction of more accurate output [32].
The model architecture of the NARX neural network is depicted in Figure 2. It consists of the input,
hidden and output layers connected by artificial neurons. The artificial neurons execute certain actions
on the input signals as shown in Equation (2). In Equation (2), the hidden nodes are estimated in terms
of the weights of the paths associated with the input nodes and the bias path which is a component of
the back-propagation algorithm [33]. The configuration makes use of the past and present values of
u(t) as well as the actual past values of y(t) for the prediction of y(t + 1). The multilayer perceptron
topology which is a feedforward backpropagation network is often adopted in the training of the
NARX [34]. The training entails the adjustment of the weights in such as a manner that the errors
between the actual and the predicted values are minimized [35]. These errors are usually measured as
mean square error (MSE) defined in Equation (2) [36]. The robustness of the NARX predictive models is
measured using the coefficient of correlation (R) represented in Equation (3). The model development
was performed using the Neural Network toolbox in MATLAB version 2019 a (MathWorks Inc.),

y(t) = f
(
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
, u(t− 2), . . . , u(t− du)

)
(1)
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where y(t) = depicts the output of the NARX model and u(t) depicts the input of the NARX model.

MSE =
1
n

n∑
i−i

(yi − ŷi)
2 (2)

R =
n
∑

yi ŷi − (
∑

yi)(
∑

ŷi)√
(n

∑
yi2 − (

∑
yi)2)((n

∑
ŷi2 − (

∑
ŷi)2)

(3)

where n, yi,. ŷi, are the number of observed variables, the observed outputs, and the predicted
output, respectively.
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In Equation (1) each of the successive output signals (y(t)) is regressed on the preceding value of
the (y(t)) and the values of an exogenous input signal as shown in Equation (4).

ϑ =
∑

k

wkxk + b (4)

where ϑ, wk, xk, b, θ are the neurons’ output, the weight factor, kth input, the activation function and
the bias. The sigmoid activation function represented in Equation (5) is often employed in predictive
modeling due to it smoothen effect:

θ =
1

1 + exp−ϑ
(5)

2.3. Sensitivity Analysis of the Input Variables

The sensitivity analysis to determine the level importance (ρiz). of the input variables on the
CO2 emission per capita was determined using modified Garson’s algorithm represented in Equation
(6) [33,37]. The algorithm involves the partitioning of the connected weights of the hidden-output
neurons within the NARX network into elements associated with each input neurons. The relative
predictive importance of the input variables is revealed by the connection weights in the paths of each
of the input nodes the corresponding output nodes [33],

ρiz =

∑i
k=1

∣∣∣ωikv jz
∣∣∣/ ∑i

x=1

∣∣∣ωxj
∣∣∣∑n

i=1
∑i

k=1

∣∣∣ωikv jz
∣∣∣/ ∑i

x=1

∣∣∣ωxj
∣∣∣ (6)



Processes 2020, 8, 1529 6 of 20

where ωik, depicts the weight between ith input and jth hidden unit; v jz signifies the weight between
the jth hidden unit and the zth output while x is the number of hidden neurons, ωik is the weight of
the xth input and jth hidden unit, n is the number of input neurons.

3. Results and Discussion

3.1. Optimization of the Hidden Neurons

Optimization of the hidden neurons was performed to determine the number of hidden neurons
that will minimize the MSE in the NARX neural network architecture. The hidden neurons were
varied from 1 to 29 using different delays ranges from 1 to 15 (See Tables A1–A4 in the Appendix A
for detail of the optimization). Tables 2–5 shows the optimum neuron obtained for each of the
countries investigated. In Table 2, optimized hidden neurons of 29 with MSE values of 3.92 × 10−21

was obtained for NARX neural network architecture using 13 delays. This resulted in a NARX
model architecture of 5-29-1 representing the input layer, hidden neurons, and the output layer.
This optimized NARX model architecture was subsequently obtained for modelling the prediction of
CO2 in Malaysia. Table 3 shows the variation of the hidden neurons for each iteration of the delay
using the dataset for Thailand. Optimized hidden neurons of 19 with MSE value of 4.15 × 10−23

were obtained for the NARX neural network architecture using 13 delays resulting in an optimized
network with the architecture of 5-19-1 denoting the input, hidden, and output layers, respectively.
The subsequent modelling of the CO2 prediction in Thailand was modelled using the optimized
NARX model architecture. Tables 4 and 5 show the optimized neurons obtained using the datasets
for Indonesia and the Philippines. An optimized 17 and 13 hidden neurons were obtained for the
NARX neural network used for training the datasets for Indonesia, and the Philippines, respectively.
This was achieved using 15 delays each for the optimized hidden neuron. Based on the optimized
hidden neurons, NARX neural network model architectures of 5-17-1, and 5-13-1 were obtained for
modeling the prediction of CO2 emissions in Indonesia, and the Philippines, respectively. Besides the
low MSE obtained, the suitability of the four optimized NARX models as robust predictive techniques
were further ascertained from the high values of the R and R2 which are greater than 0.9 as shown
in Tables 2–5. The optimized architecture of the NARX models used for the predictive modelling of
the CO2 emissions in Malaysia, Thailand, Indonesia and the Philippines is generally represented in
Figure 3 while the detailed architectures are depicted in Table 6. The optimized NARX models consist
of the five input nodes, the hidden layers (which is made up of the optimized hidden neurons and
delays) and the output node. The validation of each of the optimized NARX model is depicted in
Figure 4. The best validation performance with MSE values of 6.93 × 10−4, 9.26 × 10−4, 2.03 × 10−3,
and 7.99 × 10−4 was obtained at the epoch of 6, 2, 7, and 11, respectively for Malaysia, Thailand,
Indonesia and Philippines (Figure 4a–d). High epoch values indicate that it takes longer iterations
for the best performance to be validated. Zounemat-Kermani et al. [38] have reported optimized
NARX model architectures of 10-12-1, 10-10-1, 8-9-1, and 6-8-1 for modelling the prediction of gaseous
emissions within the influent chamber of four different wastewater treatment plant. The variation in
the NARX model architectures could be attributed to the nature of the input variables, the datasets and
the non-linear relationship between the input and the output variables.

