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Abstract: This study investigates the use of a non-linear autoregressive exogenous neural network
(NARX) model to investigate the nexus between energy usability, economic indicators, and carbon
dioxide (CO;) emissions in four Association of South East Asian Nations (ASEAN), namely Malaysia,
Thailand, Indonesia, and the Philippines. Optimized NARX model architectures of 5-29-1, 5-19-1,
5-17-1, 5-13-1 representing the input nodes, hidden neurons and the output units were obtained from
the series of models configured. Based on the relationship between the input variables, CO, emissions
were predicted with a high correlation coefficient (R) > 0.9. and low mean square errors (MSE)
of 3.92 x 10721, 4.15 x 10723, 2.02 x 10719, 1.32 x 10~2Y for Malaysia, Thailand, Indonesia, and the
Philippines, respectively. Coal consumption has the highest level of influence on CO, emissions in
the four ASEAN countries based on the sensitivity analysis. These findings suggest that government
policies in the four ASEAN countries should be more intensified on strategies to reduce CO, emissions
in relationship with the energy and economic indicators.

Keywords: ASEAN; CO; emissions; energy consumption; economic indicator; gross domestic product;
NARX neural network

1. Introduction

In the past three decades, there has been rapid urbanization and industrialization among the
Association of Southeast Asian Nations (ASEAN), which invariably has translated to economic growths,
and high energy demand and consumption [1]. The increasing energy demand amongst the ASEAN
countries is often meet with energy derived from fossil sources most especially coal, natural gas,
and oil [1,2]. The share of coal in the energy mix of ASEAN has been on the rise and has been projected
to continue to increase in a long time [3,4]. Recent energy outlook by the international energy agency
revealed that the rising fuel demands among Southeast Asian countries have surpassed the regional
production hence, the possibility of becoming a net importer of fuel [5]. Although, the high energy
demand is seen as the powerhouse that drives industrial and economic activities within the region,
and it often comes with the cost of high carbon dioxide (CO;) emissions [6]. As shown in Figure 1,
the increase in economic indicators and energy demand also translated into energy-related CO,
emissions. To this effect, several energy economists have investigated the relationship between CO,
emissions, economic growth and energy consumption, as summarized in Table 1. Proper understanding
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of this relationship would help in finding lasting solutions to the age-long dilemma of sustainable
economic growth and environmental pollution.
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Figure 1. Share of Southeast Asia in global economic indicators, energy consumption and CO,
emissions [5].

In the last one-decade various modelling techniques have been employed to investigate
the causal relationship between CO, emissions, economic indicators, and energy consumption
in various countries [7-10]. Modelling techniques, such as panel quantile regression approach,
Simultaneous Equation Modelling, system of simultaneous equations using seemingly unrelated
regression, and Cointegration-Vector Error Correction Modelling have been widely applied.
Zhu et al. [11] and Heidari et al. [12] employed panel quantile regression model to investigate the
effect of foreign direct investment (FDI), economic growth, and energy consumption on CO, emissions
in Malaysia, Philippines, Indonesia, Malaysia, Singapore, and Malaysia. The study revealed that
FDI, economic growth, and energy consumption have a heterogeneous effect on CO, emissions.
However, the level of importance of the input variables, as well as the prediction of the CO, emissions,
based on the variables, could not be ascertained using the panel quantile regression model. In a recent
study, Salman et al. [13] also employed panel quantile regression for modeling the impact of export
and import on carbon emissions in seven ASEAN countries namely Brunei, Indonesia, Malaysia,
Philippines, Singapore, Thailand, and Vietnam. Using datasets between 19902017, the study revealed
that CO, emissions in the seven ASEAN countries were significantly influenced by export and import.
Besides export and import, the authors reported that CO, emissions increased by population size and
energy intensity. However, the extent of influence and the level of importance of these variables were
not reported. Also, the technique could not predict CO, emissions based on the non-linear relationship
between the variables.

Beside panel quantile regression, other modelling techniques that have been employed in
investigating relationship between CO, emissions, economic indicator, and energy consumption
include Cointegration and Vector Error Correction Model [14], Auto-Regressive Integrated Moving
Average (ARIMA) and Simple Exponential Smoothing Models [15], Autoregressive Distributive Lag
(ARDL) model [16], Linear regression [17], Backpropagation neural network [17], non-linear dynamic
neural network [17], and Simultaneous Equation Models [18]. These techniques were effective in
explaining the causal relationship between CO, emissions and the various input variables investigated.
However, one major shortcoming of these techniques is their inability to accurately predict CO,
emissions based on the various input variables and their level of importance on the prediction,
due to the non-linear relationship that exists between them. This shortcoming can be overcome
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using the nonlinear autoregressive networks with exogenous input (NARX) [17]. The NARX model
is a time series recurrent dynamic feedback neural networks that have the capability to model the
interrelation between input and output variable for prediction purposes [19]. Moreover, the level
of importance of these variables could also be determined using the vector weights that connect
the input variables with the output [20]. Xu et al. [17] employed NARX technique to model the
prediction of CO, emissions peak in China. Using datasets from 1978-2016, the study revealed that
the NARX model was robust in predicting the CO, emissions in China with GDP having the highest
level of influence based on the sensitivity analysis. To the best of the authors” knowledge, the use of
NARX model for predictive modeling and to investigate the nonlinear relationship between economic
indicators, energy consumptions and CO, emissions in ASEAN countries such as Malaysia, Thailand,
Indonesia and the Philippines have not reported in the literature. This study is aimed at employing the
NARX techniques for modelling the prediction of CO, emissions in Malaysia, Thailand, Indonesia and
Philippines based on the nonlinear relationship that exist between them and to determine the level of
importance of the prediction.

