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Abstract: Reliable estimation of kinetic parameters in chemical systems comprising both slow and
rapid reaction steps and rapidly reacting intermediate species is a difficult differential-algebraic
problem. Consequently, any conventional approach easily leads to serious convergence and stability
problems during the parameter estimation. A robust method is proposed to surmount this dilemma:
the system of ordinary differential equations and nonlinear algebraic equations is converted to ordinary
differential equations, which are solved in-situ during the parameter estimation. The approach was
illustrated with two generic examples and an example from green chemistry: synthesis of dimethyl
carbonate from carbon dioxide and methanol.
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1. Introduction

A reliable estimation of kinetic and thermodynamic parameters is one of the most important tasks
in chemical reaction engineering. Only in few cases, like in the case of some homogeneous gas-phase
reactions, is it possible to determine the kinetic constants a priori, exclusively from theoretical
calculations. Consequently, in most cases, an extensive matrix of experimental work is needed.
Particularly, in the presence of heterogeneous catalysts, small variations in the chemical composition
and physical structure of the catalyst can change the reaction kinetics, and a new experimental program
is inevitable. Typically, kinetic experiments are carried out in batch reactors or in continuous reactors
with a well-established flow pattern, i.e., perfect back-mixing or plug flow. After that, the kinetic
and thermodynamic parameters are determined by non-linear regression analysis. In the most recent
30 years, numerical methods and computing power have advanced tremendously. The development
of solvers for stiff differential equations has enabled the treatment of difficult problems in chemical
kinetics and simulation of large chemical systems appearing in combustion and atmospheric processes.
However, even a superficially small problem can become a difficult one, as the system usually
consists of a set of slow and rapid reaction steps. From a mathematical viewpoint, the system of
ordinary differential equations describing the behavior of the components in a batch reactor becomes
a system of differential-algebraic equations (DAE), for which solvers have been developed in recent
years. In principle, the task could be solved by coupling a DAE solver to a parameter estimator
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(a nonlinear regression routine). However, if the parameters glide to an unrealistic regime in the
course of the parameter estimation, significant problems arise: the solutions of the algebraic equations
induce problems, such as negative concentrations, which usually leads to the collapse of the whole
computational process. Our experience with different case studies [1] has taught that a more robust
approach is to convert the DAE problem to a set of ordinary differential equations (ODEs) and then
solve these ODEs as a sub-problem in the parameter estimation. Here we illustrate the method with
two generic examples and a highly relevant issue in chemical technology, namely the utilization of
carbon dioxide as a raw material for the synthesis of green chemicals.

2. Development of a Robust Method

The tasks in the method are briefly summarized as follows:

T1. Mass balances of all components in the batch reactor are written down (ODEs)
T2. A quasi-steady-state hypothesis is applied to the intermediates—the ODEs become a system of

DAEs is created
T3. The DAE system is converted to a set of implicit ODEs by differentiation
T4. The system of implicit ODEs is converted to a set of explicit ODEs
T5. The system of explicit ODEs is implemented in a combined stiff ODE solver—parameter estimation

software Modest.

2.1. Example: Consecutive Reactions with Slow and Rapid Steps

The following consecutive reaction scheme is considered in Figure 1. Step 1 is presumed to be
slow whereas step 2 is rapid.
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Figure 1. Consecutive reaction system.

The mass balances and rate equations of this consecutive reaction system can be written in the
general case as follows,

dCA
dt

= −r1 (1)

dCR

dt
= r1 − r2 (2)

dCS
dt

= r2 (3)

r1 = k1

(
CA −

CR

K1

)
(4)

r2 = k2

(
CR −

CS
K2

)
(5)

For the special case, where reaction step 1 is slow and step 2 is rapid, a reduced model can
be derived:

CS
CR

= K2 (6)

dCS
dt

= K2
dCR

dt
(7)

dCA
dt

+
dCR

dt
+

dCS
dt

= 0 (8)
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Substituting dCS
dt into Equation (8) yields

dCA
dt

+ (1 + K2)
dCR

dt
= 0 (9)

dCR

dt
= −

1
1 + K2

dCA
dt

= +
1

1 + K2
r1 (10)

dCS
dt

= +
K2

1 + K2
r1 (11)

As a summary we obtain for the special case of the consecutive reaction system, where step 1 is
slow and step 2 is rapid:

dCA
dt

= −r1

dCA
dt

= −r1

dCR

dt
=

1
1 + K2

r1

dCS
dt

=
K2

1 + K2
r1

r1 = k1

(
CA −

CR

K1

)
The general case was compared with the special case by increasing the value of the kinetic constant

k2 of the rapid reaction step 2 to find the value of k2 by which the solution of the general case approaches
that of the special case.

By setting k1 = 1 and assuming arbitrary values for the equilibrium constants K1 = 10 and K2 = 10,
the concentration profiles depicted in Figure 2 were obtained for the special case.
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Figure 2. Concentration profiles of the special case of consecutive reactions with parameters: k1 = 1,
K1 = 10 and K2 = 10.

As revealed by Figure 2, the system behaves like a parallel reaction system, which is caused by
the fact that as soon as R is formed, some part of it is immediately transformed to S.