Table 2. Optimized hidden neuron obtained using data for Malaysia.

Model Architecture Delay Hidden Neurons R R2 MSE

5-25-1 1 25 0.974 0.949 4.54 × 10−4

5-27-1 3 27 0.996 0.992 8.12 × 10−5

5-29-1 5 29 0.998 0.996 1.15 × 10−4

5-9-1 7 9 0.999 0.998 1.28 × 10−5

5-15-1 9 15 0.998 0.996 4.16 × 10−5

5-7-1 11 7 0.999 0.998 2.15 × 10−20

5-29-1 13 29 0.999 0.998 3.92 × 10−21

5-7-1 15 7 0.999 0.998 8.34 × 10−17
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Table 3. Optimized hidden neuron obtained using data for Thailand.

Model Architecture Delay Hidden Neurons R R2 MSE

5-29-1 1 29 0.987 0.974 1.98 × 10−4

5-19-1 3 19 0.999 0.998 3.72 × 10−10

5-23-1 5 23 0.999 0.998 6.32 × 10−19

5-11-1 7 11 0.999 0.998 1.51 × 10−8

5-25-1 9 25 0.999 0.998 7.21 × 10−6

5-25-1 11 25 0.999 0.998 6.86 × 10−21

5-19-1 13 19 0.999 0.998 4.15 × 10−23

5-5-1 15 5 0.999 0.998 9.18 × 10−19

Table 4. Optimized hidden neuron obtained using data for Indonesia.

Model Architecture Delay Hidden Neurons R R2 MSE

5-29-1 1 29 0.984 0.968 4.37 × 10−4

5-21-1 3 21 0.999 0.998 7.18 × 10−6

5-29-1 5 29 0.999 0.998 1.75 × 10−17

5-29-1 7 29 0.999 0.998 1.25 × 10−21

5-19-1 9 19 0.999 0.998 1.36 × 10−13

5-23-1 11 23 0.999 0.998 1.83 × 10−11

5-25-1 13 25 0.999 0.998 5.35 × 10−8

5-17-1 15 17 0.999 0.998 2.02 × 10−19

Table 5. Optimized hidden neuron obtained using data for Philippines.

Model Architecture Delay Hidden Neurons R R2 MSE

5-23-1 1 23 0.992 0.984 7.05 × 10−5

5-9-1 3 9 0.999 0.998 2.40 × 10−8

5-17-1 5 17 0.999 0.998 4.99 × 10−6

5-11-1 7 11 0.999 0.998 2.94 × 10−13

5-25-1 9 25 0.999 0.998 6.97 × 10−19

5-21-1 11 21 0.999 0.998 2.11 × 10−17

5-29-1 13 29 0.999 0.998 8.82 × 10−20

5-13-1 15 13 0.999 0.998 1.32 × 10−20

Processes 2020, 8, x FOR PEER REVIEW 7 of 21 

5-7-1 15 7 0.999 0.998 8.34 × 10−17 

Table 3. Optimized hidden neuron obtained using data for Thailand. 

Model architecture Delay Hidden Neurons R R2 MSE 

5-29-1 1 29 0.987 0.974 1.98 × 10−4 

5-19-1 3 19 0.999 0.998 3.72 × 10−10 

5-23-1 5 23 0.999 0.998 6.32 × 10−19 

5-11-1 7 11 0.999 0.998 1.51 × 10−8 

5-25-1 9 25 0.999 0.998 7.21 × 10−6 

5-25-1 11  25 0.999 0.998 6.86 × 10−21 

5-19-1 13 19 0.999 0.998 4.15 × 10−23 

5-5-1  15 5 0.999 0.998 9.18 × 10−19 

Table 4. Optimized hidden neuron obtained using data for Indonesia. 

Model Architecture Delay Hidden Neurons  R R2 MSE 

5-29-1 1 29 0.984 0.968 4.37 × 10−4 

5-21-1 3 21 0.999 0.998 7.18 × 10−6 

5-29-1 5 29 0.999 0.998 1.75 × 10−17 

5-29-1 7 29 0.999 0.998 1.25 × 10−21 

5-19-1 9 19 0.999 0.998 1.36 × 10−13 

5-23-1 11 23 0.999 0.998 1.83 × 10−11 

5-25-1 13 25 0.999 0.998 5.35 × 10−8 

5-17-1 15 17 0.999 0.998 2.02 × 10−19 

Table 5. Optimized hidden neuron obtained using data for Philippines. 