Table 1. Summary of literature on modelling of CO, emissions.

Countries Investigated Methods Variables Reference
ASEAN (Malay‘51a, Autoregressive Exogenous EnergyA Consumptllon per .
Thailand, Indonesia and K capita, Population, This stud
Neural Network Modeling p P y
the Philippines) GDP per capita
ASEAN (Brunei,
Indonesia, Malaysia, Panel quantile
Philippines, Singapore, regression approach Export and Import [13]
Thailand, Vietnam)
. Cointegration and Vector Error Energy Consumption, GDP,
Indonesia Correction Model House Expenditure [14]
Aséjrrl clztére};ﬁescgiafaan, Auto-Regressive Integrated Heat and electricity,
Pak;gs tan In, dia Sri’ Moving Average (ARIMA) and manufacturing industries, [15]
Lanka Irarrl Sin ; ore Simple Exponential residential and commercial
én d l\}epaig) pore, Smoothing Models buildings, transport
Asia countries Autoregieas;;eoggtrlbutlve Fossil fuel, FDI, GDP [16]
Linear regression GDP, total population,
Backpropagation nel;ral urbanization rate, total energy
China ne tworle nlg n%linear dvnamic consumption, percentage of [17]
néural networky coal consumption, percentage
of non-fossil consumption
System of simultaneous Research and Development
Mediterranean countries equations using seemingly Stocks, GDP. [18]
unrelated regression. Electricity Consumption,
. Environmental Kuznets Curve
Croatia (EKC) model GDP [18]
ASEAN (Malaysia, . .
Indonesia, Philippines, =~ Panel quantile regression model ég;l%r;glrecctcl)rr::ei‘msgi [11]
Singapore, and Thailand) ! 8y umpt
ASEA.N (Ma?lg ysta, Panel smooth transition Energy Consumption
Indonesia, Philippines, reeression model and GDP [12]
Singapore, and Thailand) &
Energy Consumption, GDP,
India Directed acyclic graphs fixed capita formation, [21]
and Trade openness
Middle East, North
Africa and Sub-Sahara Simultaneous Equation Models Foreign direct investment, [22]
Africa
China System Dynamic Modelling Energy Consumptions [23]
. Environmental Kuznets Curve Energy Consumptions )
Russia (EKC) model and GDP (24]
. . . Energy Consumption
India System Dynamic Modelling and GDP [25]
autoregressive distributed lag Enerev consumption and
Turkey bounds testing approach 8y P [26]

of cointegration

economic indicator
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2. Materials and Methods

2.1. Data Description

The variables used in this study for the NARX modelling were carefully selected based on
previous literature summarized in Table 1. The CO, emissions as a function of kg per $US of
GDP, energy consumption per capita measured in kWh, GDP per capita (current $US), population,
oil consumption, coal consumption, were annual data from 1965-2018 obtained from World Bank
Open database and British Petroleum energy database. The CO, emission (kg per 2010 $US of GDP)
represents the CO, emissions from industrial and human activities in the utilization of fossil fuel.
The energy consumption per capita, which is one of the fundamental markers of economic development
of any country, explains energy utilization by an individual per year. The causal relationship between
energy consumption, CO; emissions and economic growth has been investigated by several authors
using various modelling techniques as shown in Table 1. The annual coal consumption is the amount of
coal required for electricity generation. The rapid industrialization of the four ASIAN countries requires
high energy demand which heavily dependent on coal. Liu et al. [27] employed coal consumption
as one of the variables in the scenario analysis of energy consumption and CO, emission in China
using system dynamic model. Similarly, Chandran Govindaraju and Tang [28] also investigated the
dynamic link between CO, emissions, coal consumption and economic growth in China and India.
Oil consumption is the amount of crude oil utilized for refining purposes. There has been a steady
increase in oil consumption in the four ASEAN countries over the years. The GDP per capita is an
indicator of a country’s economic growth as a function of the population. Over the years, the GDP
per capita of the four ASEAN countries has increased steadily. This could be attributed to the rapid
industrialization and economic growth of the region.

2.2. The NARX Neural Network Modelling

Artificial Neural Networks are biological system inspired learning models comprised of inbuilt
algorithms with a number of interlinked neurons between the input and the output [29]. The network
usually receives input signals which are transformed to output signals. The NARX is a time series
feedback artificial neural networks represented in Equation (1) [30]. It comprises interconnected
feedback synaptic and delays that provides a flow of signals between the neurons [31]. The major
advantage of the NARX as a robust time-series modeling technique is the significance of the delay that
supply the precise historical information of a set of data at the current moment and the feedback loop
that help to filter the historical data thereby allowing for the prediction of more accurate output [32].
The model architecture of the NARX neural network is depicted in Figure 2. It consists of the input,
hidden and output layers connected by artificial neurons. The artificial neurons execute certain actions
on the input signals as shown in Equation (2). In Equation (2), the hidden nodes are estimated in terms
of the weights of the paths associated with the input nodes and the bias path which is a component of
the back-propagation algorithm [33]. The configuration makes use of the past and present values of
u(t) as well as the actual past values of y(t) for the prediction of y(t + 1). The multilayer perceptron
topology which is a feedforward backpropagation network is often adopted in the training of the
NARX [34]. The training entails the adjustment of the weights in such as a manner that the errors
between the actual and the predicted values are minimized [35]. These errors are usually measured as
mean square error (MSE) defined in Equation (2) [36]. The robustness of the NARX predictive models is
measured using the coefficient of correlation (R) represented in Equation (3). The model development
was performed using the Neural Network toolbox in MATLAB version 2019 a (MathWorks Inc.),

y(t) = fly(t=1),y(t=2),...,y(t—ny), u(t=2),...,u(t - dy)) 1)
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where y(t) = depicts the output of the NARX model and u(t) depicts the input of the NARX model.

