Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Ultrasound-Assisted Extraction (UAE)
2.3.1. Experimental Design
Extraction Solvent
Solid–Liquid Ratio
Extraction Time
Extraction Temperature
2.4. Acid Hydrolysis
2.4.1. Experimental Design
Acid Molarity
Incubation Time
Incubation Temperature
2.5. Yield Determination
2.6. Total Phenolic Content (TPC) Determination
2.7. Total Flavonoid Content (TFC) Determination
2.8. Quantitative and Qualitative Analysis of Total Apigenin, Total Luteolin, and Total Flavonoid C-Glycosides
2.9. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radical Scavenging Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Ultrasound-Assisted Extraction
3.1.1. The Effects of Solvent Extraction
3.1.2. The Effects of Solid–Liquid Ratio Extraction
3.1.3. The Effects of Extraction Time
3.1.4. The Effects of Extraction Temperature
3.1.5. Pearson Correlation Analysis
3.2. Effects of Acid Hydrolysis Conditions on Quantitative Determination of Flavonoid C-Glycosides in OPLs
3.2.1. Identification of Flavonoid C-Glycosides Using LC–MS/MS and UHPLC–UV/PDA Analysis
3.2.2. The Effects of Acid Molarity
3.2.3. The Effects of Incubation Time
3.2.4. The Effects of Incubation Temperature
3.2.5. Pearson Correlation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Onoja, E.; Chandren, S.; Razak, F.I.A.; Mahat, N.A.; Wahab, R.A. Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects. Waste Biomass Valorization 2019, 10, 2099–2117. [Google Scholar] [CrossRef]
- Hassan, N.; Idris, A.; Akhtar, J. Overview on Bio-refinery Concept in Malaysia: Potential High Value Added Products from Palm Oil Biomass. J. Kejuruter 2019, 2, 113–124. [Google Scholar]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.H.; Zuraini, Z.; Sasidharan, S.; Devi, P.V.K.; Latha, L.Y.; Ramanathan, S. Antimicrobial Activity of Elaeis Guineensis Leaf. Pharmacologyonline 2008, 386, 379–386. [Google Scholar]
- Sasidharan, S.; Logeswaran, S.; Latha, L.Y. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment. Int. J. Mol. Sci. 2011, 13, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Nilawatyi, R.; Xavier, R.; Latha, L.Y.; Amala, R. Wound Healing Potential of Elaeis guineensis Jacq Leaves in an Infected Albino Rat Model. Molecules 2010, 15, 3186–3199. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S. Oil Palm Leaf: A New Functional Food Ingredient for Health and Disease Prevention. J. Food Process. Technol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.B.; Comini, L.; Martini, R.; Montoya, S.N.; Bottini, S.; Cabrera, J.L. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrason. Sonochem. 2014, 21, 478–484. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Khoo, L.W.; Mediani, A.; Zolkeflee, N.K.Z.; Leong, S.W.; Ismail, I.; Khatib, A.; Shaari, K.; Abas, F. Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem. Lett. 2015, 14, 123–133. [Google Scholar] [CrossRef]
- Herrera, M.; De Castro, M.L. Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. J. Chromatogr. A 2005, 1100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.I.; Shaari, K.; Abas, F.; Parveez, G.K.A.; Ishak, Z.; Ramli, U.S. Characterization of Apigenin and Luteolin Derivatives from Oil Palm (Elaeis guineensis Jacq.) Leaf Using LC–ESI-MS/MS. J. Agric. Food Chem. 2012, 60, 11201–11210. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.S.C.; Lee, S.Y.; Teo, C.Y.; Shaari, K. Adsorption and Desorption Properties of Total Flavonoids from Oil Palm (Elaeis guineensis Jacq.) Mature Leaf on Macroporous Adsorption Resins. Molecules 2020, 25, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markham, K.R. Flavones, Flavonols and their Glycosides. In Methods in Plant Biochemistry; Academic Press Limited: Petone, New Zealand, 1989; pp. 197–235. [Google Scholar]
- Lee, Y.; Howard, L.; Villalón, B. Flavonoids and Antioxidant Activity of Fresh Pepper (Capsicum annuum) Cultivar. J. Food Sci. 2005, 60, 473–476. [Google Scholar] [CrossRef]