Model architecture Delay Hidden Neurons R R2 MSE 

5-23-1 1 23 0.992 0.984 7.05 × 10−5 

5-9-1 3 9 0.999 0.998 2.40 × 10−8 

5-17-1 5 17 0.999 0.998 4.99 × 10−6 

5-11-1 7 11 0.999 0.998 2.94 × 10−13 

5-25-1 9 25 0.999 0.998 6.97 × 10−19 

5-21-1 11 21 0.999 0.998 2.11 × 10−17 

5-29-1 13 29 0.999 0.998 8.82 × 10−20 

5-13-1 15 13 0.999 0.998 1.32 × 10−20 

 

Figure 3. General representation of the optimized architecture for the NARX model used for 

prediction of CO2 emissions in Malaysia, Thailand, Indonesia, and Philippines. 

Table 6. Details of the optimized NARX architecture used for the modeling. 

 Malaysia Thailand Indonesia Philippines 

Input units 5 5 5 5 

Optimized hidden neurons 13 19 17 13 

Optimized delay 13 13 15 15 

 

 

 

Figure 3. General representation of the optimized architecture for the NARX model used for prediction
of CO2 emissions in Malaysia, Thailand, Indonesia, and Philippines.

Table 6. Details of the optimized NARX architecture used for the modeling.

Malaysia Thailand Indonesia Philippines

Input units 5 5 5 5
Optimized hidden neurons 13 19 17 13

Optimized delay 13 13 15 15
Output units 1 1 1 1
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3.2. Performance Evaluation of the Optimized NARX Model

The performance of the optimized NARX models based on their predictability is depicted in
Figure 5. It is obvious from the dispersion plots in Figure 5a–d that the actual values of the CO2

emissions from Malaysia, Thailand, Indonesia, and the Philippines are in proximity with those predicted
by the NARX models. The actual values of the CO2 emissions are consistent with the predicted with
high R2 > 0.9. This can further be confirmed by the residuals shown in Figure 6. The residual range of
−0.0005 to +0.0094 obtained for the predicted CO2 emissions in the four ASEAN countries signifies that
the NARX models possessed the capability to predict with minimal residuals. Besides very low MSE
values (Tables 2–5) obtained for the optimized NARX model architecture is evidence of its robustness
as a predictive modelling tool. The training, validation and testing of the datasets using the optimized
NARX models are depicted in Figure 7. In each stage of the training, validation, and testing, the actual
and the predicted CO2 emissions of the four ASEAN countries understudied were obtained with
minimized errors. The autocorrelation analyses of the NARX models used for the prediction of CO2

emissions in the four ASEAN countries investigated are in Figure 8a–d. Most of the prediction errors
are within the 95% confidence limits, which is an indication of the reliability of the estimations of the
weight, bias and the network parameters [39]. The robustness of the NARX models employed in this
study for the prediction of CO2 emissions in four ASEAN countries is consistent with that reported by
several authors reported in Literature and summarized in Table 7. Alcan et al. [40] for the prediction
of NOx emissions from diesel engines. Using eight different input variables, the authors employed an
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optimized NARX model architecture predictive modelling of NOx emissions. The findings revealed
that the optimized NARX model architecture predicted the NOx emissions with a high degree of
accuracy. Similarly, the work of Xu et al. [17] also confirms the applicability of NARX as a predictive
modeling tool. The authors employed an optimized NARX model for the prediction of CO2 emission
in China using input variables which include gross economic output, urbanization, industrialization,
urbanization, economic structure, total population, energy consumption and energy productivity.
The findings revealed that the NARX model presented a more accurate prediction of CO2 emissions in
China compared to backpropagation neural networks and linear regression models. In a comparative
study between NARX models and support vector machine for prediction of energy consumption
in non-residential buildings, Koschwitz et al. [41] reported that NARX models displayed a better
prediction of the energy consumption in the non-commercial buildings compared to support vector
machine model. One major advantage of the NARX neural networks over the other modelling
techniques is the ability to employed historical time series data for predictive modelling. Similarly,
a multilayer perceptron type of Neural Network has been reported to accurately predict CO2 absorption
and solubility with low MSE values. [42,43].
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Table 7. Comparison of the present work with literature.

Reference Modelling Techniques Objectives Input Variables Measurement of Accuracy Conclusions

This work NARX neural network
Predictive modelling of
CO2 emissions in four

ASEAN countries

Energy consumption per capita, GDP per
capita, population, oil consumption,

coal consumption

MSE values of 6.93 × −4,
9.26 × 10−4, 2.03 × 10−3,

and 7.99 × 10−4 obtained for CO2
emissions in Malaysia, Thailand,
Indonesia, and the Philippines

The optimized NARX models
efficiently predicted CO2 emissions
I the four ASEAN countries with

coal consumptions having the
highest level of importance.