1v .
MSE= - Z(]/i - 9;)’ 2
1—1
R — nZ yi?i_(z yl)(z ]/]l) (3)
VX y2 = (X v)?)((n X 92— (X 9:)?)
where n, y;,. {;, are the number of observed variables, the observed outputs, and the predicted
output, respectively.
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Figure 2. The model architecture of the NARX neural network.

In Equation (1) each of the successive output signals (y(t)) is regressed on the preceding value of
the (y(t)) and the values of an exogenous input signal as shown in Equation (4).

9= Zwkxk+b )
k

where 8, wy, xg, b, 6 are the neurons’ output, the weight factor, kth input, the activation function and
the bias. The sigmoid activation function represented in Equation (5) is often employed in predictive

modeling due to it smoothen effect:

1

0= —— 5
1+exp™® ©)

2.3. Sensitivity Analysis of the Input Variables

The sensitivity analysis to determine the level importance (p;;). of the input variables on the
CO, emission per capita was determined using modified Garson’s algorithm represented in Equation
(6) [33,37]. The algorithm involves the partitioning of the connected weights of the hidden-output
neurons within the NARX network into elements associated with each input neurons. The relative
predictive importance of the input variables is revealed by the connection weights in the paths of each
of the input nodes the corresponding output nodes [33],

Yiet|onvi]/ Tiy]x]
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where wj, depicts the weight between ith input and jth hidden unit; v, signifies the weight between
the jth hidden unit and the zth output while x is the number of hidden neurons, wj is the weight of
the xth input and jth hidden unit, # is the number of input neurons.

3. Results and Discussion

3.1. Optimization of the Hidden Neurons

Optimization of the hidden neurons was performed to determine the number of hidden neurons
that will minimize the MSE in the NARX neural network architecture. The hidden neurons were
varied from 1 to 29 using different delays ranges from 1 to 15 (See Tables A1-A4 in the Appendix A
for detail of the optimization). Tables 2-5 shows the optimum neuron obtained for each of the
countries investigated. In Table 2, optimized hidden neurons of 29 with MSE values of 3.92 x 10~2!
was obtained for NARX neural network architecture using 13 delays. This resulted in a NARX
model architecture of 5-29-1 representing the input layer, hidden neurons, and the output layer.
This optimized NARX model architecture was subsequently obtained for modelling the prediction of
CO; in Malaysia. Table 3 shows the variation of the hidden neurons for each iteration of the delay
using the dataset for Thailand. Optimized hidden neurons of 19 with MSE value of 4.15 x 10723
were obtained for the NARX neural network architecture using 13 delays resulting in an optimized
network with the architecture of 5-19-1 denoting the input, hidden, and output layers, respectively.
The subsequent modelling of the CO; prediction in Thailand was modelled using the optimized
NARX model architecture. Tables 4 and 5 show the optimized neurons obtained using the datasets
for Indonesia and the Philippines. An optimized 17 and 13 hidden neurons were obtained for the
NARX neural network used for training the datasets for Indonesia, and the Philippines, respectively.
This was achieved using 15 delays each for the optimized hidden neuron. Based on the optimized
hidden neurons, NARX neural network model architectures of 5-17-1, and 5-13-1 were obtained for
modeling the prediction of CO, emissions in Indonesia, and the Philippines, respectively. Besides the
low MSE obtained, the suitability of the four optimized NARX models as robust predictive techniques
were further ascertained from the high values of the R and R? which are greater than 0.9 as shown
in Tables 2-5. The optimized architecture of the NARX models used for the predictive modelling of
the CO; emissions in Malaysia, Thailand, Indonesia and the Philippines is generally represented in
Figure 3 while the detailed architectures are depicted in Table 6. The optimized NARX models consist
of the five input nodes, the hidden layers (which is made up of the optimized hidden neurons and
delays) and the output node. The validation of each of the optimized NARX model is depicted in
Figure 4. The best validation performance with MSE values of 6.93 X 107%,9.26 x 1074, 2.03 x 1073,
and 7.99 x 10~ was obtained at the epoch of 6, 2, 7, and 11, respectively for Malaysia, Thailand,
Indonesia and Philippines (Figure 4a—d). High epoch values indicate that it takes longer iterations
for the best performance to be validated. Zounemat-Kermani et al. [38] have reported optimized
NARX model architectures of 10-12-1, 10-10-1, 8-9-1, and 6-8-1 for modelling the prediction of gaseous
emissions within the influent chamber of four different wastewater treatment plant. The variation in
the NARX model architectures could be attributed to the nature of the input variables, the datasets and
the non-linear relationship between the input and the output variables.

Table 2. Optimized hidden neuron obtained using data for Malaysia.

Model Architecture Delay Hidden Neurons R R? MSE
5-25-1 1 25 0.974 0.949 454 x107%
5-27-1 3 27 0.996 0.992 8.12 x 10™°
5-29-1 5 29 0.998 0.996 1.15x 1074
5-9-1 7 9 0.999 0.998 1.28 x 1075
5-15-1 9 15 0.998 0.996 416 x107°
5-7-1 11 7 0.999 0.998 2.15 x 10720
5-29-1 13 29 0.999 0.998 3.92x 1072

5-7-1 15 7 0.999 0.998 8.34 x 10717




Processes 2020, 8, 1529 7 of 20

Table 3. Optimized hidden neuron obtained using data for Thailand.