- Iwashina, T.; Uehara, A.; Kitajima, J.; Yukawa, T. Anthocyanins and Other Flavonoids from Amorphophallus titanum Having Largest Inflorescence in Plant Kingdom, and Other Two Species. Bull. Natl. Mus. Nat. Sci. B 2015, 41, 33–44. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Mediani, A.; Maulidiani, M.; Khatib, A.; Ismail, I.; Zawawi, N.; Abas, F. Comparison of partial least squares and random forests for evaluating relationship between phenolics and bioactivities of Neptunia oleracea. J. Sci. Food Agric. 2018, 98, 240–252. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.; Vieira, M.D.C.; Pereira, Z.V. Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, M.; Shaari, K.; Choi, Y.H.; Lajis, N. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Markom, M.; Hasan, M.; Daud, W.R.W.; Singh, H.; Jahim, J.M. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Sep. Purif. Technol. 2007, 52, 487–496. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleiferaLam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Benmeziane, F.; Djamai, R.; Cadot, Y.; Seridi, R. Optimization of extraction parameters of phenolic compounds from Algerian fresh table grapes, (Vitis Vinifera). Int. Food Res. J. 2014, 21, 1025–1029. [Google Scholar]
- Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Oueslati, S.; Soumaya, B.; Hajlaoui, H.; Abdelly, C. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci. Technol. 2010, 43, 632–639. [Google Scholar] [CrossRef]
- Javadi, N.; Abas, F.; Hamid, A.A.; Simoh, S.; Shaari, K.; Ismail, I.S.; Mediani, A.; Khatib, A. GC-MS-Based Metabolite Profiling ofCosmos caudatusLeaves Possessing Alpha-Glucosidase Inhibitory Activity. J. Food Sci. 2014, 79, C1130–C1136. [Google Scholar] [CrossRef]
- Radojković, M.; Zeković, Z.; Jokić, S.; Vidović, S.; Lepojević, Z.; Milošević, S. Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technol. Biotechnol. 2012, 50, 167–176. [Google Scholar]
- Jun, X. Caffeine extraction from green tea leaves assisted by high pressure processing. J. Food Eng. 2009, 94, 105–109. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K.; Jeganathan, P.M. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef]
- Nepote, V.; Grosso, N.R.; A Guzmán, C. Optimization of extraction of phenolic antioxidants from peanut skins. J. Sci. Food Agric. 2004, 85, 33–38. [Google Scholar] [CrossRef]
- Tahir, N.I.M. Liquid Chromatography-Mass Spectrometry Based Metabolomics of Oil Palm (Elaeis guineensis Jacq.) Leaf. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, April 2013. [Google Scholar]
- Ahir, N.I. Metabolome Analysis of Oil Palm Clone P325 of Different Planting Trials. J. Oil Palm Res. 2016, 28, 431–441. [Google Scholar]
- Silva, E.M.; Souza, J.N.S.; Rogez, H.; Rees, J.-F.; Larondelle, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007, 101, 1012–1018. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Uma, D.B.; Ho, C.W.; Wan, A.W.M. Optimization of extraction parameters of total phenolic compounds from henna (Lawsonia inermis) leaves. Sains Malays. 2010, 39, 119–128. [Google Scholar]
- Tan, M.C.; Tan, H.C.W. Effect of Extraction Solvent System, Time, and Temperature on Total Phenolic Content of Henna Stems. Int. Food Res. J. 2013, 20, 3117–3123. [Google Scholar]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Abad-García, B.; Berrueta, L.; López-Márquez, D.; Crespo-Ferrer, I.; Gallo, B.; Vicente, F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A 2007, 1154, 87–96. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Sun, B.; Spranger, M.I. Review: Quantitative Extraction and Analysis of Grape and Wine Proanthocyanidins and Stilbenes Revisão: Extracção E Análise Quantitativa De Proantocianidinas E Estilbenos Da Uva E Do Vinho. Ciênc. Téc. Vitiv. 2005, 20, 59–89. [Google Scholar]
- Cacace, J.E.; Mazza, G. Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. J. Food Sci. 2006, 68, 240–248. [Google Scholar] [CrossRef]