Alcan et al. [40] NARX neural network
Predictive modelling of

NOx emissions from
diesel engines

Engine speed, Manifold Absolute
Pressure, Mass Air Flow, rail pressure,
main and pilot injection fuel quantities,

Main and pilot start of injections

Not reported

The optimized NARX model
architecture predicted the NOx

emissions with high degree
of accuracy

Xu et al. [17] NARX neural network Predict CO2 emission
in China

GDP, total population, industrialization,
urbanization, secondary sector,

tertiary sector, total energy consumption,
coal consumption,

non-fossil consumption,
energy productivity, investment in

environment governance

RMSE = 0.0311

Economic scale, secondary sector
(manufacturing and construction),
coal consumption, industrialization,

and energy productivity
significantly influenced

CO2 emissions

Koschwitz et al. [41]
NARX neural network

and Support
Vector Machine

Prediction of energy
consumption in

commercial building

dew point temperature, mean wind
direction, mean wind velocity,

outdoor temperature,
precipitation intensity,

precipitation quantity, relative humidity,
school holiday time,

working time schedule

MSE = 2.35–2.89

NARX models displayed a better
prediction of the energy

consumption in the
non-commercial buildings

compared to support
vector machine

Pakzad et al. [42] Multilayer Perceptron
Neural Network

Modelling the
CO2 absorption

CO2 partial pressure,
temperature, AMP concentration,

and MeOH concentration

Average absolute relative
deviation (AARD%) = 1.95

The findings revealed that the
ANN models predicted

CO2 absorption was in proximity
with the observed.

Hamzehie et al. [43] Multilayer Perceptron
Neural Network

Modelling the
CO2 solubility

Temperature, pressure,
overall concentration,

apparent molecular weight of
the mixture.

MSE = 2.300 × 10−4
The solubility of CO2 in the mixed
aqueous solution was accurately

predicted by the Neural Network.
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3.3. Sensitivity Analysis to Determine the Level of Importance of the Input Variables

The level of importance of the five variables namely GDP per capita, Population,
Energy consumption per capita, coal consumption, and oil consumption are depicted in Figure 9.
As shown in Figure 9a–d, the five variables have a significant level of importance on the CO2 emissions
in Malaysia, Thailand, Indonesia, and Thailand based on the sensitivity analyses. This is evidence from
the values of the normalized importance which is greater than 50% for each of the variables. However,
coal consumption with 100% normalized importance can be said to have the most significant influence
on CO2 emissions in Malaysia, Thailand, Indonesia, and the Philippines. According to the recent
report by the International Energy Agency, Coal consumption used for electricity generation in the
four ASEAN countries has been on the increase in the last decade [5]. For instance, coal consumption
increased from 19.312 TOE December 2017 to 21.122 TOE in December 2018. Based on the Energy
Commission Malaysia 2017 report, over 90% of electricity, generated in Peninsular Malaysia was from
fossil fuel in which coal accounted for about 50% [44]. Similarly, coal consumption used for electricity
generation in Thailand has also increased over the years [45]. Most of the electricity generated in
Thailand are from fossil fuel, such as coal, natural gas and fuel oil [46]. The consumption of coal for
electricity generation has also increased in Indonesia over the years [5]. Studies have shown that coal
consumptions in Indonesia is expected to rise up to 157 million tons by 2027 thereby increasing the
share of electricity generation from coal by 33.6% [47]. Hence, upwards in the amount of CO2 emissions
in Indonesia is also expected if there no commitment to diversify the electricity generation mix. In the
Philippines, 70% of electricity generation is from fossil fuel mainly natural gas and coal out of which
coal accounted for 42.8% as of 2018 [48]. There has been an annual increase in coal consumptions over
the year which directly translated to an increase in CO2 emissions. The causal relationship between coal
consumption, CO2 emission and economic growth has been reported by Al-Mulali and Che Sab [49].
The study which investigated ten countries revealed that coal consumption and CO2 emissions have
a short-run positive bidirectional relationship. This implies that an increase in coal consumption
directly translated into more CO2 emissions. Also, in conformity with these study authors such as
Chang (2010) [50] and Chandran Govindaraju and Tang [28] have also reported the direct relationship
between coal consumption and CO2 emissions in China. Besides the significant influence of coal
consumption on CO2 emissions, other factors such as oil consumptions, energy consumption per
capita, population, and GDP per capita has been reported to have various level of relationship with
CO2 emissions. Apergis and Payne [51,52], Ozturk and Acaravci [26] and Chang [50] reported that
GDP and CO2 emissions in six America countries and China have short-run unidirectional relationship.
Also, Al-mulali et al. (2013) [53], Chandran Govindaraju and Tang [28], Saboori and Sulaiman [54] also
reported a unidirectional relationship between energy consumption and CO2 emissions in NEBA and
five ASEAN countries. However, the modelling techniques did not capture the level of importance of
these variables on the CO2 emissions which we have reported in this study.
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Figure 9. The level of importance of the input variables on the predicted CO2 emissions in (a) Malaysia,
(b) Thailand, (c) Indonesia, (d) Philippines.