Model Architecture Delay Hidden Neurons R R? MSE
5-29-1 1 29 0.987 0.974 1.98 x 1074
5-19-1 3 19 0.999 0.998 3.72x 10710
5-23-1 5 23 0.999 0.998 6.32 x 1071
5-11-1 7 11 0.999 0.998 1.51 x 1078
5-25-1 9 25 0.999 0.998 7.21 x107°
5-25-1 11 25 0.999 0.998 6.86 x 1072
5-19-1 13 19 0.999 0.998 415x 1075
5-5-1 15 5 0.999 0.998 9.18 x 10719

Table 4. Optimized hidden neuron obtained using data for Indonesia.

Model Architecture Delay Hidden Neurons R R? MSE
5-29-1 1 29 0.984 0.968 437 x 1074
5-21-1 3 21 0.999 0.998 7.18 x 107°
5-29-1 5 29 0.999 0.998 1.75 x 10717
5-29-1 7 29 0.999 0.998 1.25 x 10721
5-19-1 9 19 0.999 0.998 1.36 x 10713
5-23-1 11 23 0.999 0.998 1.83 x 10711
5-25-1 13 25 0.999 0.998 5.35x 1078
5-17-1 15 17 0.999 0.998 2.02 x 1071

Table 5. Optimized hidden neuron obtained using data for Philippines.

Model Architecture Delay Hidden Neurons R R? MSE
5-23-1 1 23 0.992 0.984 7.05 x 1072
5-9-1 3 9 0.999 0.998 2.40x 1078
5-17-1 5 17 0.999 0.998 4.99 x 1070
5-11-1 7 11 0.999 0.998 294 %1071
5-25-1 9 25 0.999 0.998 6.97 x 1071
5-21-1 11 21 0.999 0.998 2.11x 107
5-29-1 13 29 0.999 0.998 8.82 x 10720
5-13-1 15 13 0.999 0.998 1.32 x 1020

GDP per capita —
Population “—
Energy consumption per capita #+——»
Oil consumption “—
Coal consumption *—

Delay (13, 13, 15, 15) o

Figure 3. General representation of the optimized architecture for the NARX model used for prediction
of CO, emissions in Malaysia, Thailand, Indonesia, and Philippines.

Table 6. Details of the optimized NARX architecture used for the modeling.

Malaysia Thailand Indonesia Philippines
Input units 5 5 5 5
Optimized hidden neurons 13 19 17 13
Optimized delay 13 13 15 15

Output units 1 1 1 1
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Figure 4. The validation performance of the optimized neuron at various epoch for (a) Malaysia;
(b) Thailandl (c) Indonesia; and (d) the Philippines.

3.2. Performance Evaluation of the Optimized NARX Model

The performance of the optimized NARX models based on their predictability is depicted in
Figure 5. It is obvious from the dispersion plots in Figure 5a—d that the actual values of the CO,
emissions from Malaysia, Thailand, Indonesia, and the Philippines are in proximity with those predicted
by the NARX models. The actual values of the CO, emissions are consistent with the predicted with
high R? > 0.9. This can further be confirmed by the residuals shown in Figure 6. The residual range of
—0.0005 to +0.0094 obtained for the predicted CO, emissions in the four ASEAN countries signifies that
the NARX models possessed the capability to predict with minimal residuals. Besides very low MSE
values (Tables 2-5) obtained for the optimized NARX model architecture is evidence of its robustness
as a predictive modelling tool. The training, validation and testing of the datasets using the optimized
NARX models are depicted in Figure 7. In each stage of the training, validation, and testing, the actual
and the predicted CO; emissions of the four ASEAN countries understudied were obtained with
minimized errors. The autocorrelation analyses of the NARX models used for the prediction of CO,
emissions in the four ASEAN countries investigated are in Figure 8a—d. Most of the prediction errors
are within the 95% confidence limits, which is an indication of the reliability of the estimations of the
weight, bias and the network parameters [39]. The robustness of the NARX models employed in this
study for the prediction of CO, emissions in four ASEAN countries is consistent with that reported by
several authors reported in Literature and summarized in Table 7. Alcan et al. [40] for the prediction
of NOx emissions from diesel engines. Using eight different input variables, the authors employed an
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optimized NARX model architecture predictive modelling of NOx emissions. The findings revealed
that the optimized NARX model architecture predicted the NOx emissions with a high degree of
accuracy. Similarly, the work of Xu et al. [17] also confirms the applicability of NARX as a predictive
modeling tool. The authors employed an optimized NARX model for the prediction of CO, emission
in China using input variables which include gross economic output, urbanization, industrialization,
urbanization, economic structure, total population, energy consumption and energy productivity.
The findings revealed that the NARX model presented a more accurate prediction of CO, emissions in
China compared to backpropagation neural networks and linear regression models. In a comparative
study between NARX models and support vector machine for prediction of energy consumption
in non-residential buildings, Koschwitz et al. [41] reported that NARX models displayed a better
prediction of the energy consumption in the non-commercial buildings compared to support vector
machine model. One major advantage of the NARX neural networks over the other modelling
techniques is the ability to employed historical time series data for predictive modelling. Similarly;,
a multilayer perceptron type of Neural Network has been reported to accurately predict CO, absorption
and solubility with low MSE values. [42,43].
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Figure 5. Dispersion plot showing the actual and predicted CO, emissions from (a) Malaysia,
(b) Thailand, (c) Indonesia, (d) Philippines.
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Figure 6. Residuals obtained from the NARX model prediction of CO, emissions.
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Table 7. Comparison of the present work with literature.