- Vargas, L.H.G.; Neto, J.C.R.; Ribeiro, J.A.D.A.; Ricci-Silva, M.E.; Souza, J.M.T.; Rodrigues, C.M.; De Oliveira, A.E.; Abdelnur, P.V. Metabolomics analysis of oil palm (Elaeis guineensis) leaf: Evaluation of sample preparation steps using UHPLC–MS/MS. Metabolomics 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Tahir, N.I.; Shaari, K.; Abas, F.; Ahmad, P.G.K.; Ahmad, T.H.; Ramli, U.S. Identification of oil palm (Elaeis guineensis) spear leaf metabolites using mass spectrometry and neutral loss analysis. J. Oil Palm Res. 2013, 25, 72–83. [Google Scholar]
- Chambi, F.; Chirinos, R.; Pedreschi, R.; Pallardel, I.B.; Debaste, F.; Campos, D. Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods. Ind. Crops Prod. 2013, 47, 168–175. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Nuutila, A.; Kammiovirta, K.; Oksman-Caldentey, K.-M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Measurement of Food Flavonoids by High-Performance Liquid Chromatography: A Review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef]
- Salcedo-Luna, J.; Castro-Montoya, A.J.; Rico, J.L.; Campos-García, J. Optimization of Acid Hydrolysis. Rev. Mex. Ing. Quím. 2010, 91, 91–97. [Google Scholar]
- Shin, J.Y.; Che, D.N.; Cho, B.O.; Kang, H.J.; Kim, J.; Jang, S.I. Anti-inflammatory effect of hydrolyzed celery leaves extract in murine primary splenocyte. J. Food Biochem. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- Talhi, O.; Silva, A.M.S. Advances in C -glycosylflavonoid Research. Curr. Org. Chem. 2012, 16, 859–896. [Google Scholar]
Pearson’s Coefficient (r) | TPC | TFC | |||||||
---|---|---|---|---|---|---|---|---|---|
Solvent | DPPH | 0.965 * | 0.640 * | ||||||
TFC | 0.696 * | ||||||||
Ratio | DPPH | 0.798 * | 0.775 * | ||||||
TFC | 0.538 * | ||||||||
Time | DPPH | 0.596 * | 0.585 * | ||||||
TFC | 0.930 * | ||||||||
Temperature | DPPH | 0.858 * | 0.779 * | ||||||
TFC | 0.983 * |
Peak | tR (min) | λmax, (nm) | [M-H]− (m/z) | Formula | Key MS/MS Fragments (m/z) | Proposed Compound |
---|---|---|---|---|---|---|
1 | 3.20 | 272, 348 | 609.1411 | C27H30O16 | 519.1104 489.0998, 429.0786, 399.0696, 369.0585 | Luteolin-6,8-di-C-hexose |
2 | 4.70 | 272, 336 | 593.1464 | C27H30O15 | 503.1155, 473.1051, 383.0739, 353.0638 | Apigenin-6,8-di-C-hexose |
3 | 7.40 | 270, 348 | 447.0896 | C21H20O11 | 357.0588, 339.0480, 327.0483, 297.0379, 285.0381 | Isoorientin (Luteolin-6-C-hexose) |
4 | 7.80 | 270, 350 | 447.0896 | C21H20O11 | 357.0587, 339.0476, 327.0485, 297.0378, 285.0380 | Orientin (Luteolin-8-C-hexose) |
5 | 10.40 | 270, 338 | 431.0947 | C21H20O10 | 341.0639, 323.0529, 311.0536, 283.0589 | Vitexin (Apigenin-8-C-hexose) |
6 | 11.60 | 270, 338 | 431.0947 | C21H20O10 | 341.0638, 323.0536, 311.0536, 283.0588 | Isovitexin (Apigenin-6-C-hexose) |
Pearson’s Coefficient (r) | TPC | TFC | TAC | TLC | TFCGC | |
---|---|---|---|---|---|---|
Acid molarity | DPPH | 0.766 | 0.479 | 0.619 | 0.538 | 0.611 |
Incubation time | DPPH | 0.621 | 0.485 | 0.643 | 0.280 | 0.664 |
Incubation temperature | DPPH | 0.922 * | 0.633 | 0.357 | 0.057 | 0.293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che Zain, M.S.; Jakariah, N.A.; Yeoh, J.X.; Lee, S.Y.; Shaari, K. Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity. Processes 2020, 8, 1540. https://doi.org/10.3390/pr8121540
Che Zain MS, Jakariah NA, Yeoh JX, Lee SY, Shaari K. Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity. Processes. 2020; 8(12):1540. https://doi.org/10.3390/pr8121540
Chicago/Turabian StyleChe Zain, Mohamad Shazeli, Nurul Azani Jakariah, Jen Xen Yeoh, Soo Yee Lee, and Khozirah Shaari. 2020. "Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity" Processes 8, no. 12: 1540. https://doi.org/10.3390/pr8121540
APA StyleChe Zain, M. S., Jakariah, N. A., Yeoh, J. X., Lee, S. Y., & Shaari, K. (2020). Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity. Processes, 8(12), 1540. https://doi.org/10.3390/pr8121540