4. Conclusions and Policy Implications

This study demonstrates the application of a non-linear autoregressive exogenous neural
network for modelling the prediction of CO2 emissions in Malaysia, Thailand, Indonesia, and the
Philippines. Based on the non-linear relationships between the CO2 emissions and the input variables
(energy and economic indicators), fifteen NARX model architectures were developed and trained
using historical data obtained for the four ASEAN countries. Among the various NARX model
trained, optimized configurations of 5-29-1, 5-19-1, 5-17-1, 5-13-1 were obtained using datasets for
Malaysia, Thailand, Indonesia, and the Philippines, respectively. Robust predictions of CO2 emissions
in Malaysia, Thailand, Indonesia, and the Philippines were achieved using the optimized NARX model
configurations. The predicted CO2 emissions in the four ASEAN countries were in close agreement
with the actual values from the historical data, as indicated by the high values of R2. The findings
also show that the NARX models have high predictability with minimal residual and MSE due to its
excellent learning ability, rapid convergence, and superior generalization. The level of importance
analyses of the various factors revealed that the economic and energy indicators significantly influenced
CO2 emissions in the four ASEAN countries. Nevertheless, coal consumption displayed the highest
level of importance on the CO2 emissions in the four ASEAN countries. This calls for more commitment
by the government and stakeholders in each of the four ASEAN countries for more stringent legislation
and policies on the modalities to drastically reduce CO2 emissions. Although, the governments of
each of the four countries investigated have made various commitments to reduce energy-related CO2

emissions. These include the mandatory use of smart street lighting systems and sustainable urban
transport policies in Indonesia; the national biofuel policy, national renewable energy policy and the
low carbon cities framework in Malaysia; the National Renewable Energy program in the Philippines;
Climate Change Master plan in Thailand. However, more commitment is needed to reduce the CO2

emissions in each of the four countries investigated. Governments of the four ASEAN countries should
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give it a serious thought of domesticating the climate-neutral now policy proposed by the United
Nation Climate Change which entails the measurements of the GHGs emissions, proposed action
plans to reduce the GHGs emissions as much as possible, and the implementation of carbon credit,
which involve compensating the GHGs emissions that cannot be avoided. Moreover, the ongoing
efforts by the four countries in incorporating renewable energy as part of the primary energy mix should
be intensified. The regional efforts should be strengthened to address the issues of CO2 emissions in the
ASEAN region. Considering the peculiarity of each country, collective policies targeting the reduction
of CO2 emissions could be formulated and each member committed to implementation. Based on the
level of importance analysis in this study, direct target and strategies on the gradual replacement of
coal as the main sources of energy in ASEAN countries should be put in place. Although, the NARX
model used in this study has been demonstrated to be robust in predicting the CO2 emissions in
the four ASEAN countries investigated, the findings cannot be generalized and adapted for other
ASEAN countries dues to the uniqueness of each country’s data. However, the NARX model could
also be employed in a broader perspective by incorporating more data from other ASEAN countries.
This could provide a robust CO2 emission prediction for the whole ASEAN region and hence provide
opportunity for a regional effort to develop modalities for reduction of CO2 emissions in the region.
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ARIMA Auto-Regressive Integrated Moving Average
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FDI Foreign Direct Investment
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Non-linear Autoregressive neural network with
Exogenous input
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Processes 2020, 8, 1529 16 of 20

Appendix A

Table A1. Detail results of the optimization of the hidden neurons at varying delay using training data for Malaysia.

Number of Delay 1 3 5 7 9 11 13 15

Hidden Neurons MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R

1 2.54 × 10−3 0.871 1.56 × 10−3 0.907 1.85 × 10−3 0.899 2.32 × 10−3 0.882 3.24 × 10−3 0.813 2.80 × 10−3 0.844 1.77 × 10−3 0.818 3.42 × 10−3 0.892
3 2.13 × 10−3 0.892 9.46 × 10−4 0.939 2.01 × 10−3 0.900 5.75 × 10−3 0.641 3.84 × 0−3 0.791 1.74 × 10−3 0.912 4.24 × 10−4 0.979 1.35 × 10−3 0.936
5 1.78 × 10−3 0.914 2.47 × 10−4 0.875 1.24 × 10−3 0.921 3.68 × 10−4 0.978 5.72 × 10−3 0.905 1.42 × 10−3 0.942 5.07 × 10−3 0.878 1.21 × 10−2 0.516
7 1.80 × 10−3 0.896 2.88 × 10−3 0.881 1.43 × 10−3 0.917 1.43 × 10−3 0.953 1.42 × 10−4 0.994 2.15 × 10−20 1.00 2.58 × 10−3 0.941 8.34 × 10−17 0.999
9 2.07 × 10−3 0.909 4.59 × 10−3 0.810 1.14 × 10−3 0.924 1.28 × 10−5 0.999 2.66 × 10−3 0.989 1.43 × 10−3 0.964 9.05 × 10−4 0.958 4.08 × 10−3 0.897