12 of 20

Reference Modelling Techniques Objectives Input Variables Measurement of Accuracy Conclusions
MSE values of 6.93 x 74, The optimized NARX models
Predictive modelling of ~ Energy consumption per capita, GDP per 9.26 x 1074,2.03 x 1073, efficiently predicted CO, emissions
This work NARX neural network CO, emissions in four capita, population, oil consumption, and 7.99 x 107* obtained for CO, I the four ASEAN countries with
ASEAN countries coal consumption emissions in Malaysia, Thailand, coal consumptions having the
Indonesia, and the Philippines highest level of importance.
- . Engine speed, Manifold Absolute The optimized NARX model
Predictive modelling of Pressure, Mass Air Flow, rail pressure, architecture predicted the NOx
Alcan et al. [40] NARX neural network NOx emissions from . T p o Not reported . p R .
. . main and pilot injection fuel quantities, emissions with high degree
diesel engines . . S
Main and pilot start of injections of accuracy
GDP, total population, industrialization, .
o Economic scale, secondary sector
urbanization, secondary sector, R X
. . (manufacturing and construction),
Predict CO, emission tertiary sector, total energy consumption, coal consumption, industrialization,
Xuetal. [17] NARX neural network coal consumption, RMSE = 0.0311 ! ’

Koschwitz et al. [41]

Pakzad et al. [42]

Hamzehie et al. [43]

NARX neural network
and Support
Vector Machine

Multilayer Perceptron
Neural Network

Multilayer Perceptron
Neural Network

in China

Prediction of energy
consumption in
commercial building

Modelling the
CO, absorption

Modelling the
CO; solubility

non-fossil consumption,
energy productivity, investment in
environment governance
dew point temperature, mean wind
direction, mean wind velocity,
outdoor temperature,
precipitation intensity,
precipitation quantity, relative humidity,
school holiday time,
working time schedule

CO; partial pressure,
temperature, AMP concentration,
and MeOH concentration

Temperature, pressure,
overall concentration,
apparent molecular weight of
the mixture.

MSE = 2.35-2.89

Average absolute relative
deviation (AARD%) = 1.95

MSE = 2.300 x 10~*

and energy productivity
significantly influenced
CO;, emissions

NARX models displayed a better
prediction of the energy
consumption in the
non-commercial buildings
compared to support
vector machine

The findings revealed that the
ANN models predicted
CO, absorption was in proximity
with the observed.

The solubility of CO; in the mixed
aqueous solution was accurately
predicted by the Neural Network.
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3.3. Sensitivity Analysis to Determine the Level of Importance of the Input Variables

The level of importance of the five variables namely GDP per capita, Population,
Energy consumption per capita, coal consumption, and oil consumption are depicted in Figure 9.
As shown in Figure 9a—d, the five variables have a significant level of importance on the CO, emissions
in Malaysia, Thailand, Indonesia, and Thailand based on the sensitivity analyses. This is evidence from
the values of the normalized importance which is greater than 50% for each of the variables. However,
coal consumption with 100% normalized importance can be said to have the most significant influence
on CO, emissions in Malaysia, Thailand, Indonesia, and the Philippines. According to the recent
report by the International Energy Agency, Coal consumption used for electricity generation in the
four ASEAN countries has been on the increase in the last decade [5]. For instance, coal consumption
increased from 19.312 TOE December 2017 to 21.122 TOE in December 2018. Based on the Energy
Commission Malaysia 2017 report, over 90% of electricity, generated in Peninsular Malaysia was from
fossil fuel in which coal accounted for about 50% [44]. Similarly, coal consumption used for electricity
generation in Thailand has also increased over the years [45]. Most of the electricity generated in
Thailand are from fossil fuel, such as coal, natural gas and fuel oil [46]. The consumption of coal for
electricity generation has also increased in Indonesia over the years [5]. Studies have shown that coal
consumptions in Indonesia is expected to rise up to 157 million tons by 2027 thereby increasing the
share of electricity generation from coal by 33.6% [47]. Hence, upwards in the amount of CO, emissions
in Indonesia is also expected if there no commitment to diversify the electricity generation mix. In the
Philippines, 70% of electricity generation is from fossil fuel mainly natural gas and coal out of which
coal accounted for 42.8% as of 2018 [48]. There has been an annual increase in coal consumptions over
the year which directly translated to an increase in CO, emissions. The causal relationship between coal
consumption, CO, emission and economic growth has been reported by Al-Mulali and Che Sab [49].
The study which investigated ten countries revealed that coal consumption and CO, emissions have
a short-run positive bidirectional relationship. This implies that an increase in coal consumption
directly translated into more CO, emissions. Also, in conformity with these study authors such as
Chang (2010) [50] and Chandran Govindaraju and Tang [28] have also reported the direct relationship
between coal consumption and CO, emissions in China. Besides the significant influence of coal
consumption on CO, emissions, other factors such as oil consumptions, energy consumption per
capita, population, and GDP per capita has been reported to have various level of relationship with
CO; emissions. Apergis and Payne [51,52], Ozturk and Acaravci [26] and Chang [50] reported that
GDP and CO, emissions in six America countries and China have short-run unidirectional relationship.
Also, Al-mulali et al. (2013) [53], Chandran Govindaraju and Tang [28], Saboori and Sulaiman [54] also
reported a unidirectional relationship between energy consumption and CO, emissions in NEBA and
five ASEAN countries. However, the modelling techniques did not capture the level of importance of
these variables on the CO, emissions which we have reported in this study.