11 1.68 × 10−3 0.912 1.08 × 10−3 0.932 1.24 × 10−3 0.928 8.17 × 10−4 0.961 1.46 × 10−3 0.964 2.78 × 10−5 0.998 1.06 × 10−4 0.995 7.46 × 10−5 0.996
13 1.17 × 10−3 0.931 1.55 × 10−3 0.901 1.74 × 10−4 0.991 1.83 × 10−4 0.92 6.57 × 10−5 0.998 4.13 × 10−4 0.979 2.79 × 10−3 0.9334 2.05 × 10−9 0.999
15 1.75 × 10−3 0.892 1.22 × 10−3 0.933 1.05 × 10−3 0.958 8.39 × 10−4 0.974 4.16 × 10−5 0.998 8.37 × 10−3 0.702 2.51 × 10−4 0.997 2.08 × 10−3 0.949
17 5.59 × 10−4 0.964 2.47 × 10−3 0.986 2.03 × 10−4 0.989 1.63 × 10−4 0.952 1.32 × 10−3 0.937 3.16 × 10−5 0.998 1.32 × 10−4 0.998 3.71 × 10−5 0.999
19 1.08 × 10−3 0.936 4.36 × 10−3 0.976 1.22 × 10−3 0.946 6.96 × 10−4 0.96 8.69 × 10−3 0.963 4.20 × 10−20 1.00 8.27 × 10−5 0.997 1.32 × 10−3 0.974
21 1.65 0.898 1.10 × 10−3 0.945 3.46 × 10−4 0.989 1.45 × 10−3 0.931 1.55 × 10−3 0.992 2.54 × 10−3 0.883 8.38 × 10−9 0.999 4.24 × 10−4 0.977
23 2.38 × 10−3 0.887 7.88 × 10−4 0.957 8.78 × 10−4 0.975 3.25 × 10−3 0.983 3.15 × 10−4 0.988 3.37 × 10−17 0.999 3.25 × 10−16 0.999 7.37 × 10−4 0.986
25 4.54 × 10−4 0.974 1.24 × 10−3 0.903 3.28 × 10−3 0.885 7.19 × 10−4 0.969 1.17 × 10−3 0.978 2.99 × 10−4 0.987 4.41 × 10−9 0.999 5.86 × 10−4 0.977
27 9.17 × 10−4 0.957 8.12 × 10−5 0.996 8.48 × 10−4 0.953 2.35 × 10−4 0.994 1.03 × 10−4 0.995 1.11 × 10−4 0.986 3.63 × 10−4 0.984 1.61 × 10−2 0.699
29 1.37 × 10−3 0.925 8.71 × 10−3 0.965 1.15 × 10−4 0.998 4.28 × 10−3 0.924 4.84 × 10−3 0.915 2.09 × 10−8 0.999 3.92 × 10−21 0.999 2.16 × 10−4 0.998

Table A2. Detail results of the optimization of the hidden neurons at varying delay using training data for Thailand.

Number of Delays 1 3 5 7 9 11 13 15

Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R

1 2.3 × 10−3 0.381 7.07 × 10−4 0.933 7.37 × 10−4 0.944 8.96 × 10−3 0.548 7.69 × 10−3 0.117 1.44 × 10−3 0.898 1.12 × 10−3 0.967 2.4 × 10−3 0.805
3 1.31 × 10−3 0.912 5.52 × 10−3 0.567 2.49 × 10−3 0.806 2.23 × 10−3 0.827 2.77 × 10−3 0.741 1.56 0.905 3.69 × 10−4 0.997 8.2 × 10−4 0.957
5 1.101 0.937 8.00 × 10−3 0.613 1.93 × 10−3 0.869 1.30 × 10−3 0.900 2.55 × 10−5 0.998 2.85 × 10−3 0.786 1.44 × 10−4 0.99 9.2 × 10−19 0.999
7 8.14 × 10−4 0.953 9.76 × 10−4 0.948 1.5 × 10−3 0.899 1.14 × 10− 0.931 1.21 × 10−5 0.999 7.27 × 10−4 0.936 4.06 × 10−3 0.995 8.8 × 10−12 0.999
9 2.37 × 10−3 0.863 4.19 × 10−3 0.973 1.65 × 10−3 0.851 1.59 × 10−3 0.875 1.77 × 10−3 0.804 8.56 × 10−5 0.997 7.53 × 10−4 0.958 6.2 × 10−8 0.999

11 3.64 × 10−4 0.979 1.48 × 10−3 0.898 1.86 × 10−7 0.999 1.51 × 10−8 0.999 9.25 × 10−5 0.994 1.87 × 10−3 0.923 4.19 × 10−3 0.772 5.9 × 10−5 0.997
13 7.88 × 10−3 0.627 1.04 × 10−4 0.992 5.19 × 10−4 0.966 5.02 × 10−4 0.947 1.81 × 10−3 0.909 5.88 × 10−4 0.964 7.93 × 10−9 0.999 4.7 × 10−3 0.813
15 1.88 × 10−3 0.892 1.71 × 10−3 0.881 4.86 × 10−3 0.613 1.05 × 10−3 0.968 8.54 × 10−4 0.923 3.02 × 10−3 0.998 1.14 × 10−3 0.914 2.5 × 10−3 0.914
17 8.71 × 10−3 0.951 6.62 × 10−4 0.954 5.56 × 10−4 0.95 3.94 × 10−3 0.817 5.30 × 10−5 0.997 1.11 × 10−3 0.937 5.08 × 10−6 0.999 6.9 × 10−18 0.999
19 5.13 × 10−3 0.963 3.7 × 10−10 0.999 9.38 × 10−5 0.993 2.86 × 10−4 0.984 8.52 × 10−5 0.995 6.90 × 10−4 0.956 4.2 × 10−23 0.999 1.9 × 10−5 0.879
21 8.86 × 10−4 0.949 2.75 × 10−4 0.959 3.03 × 10−3 0.847 2.45 × 10−6 0.999 4.44 × 10−3 0.963 8.09 × 10−4 0.954 5.54 × 10−5 0.997 7.9 × 10−5 0.994
23 3.26 × 10−3 0.984 5.54 × 10−3 0.775 6.32 × 10−19 0.999 1.32 × 10−4 0.998 1.52 × 10−3 0.907 4.58 × 10−8 0.999 1.21 × 10−9 0.999 3.1 × 10−7 0.999
25 2.62 × 10−3 0.874 8.83 × 10−4 0.949 7.36 × 10−4 0.945 4.36 × 10−4 0.971 7.21 × 10−6 0.999 6.86 × 10−21 0.999 8.92 × 10−4 0.931 9.5 × 10−5 0.992
27 2.53 × 10−3 0.856 2.81 × 10−3 0.841 4.28 × 10−13 0.999 1.52 × 10−4 0.993 1.11 × 10−5 0.999 6.12 × 10−11 0.999 1.08 × 10−4 0.996 1.7 × 10−3 0.994
29 1.98 × 10−4 0.987 7.06 × 10−4 0.974 6.58 × 10−3 0.546 2.45 × 10−5 0.998 1.84 × 10−4 0.992 9.78 × 10−4 0.999 2.72 × 10−5 0.999 2.4 × 10−3 0.999
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Table A3. Detail results of the optimization of the hidden neurons at varying delay using training data for Indonesia.

Delay 1 3 5 7 9 11 13 15

Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R

1 2.71 × 10−3 0.852 2.75 × 10−3 0.811 6.84 × 10−4 0.946 1.47 × 10−3 0.837 2.14 × 10−3 0.753 6.96 × 10−5 0.993 2.14 × 10−3 0.697 1.25 × 10−3 0.932
3 9.91 × 10−4 0.935 8.39 × 10−4 0.885 5.21 × 10−4 0.935 8.73 × 10−4 0.929 3.44 × 10−4 0.952 7.33 × 10−4 0.882 1.82 × 10−3 0.865 8.37 × 10−4 0.904
5 2.17 × 10−3 0.855 4.34 × 10−4 0.965 1.74 × 10−3 0.832 2.85 × 10−3 0.869 1.18 × 10−3 0.911 3.98 × 10−3 0.684 6.76 × 10−3 0.991 5.15 × 10−4 0.939
7 1.52 × 10−3 0.909 1.71 × 10−4 0.99 1.12 × 10−3 0.923 3.44 × 10−3 0.563 1.28 × 10−3 0.984 2.59 × 10−3 0.981 1.17 × 10−3 0.898 4.89 × 10−3 0.739
9 2.07 × 10−3 0.868 1.54 × 10−3 0.857 5.68 × 10−5 0.996 3.46 × 10−3 0.815 1.19 × 10−5 0.999 4.81 × 10−3 0.419 9.86 × 10−4 0.901 2.54 × 10−4 0.972
11 1.44 × 10−3 0.901 8.28 × 10−5 0.992 2.09 × 10−3 0.991 9.12 × 10−3 0.991 8.07 × 10−5 0.991 9.27 × 10−6 0.995 7.8 × 10−10 0.999 6.69 × 10−3 0.959
13 1.50 × 10−3 0.919 3.23 × 10−4 0.962 1.08 × 10−3 0.9326 1.16 × 10−3 0.931 1.41 × 10−3 0.831 8.68 × 10−4 0.86 1.82 × 10−4 0.965 4.73 × 10−5 0.998
15 5.54 × 10−4 0.951 1.39 × 10−4 0.989 6.39 × 10−6 0.999 2.01 × 10−3 0.891 7.08 × 10−5 0.993 5.01 × 10−3 0.97 2.54 × 10−3 0.902 7.45 × 10−3 0.995
17 4.51 × 10−3 0.571 1.04 × 10−3 0.911 1.86 × 10−4 0.986 2.09 × 10−6 0.999 1.38 × 10−3 0.922 1.35 × 10−3 0.804 8.04 × 10−7 0.999 9.28 × 10−5 0.994
19 4.63 × 10−3 0.847 2.70 × 10−4 0.985 1.83 × 10−3 0.945 1.19 × 10−3 0.89 1.36 × 10−13 0.999 4.65 × 10−3 0.407 6.11 × 10−4 0.953 1.4 × 10−13 0.999
21 2.13 × 10−3 0.812 7.18 × 10−6 0.999 1.23 × 10−4 0.991 1.31 × 10−3 0.864 2.87 × 10−4 0.963 2.17 × 10−3 0.734 1.94 × 10−3 0.867 1.29 × 10−4 0.996
23 1.12 × 10−3 0.938 7.83 × 10−4 0.947 4.01 × 10−4 0.9728 1.98 × 10−3 0.981 1.06 × 10−3 0.819 1.8 × 10−11 0.999 5.14 × 10−4 0.929 9.79 × 10−5 0.987
25 5.94 0.957 6.06 × 10−4 0.956 8.70 × 10−4 0.992 3.03 × 10−3 0.97 3.35 × 10−3 0.997 3.86 × 10−4 0.969 5.35 × 10−8 0.999 1.75 × 10−3 0.928
27 1.75 × 10−3 0.874 6.69 × 10−4 0.952 1.57 × 10−3 0.857 1.83 × 10−3 0.986 1.41 × 10−3 0.847 2.46 × 10−3 0.829 2.32 × 10−3 0.759 2.12 × 10−6 0.999
29 4.37 × 10−4 0.984 2.05 × 10−4 0.986 1.75 × 10−17 0.999 1.25 × 10−21 0.999 5.82 × 10−4 0.954 3.05 × 10−3 0.967 3.02 × 10−3 0.992 2.0 × 10−19 0.999