Processes 2020, 8, 1529 14 of 20

100% 100 88.7% 88.1% 7
100 7.275 78.6%
S o0 87.27% 80.39% s g0 738% o
s 58.74% ¥
L0 60 50.87% 3
E5 38
5 £ 40 N & 40
58 2 £
=3 Qo
g e 20
& £
8= o e E
& P 0
PPN I NN
S & Q} ¢ < @\ o N
Q N <& QQ S & S
© R Q)Q N <&
K
(a) (b)
99.4% 100% 100 100%
. 100 87.7% 82.6% s 8%
28 w0 69.5% o _® 6 66.5%
v — v S
28 2 60 47.9%
° & 5 g
g5 40 N G 40
28 5 €
c £ 5 2
sE 20 g £ 20
0 g o
N & N
(9 & & X 2 I
QoQ & 6 QOQ «® S

© (d)

Figure 9. The level of importance of the input variables on the predicted CO, emissions in (a) Malaysia,
(b) Thailand, (c) Indonesia, (d) Philippines.

4. Conclusions and Policy Implications

This study demonstrates the application of a non-linear autoregressive exogenous neural
network for modelling the prediction of CO, emissions in Malaysia, Thailand, Indonesia, and the
Philippines. Based on the non-linear relationships between the CO, emissions and the input variables
(energy and economic indicators), fifteen NARX model architectures were developed and trained
using historical data obtained for the four ASEAN countries. Among the various NARX model
trained, optimized configurations of 5-29-1, 5-19-1, 5-17-1, 5-13-1 were obtained using datasets for
Malaysia, Thailand, Indonesia, and the Philippines, respectively. Robust predictions of CO;, emissions
in Malaysia, Thailand, Indonesia, and the Philippines were achieved using the optimized NARX model
configurations. The predicted CO, emissions in the four ASEAN countries were in close agreement
with the actual values from the historical data, as indicated by the high values of R?. The findings
also show that the NARX models have high predictability with minimal residual and MSE due to its
excellent learning ability, rapid convergence, and superior generalization. The level of importance
analyses of the various factors revealed that the economic and energy indicators significantly influenced
CO; emissions in the four ASEAN countries. Nevertheless, coal consumption displayed the highest
level of importance on the CO, emissions in the four ASEAN countries. This calls for more commitment
by the government and stakeholders in each of the four ASEAN countries for more stringent legislation
and policies on the modalities to drastically reduce CO, emissions. Although, the governments of
each of the four countries investigated have made various commitments to reduce energy-related CO,
emissions. These include the mandatory use of smart street lighting systems and sustainable urban
transport policies in Indonesia; the national biofuel policy, national renewable energy policy and the
low carbon cities framework in Malaysia; the National Renewable Energy program in the Philippines;
Climate Change Master plan in Thailand. However, more commitment is needed to reduce the CO,
emissions in each of the four countries investigated. Governments of the four ASEAN countries should
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give it a serious thought of domesticating the climate-neutral now policy proposed by the United
Nation Climate Change which entails the measurements of the GHGs emissions, proposed action
plans to reduce the GHGs emissions as much as possible, and the implementation of carbon credit,
which involve compensating the GHGs emissions that cannot be avoided. Moreover, the ongoing
efforts by the four countries in incorporating renewable energy as part of the primary energy mix should
be intensified. The regional efforts should be strengthened to address the issues of CO, emissions in the
ASEAN region. Considering the peculiarity of each country, collective policies targeting the reduction
of CO, emissions could be formulated and each member committed to implementation. Based on the
level of importance analysis in this study, direct target and strategies on the gradual replacement of
coal as the main sources of energy in ASEAN countries should be put in place. Although, the NARX
model used in this study has been demonstrated to be robust in predicting the CO, emissions in
the four ASEAN countries investigated, the findings cannot be generalized and adapted for other
ASEAN countries dues to the uniqueness of each country’s data. However, the NARX model could
also be employed in a broader perspective by incorporating more data from other ASEAN countries.