Table A4. Detail results of the optimization of the hidden neurons at varying delay using training data for Philippines.

Delay 1 3 5 7 9 11 13 15

Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R

1 3.55 × 10−4 0.955 4.27 × 10−4 0.955 2.12 × 10−3 0.978 4.06 × 10−3 0.966 1.14 × 10−6 0.999 8.8 × 10−5 0.992 1.21 × 10−4 0.985 9.64 × 10−5 0.989
3 3.73 × 10−4 0.96 6.95 × 10−4 0.937 2.08 × 10−3 0.981 6.64 × 10−3 0.937 6.92 × 10−5 0.992 2.35 × 10−4 0.973 1.05 × 10−4 0.995 2.11 × 10−3 0.976
5 3.13 × 10−4 0.967 2.32 × 10−4 0.973 1.13 × 10−3 0.904 2.56 × 10−4 0.907 5.61 × 10−5 0.994 6.12 × 10−4 0.992 1.41 × 10−19 0.999 5.59 × 10−5 0.995
7 8.76 × 10−4 0.914 3.41 × 10−4 0.969 1.64 × 10−4 0.987 2.71 × 10−4 0.973 1.94 × 10−4 0.979 7.09 × 10−5 0.994 4.08 × 10−11 0.999 3.88 × 10−5 0.996
9 2.61 × 10−4 0.973 2.40 × 10−8 0.999 1.45 × 10−3 0.906 7.52 × 10−5 0.993 9.48 × 10−5 0.993 4.98 × 10−4 0.957 4.56 × 10−6 0.999 5.95 × 10−5 0.994

11 4.24 × 10−4 0.948 2.16 × 10−4 0.977 2.56 × 10−4 0.981 2.9 × 10−13 0.999 2.04 × 10−4 0.983 6.07 × 10−5 0.995 1.21 × 10−4 0.992 5.51 × 10−4 0.969
13 1.18 × 10−4 0.979 7.92 × 10−5 0.991 1.95 × 10−5 0.998 2.14 × 10−5 0.998 7.89 × 10−5 0.993 8.48 × 10−5 0.992 2.46 × 10−4 0.978 1.32 × 10−20 0.999
15 1.14 × 10−3 0.827 2.48 × 10−5 0.997 3.31 × 10−4 0.975 1.73 × 10−4 0.985 4.36 × 10−5 0.995 2.27 × 10−5 0.998 3.66 × 10−5 0.996 9.91 × 10−8 0.999
17 3.17 × 10−4 0.966 9.55 × 10−4 0.989 4.99 × 10−6 0.999 8.8 × 10−10 0.999 4.86 × 10−5 0.996 6.65 × 10−5 0.994 4.32 × 10−5 0.997 1.21 × 10−5 0.999
19 8.43 × 10−5 0.989 5.94 × 10−5 0.993 4.56 × 10−5 0.996 7.15 × 10−4 0.936 4.18 × 10−10 0.999 6.22 × 10−9 0.999 2.82 × 10−5 0.998 2.22 × 10−4 0.979
21 3.59 × 10−4 0.966 2.09 × 10−4 0.981 3.56 × 10−4 0.974 1.64 × 10−3 0.908 1.09 × 10−6 0.999 2.11 × 1017 0.999 3.42 × 10−5 0.996 1.49 × 10−8 0.999
23 7.05 × 10−4 0.992 1.47 × 10−4 0.983 1.81 × 10−4 0.982 1.45 × 10−3 0.901 1.62 × 10−4 0.987 6.85 × 10−5 0.993 8.38 × 10−6 0.999 5.22 × 10−4 0.972
25 2.38 × 10−4 0.971 1.76 × 10−5 0.998 5.59 × 10−4 0.931 7.29 × 10−5 0.995 6.97 × 10−19 0.999 2.23 × 10−5 0.998 3.45 × 10−4 0.959 2.89 × 10−5 0.998
27 5.80 × 10−4 0.929 4.94 × 10−5 0.994 1.26 × 10−4 0.987 7.90 × 10−5 0.993 2.61 × 10−−5 0.997 4.36 × 1017 0.999 4.91 × 10−14 0.999 7.96 × 10−6 0.999
29 1.24 × 10−4 0.988 6.29 × 10−5 0.994 1.78 × 10−4 0.981 2.18 × 10−4 0.976 4.88 × 10−4 0.935 6.25 × 10−7 0.999 8.82 × 10−20 0.999 8.92 × 10−6 0.999
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