This could provide a robust CO; emission prediction for the whole ASEAN region and hence provide
opportunity for a regional effort to develop modalities for reduction of CO, emissions in the region.
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Appendix A
Table A1. Detail results of the optimization of the hidden neurons at varying delay using training data for Malaysia.
Number of Delay 1 3 5 7 9 11 13 15
Hidden Neurons MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R
1 254x1073 0871 156x1073 0907 1.85x10™3 0899 232x1073 0.882 324x103 0813  280x1073 0844  1.77x1073 0818  342x1073  0.892
3 213x1073 0892 946x107% 0939 201x1072 0900 575x1073  0.641 3.84x073 0791 1.74 %1073 0912 424x107* 0979  135x1073 0936
5 1.78x1073 0914 247x107* 0875 1.24x1073 0921 3.68x107* 0978 572x1073 0905 142 %1073 0942  5.07x1073 0878 121x102 0516
7 1.80x1073  0.89% 288x103 0881 143x1073 0917 143x10% 0953 142x10°* 0994 215x107% 1.00 258 x 1073 0941  834x107Y7 0999
9 207x107% 0909 459x1073 0810 1.14x10™3 0924 128x107° 0999 266x1073  0.989 1.43 x 1073 0964  9.05x107* 0958  4.08x1073  0.897
11 1.68x1073 0912 1.08x1073 0932 124x103 0928 817x10™* 0961 146x1073 0964 2.78 x 1075 0.998 1.06 x 1074 0.995 7.46 x 1075 0.996
13 117x1073 0931 155x1073 0901 174x107* 0991 1.83x10™* 092 657x10°°> 0998 413 x107* 0.979 279%1073 09334  2.05x1077 0.999
15 1.75x1073 0892 122x10% 0933 1.05x102 0958 839x10™* 0974 416x1075  0.998 8.37x1073 0.702 251 x107* 0.997 2.08 x 1073 0.949
17 559x10™* 0964 247x1073 098 2.03x10"* 0989 1.63x107* 0952 1.32x107%  0.937 3.16 x 107° 0.998 1.32 x 1074 0.998 3.71x107° 0.999
19 1.08x1073 0936 436x102 0976 122x1073 0946 696x10™* 096  869x107° 0963  4.20x 1072 1.00 8.27 x107° 0.997 1.32x1073 0.974
21 1.65 0.898 1.10x1073 0945 346x107* 0989 145x1073 0931 155x10~% 0992  2.54x1073 0.883  838x107° 0999  424x107* 0977
23 238x107% 0887 788x10°* 0957 878x10™* 0975 325x107° 0983 315x10™* 0988 337x1077 0999 325x107® 0999  737x10°* 0986
25 454x10™* 0974 124x107® 0903 328x10™% 0885 7.19x107* 0969 117x10% 0978  299x107* 0987  4.41x107° 0999  586x107* 0977
27 9.17x10™* 0957 812x107° 099 848x10™* 0953 235x107* 0994 1.03x10™*  0.995 1.11x107* 0.986 3.63 x 1074 0.984 1.61 x 1072 0.699
29 137x1073 0925 871x10% 0965 1.15x107* 0998 428x10% 0924 484x1073 0915  2.09x10°® 0999  392x1072 0999  216x107*  0.998
Table A2. Detail results of the optimization of the hidden neurons at varying delay using training data for Thailand.
Number of Delays 1 3 5 7 9 11 13 15
Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R
1 23x107% 0381 707x10™% 0933 737x107* 0944 896x10° 0548 769x107° 0117  144x103 0898  1.12x107°%  0.967 24x1073 0.805
3 131x1073 0912 552x103  0.567 249 x 1073 0.806 223x1073 0.827 277x1073  0.741 1.56 0.905 3.69 x 1074 0.997 82x107* 0.957
5 1.101 0937 800x1073 0613 193x107° 0869 1.30x10° 0900 255x10™°> 0998 285x107° 0786  144x107* 0.99 9.2x 1071 0.999
7 814x10™* 0953 9.76x107*  0.948 1.5x 1073 0.899  1.14x10" 0931 121x107°  0.999 727 x 1074 0.936 4.06 x 1073 0.995 8.8 x 10712 0.999
9 237x1073 0863 419x1073 0973  165x1073 0851 159x10% 0875 1.77x1073 0.804 856x107> 0997  753x107*  0.958 6.2x1078 0.999
11 364x107% 0979 148x1073  0.898  1.86x1077 0999 151x108 0999 925x1075 0994  187x107% 0923  419x10°% 0772 59 %1075 0.997
13 788x1073  0.627 1.04x107* 0992  519x107* 0966 5.02x107* 0947 181x107° 0909 588x107* 0964 793x107°  0.999 47 %1073 0.813
15 1.88x1073 0892 171x10% 0881  486x1073 0613 1.05x1072 0968 854x107¢ 0923  3.02x107° 0998 114x1073 0914 25x1073 0.914
17 871x1073 0951 6.62x107* 0954 5.56 x 1074 095 394x1073 0817 530x107° 0997 1.11x 1073 0.937 5.08 x 1076 0.999 6.9 x10718 0.999
19 513x107% 0963 3.7x10710 0999 9.38 x 1075 0993 286x10™* 0984 852x107°  0.995 6.90 x 1074 0.956 42x1073 0.999 1.9 x 107° 0.879
21 886x10™* 0949 275x107*  0.959 3.03x 1073 0.847 245x107° 0999 444x107° 0963 8.09 x 1074 0.954 5.54 x 1075 0.997 7.9 x107° 0.994
23 326x107% 0984 554x1073 0775 632x1071 0999 1.32x107* 0998 152x107%  0.907 458 x 1078 0.999 1.21x 10~ 0.999 3.1x1077 0.999
25 262x107%  0.874 883x107*  0.949 7.36 x 1074 0945  436x10™* 0971 721x10°° 0999  6.86x10721  0.999 8.92x107* 0.931 9.5x107° 0.992
27 253%x107%  0.856 281x1073 0841 428x1071 0999 152x107* 0993 111x107> 0999  6.12x10"1 0999 1.08 x 107* 0.996 1.7 x 1073 0.994
29 1.98x10™% 0987 7.06x107* 0974  658x1073 0546 245x107> 0998 1.84x107% 0992  978x10™* 0999 272x10°°  0.999 24x1073 0.999
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Table A3. Detail results of the optimization of the hidden neurons at varying delay using training data for Indonesia.
Delay 1 3 5 7 9 1 13 15
Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R
1 271%x107% 0852 275x1073  0.811 6.84 x107% 0.946 1.47 x 1073 0.837 214 %1073 0.753 6.96 x 107° 0.993 214 %1073 0.697 1.25x 1073 0.932
3 991x10™* 0935 839x10™*  0.885 521x107% 0.935 8.73x 1074 0.929 3.44 x107* 0.952 7.33x1074 0.882 1.82x1073 0.865 8.37x107% 0.904
5 217x10™%  0.855 434x107* 0965 1.74 x 1073 0.832 2.85x 1073 0.869 1.18 x 1073 0.911 3.98 x 1073 0.684 6.76 x 1073 0.991 5.15x 1074 0.939
7 152%x1073 0909 171x107*  0.99 1.12x1073 0923  344x107%  0.563 1.28 x 1073 0984  259x1073 0.981 1.17x1073 0898  489x1073 0739
9 207x1073  0.868 154x1073 0.857 568x107° 099  346x10"3 0815 1.19 x 107% 0999  4.81x1073 0419  986x107* 0901 254x107% 0972
11 144x 1073 0901 828x10™> 0992  209x10%  0.991 9.12x1073 0991 8.07 x 107° 0991  9.27x10°° 0.995 7.8x 10710 0999  6.69x1073 0959
13 150%x 1073 0919 323x107% 0962  1.08x103 09326 116x1073 0931 1.41 x 1073 0.831  8.68x107* 0.86 1.82x107% 0965  473x1075 0998
15 554x10™* 0951 1.39x10™*  0.989 6.39 x 107° 0.999 2.01x1073 0.891 7.08 x 1075 0.993 5.01x 1073 0.97 254 %1073 0.902 7.45x 1073 0.995
17 451x107% 0571 1.04x1073 0911  1.86x10™% 098  2.09x10° 0999  138x103 0922 135x107° 0804 8.04x1077 0999  928x107>  0.99%
19 463x1073 0847 270x107* 0985  1.83x1073 0945  1.19x 1073 0.89 136x10713 0999  465x107% 0407  611x107% 0953  14x10713 0.999
21 213x1073 0812 718x107° 0999  123x107*  0.991 131x1073 0864 287x107* 0963  217x1073 0734  194x1073 0867 129x107*  0.99%
23 112x1073 0938 7.83x10™* 0947  401x107* 09728 198x103 0981 1.06 x 1073 0.819 1.8x 1071 0999  514x107* 0929  979x107°  0.987
25 5.94 0957  6.06x10™*  0.956 8.70 x 107* 0.992 3.03x1073 0.97 3.35x 1073 0.997 3.86 x 1074 0.969 5.35x 1078 0.999 1.75 x 1073 0.928
27 1.75x 1073 0.874 6.69x107* 0952 1.57 x 1073 0.857 1.83 %1073 0.986 1.41 %1073 0.847 246 x 1073 0.829 2.32x1073 0.759 2.12x10°° 0.999
29 437x10™* 0984 205x10™* 098  1.75x10°Y7 0999  125x10721  0.999 5.82x107* 0.954 3.05x 1073 0.967 3.02x1073 0.992 2.0x1071 0.999
Table A4. Detail results of the optimization of the hidden neurons at varying delay using training data for Philippines.
Delay 1 3 5 7 9 11 13 15
Hidden Neuron MSE R MSE R MSE R MSE R MSE R MSE R MSE R MSE R
1 355x10™* 0955 427x107% 0955 212x1073 0978 406x107° 0966  1.14x10°°  0.999 8.8x107° 0992  121x107* 0985  9.64x107° 0.989
3 373x10™* 096  695x107% 0937 208x1073 0981 664x107° 0937  692x1075 0992  235x107* 0973 1.05x10*% 0995  211x1073 0.976
5 313%x10™* 0967 232x107* 0973 113x1073 0904 256x107*  0.907 5.61 x107° 0.994 6.12x107* 0992  141x107¥ 0999 5.59 x 107° 0.995
7 876107 0914 341x107% 0969 164x10™* 0987 271x10* 0973 194x10°* 0979  7.09x107° 0994  4.08x107'1 0999  3.88x107° 0.996
9 261x10™* 0973 240x10°% 0999 145x1073 0906 7.52x107°  0.993 9.48 x 1075 0.993 498 x 107* 0.957 456 x 107 0.999 5.95x 107> 0.994
11 424%x10™* 0948 216x107* 0977 256x107* 0981 29x10°1  0.999 2.04x 1074 0.983 6.07 x 1075 0.995 1.21x 1074 0.992 551 x 107* 0.969
13 1.18x 107 0979 792x1075 0991 1.95x1075 0998 214x10™>  0.998 7.89 x 1075 0.993 8.48 x 1075 0.992 2.46 x 107+ 0978  1.32x10720  0.999
15 1.14x 1073 0827 248x107° 0997 331x10™% 0975 173x107* 0985  436x107° 0995 227x107° 0998  3.66x107° 099  9.91x10°8 0.999
17 317x10™* 0966 955x107% 0989 499x107® 0999 88x10710 0999  486x107° 099 = 665x107° 0994  432x107° 0997  121x107° 0.999
19 843x10™> 0989 594x107° 0993 456x107> 099 7.15x107* 0936 418x10710 0999  622x107° 0999  2.82x107° 0998  222x107* 0.979
21 359x10™% 0966 2.09x107* 0981 356x107% 0974 164x1073 0908  1.09x10°® 0999  2.11x10Y 0999  3.42x107° 099  1.49x 1078 0.999
23 705x107* 0992 147x107* 0983 1.81x107* 0982 145x1073  0.901 1.62x 1074 0.987 6.85x 1075 0.993 8.38 x 1070 0.999 522 x107% 0.972
25 238x10™% 0971 176x1075 0998 559x107* 0931 729%x107° 0995 697x107Y 0999  223x107° 0998 345x107* 0959  2.89x107°  0.998
27 580x10™% 0929 494x1075 0994 126x107% 0987 790x107° 0993 261x107> 0997 436 x 107 0999  491x107 0999  796x1076  0.999
29 124x107% 0988 629x107° 0994 1.78x10* 0981 218x10™* 0976  4.88x107* 0935  625x1077 0999 882x107X 0999  892x10°° 0.999
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