The general case was simulated by increasing the value of the rate parameter k2 of the rapid
reaction step 2. Other parameters k1 = 1, K1 = 10 and K2 = 10 were kept the same as in the special case.
The sum of squared residuals was calculated for the difference between simulated data points of the
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special case and the general case (number of simulated data points was 101 in the time frame of 0–10 in
each case). Concentration profiles for the general case of consecutive reaction system corresponding to
k2 values of 1, 5, 10, 100 and 300 are depicted in Figure 3.

The sums of squared residuals of the general case simulations of consecutive reaction system with
k1 = 1, k2 = 1, 5, 10, 100 and 300, K1 = 10 and K2 = 10 compared to the special case are presented in
Table 1.
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Figure 3. Concentration profiles of the general case of consecutive reactions with parameters: k1 = 1,
k2 = 1, 5, 10, 100 and 300, K1 = 10 and K2 = 10.

The behavior of the sum of squared residuals as a function k2 is displayed in Figure 4. The general
case approaches the special case as the rate constant k2 of the rapid reaction step 2 exceeds 100 i.e., 100
times the value of the rate parameter k1 of the slow reaction step 1.
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Table 1. The sum of squared residuals of the general case simulations as compared to the special case
(k1 = 1, K1 = 10 and K2 = 10).

k2 S

1 3.6113
5 0.2373

10 0.0644
100 0.006522
300 0.00071645

2.2. Parallel Reactions with Slow and Rapid Steps

The second example is the classical parallel reaction scheme displayed in Figure 5. Step 1 is
presumed to be slow while step 2 is rapid.
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The mass balances and rate equations of this reaction system can be written in the general case
as follows,

dCA
dt

= −r1 − r2 (12)

dCR

dt
= r1 (13)

dCS
dt

= r2 (14)

r1 = k1

(
CA −

CR

K1

)
(15)

r2 = k2

(
CA −

CS
K2

)
(16)

For the special case, where reaction step 1 is slow and step 2 is rapid, a reduced model can be
derived for the parallel reaction system:

dCA
dt

+
dCR

dt
+

dCS
dt

= 0 (17)

CS
CA

= K2 (18)

dCS
dt

= K2
dCA
dt

(19)

Substituting dCS
dt into Equation (17) yields:

(1 + K2)
dCA
dt

+
dCR

dt
= 0 (20)

dCA
dt

= −
1

1 + K2

dCR

dt
= −

1
1 + K2

r1 (21)



Processes 2020, 8, 1552 6 of 16

dCS
dt

= −
K2

1 + K2
r1 (22)

At time t = 0,
CR(0) = 0 (23)

CS(0)

CA(0) −CS(0)
= K2 (24)

CS(0) =
K2C0A
1 + K2

(25)

CA(0) =
C0A

1 + K2
(26)

The initial conditions (25) and (26) arise from the fact that some amounts of component S is formed
immediately in the system, because step 2 progresses with an infinite rate. As a summary we obtain
for the special case of the parallel reaction system, where step 1 is slow and step 2 is rapid:

dCA
dt

= −
1

1 + K2
r1

dCR

dt
= r1

dCS
dt

= −
K2

1 + K2
r1

r1 = k1

(
CA −

CR

K1

)
CA(0) =

C0A
1 + K2

CR(0) = 0

CS(0) =
K2C0A
1 + K2

Initial values CA(0) and CS(0), CR(0) = 0 as a function of equilibrium constant K2 in the special
case of a parallel reaction system are depicted in Figure 6.Processes 2020, 8, x FOR PEER REVIEW 7 of 17 
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Some concentration profiles as an example for the special case of a parallel reaction system with
parameters k1 = 1, K1 = 10 and K2 = 2 are displayed in Figure 7.
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The general case of a parallel reaction system was compared with the special case as in the
previous example 2.1 by increasing the value of the rate parameter k2 of the rapid reaction step 2
to find the value of k2 by which the solution of the general case approaches that of the special case.
Concentration profiles for the general case of parallel reactions corresponding to k2 values of 2, 10 and
50 are depicted in Figure 8.
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Figure 8. Concentration profiles of the general case of a parallel reaction system with parameters:
k1 = 1, k2 = 2, 10 and 50, K1 = 10 and K2 = 2.

The sum of squared residuals calculated as in the example 2.1 between simulated data points
of the special case and the general case with different values of the rate parameter k2 while k1 = 1,
K1 = 10 and K2 = 2, (the number of simulated data points was 301 in the time interval of 0–15) are
shown in Table 2. The behavior of the sum of squared residuals as a function is displayed in Figure 9.
The general case approaches the special case in this example when k2 is >50.
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Table 2. The sum of squared residuals of the general case of parallel reaction system compared to the
special case with different values of k2 (k1 = 1, K1 = 10 and K2 = 2).

k2 S

2 3.31901
5 1.68380

10 1.14954
50 0.89085
100 0.88929

1000 0.888893
10,000 0.888889

This kind of parallel reaction system has been studied by Branco et al. [2], who developed a concept
for the determination of the switching point between kinetic and thermodynamic control for cases when
one of the reactions is very rapid, whereas the second one is thermodynamically favored. The same
phenomenon can be seen in Figure 6: S is the kinetically favored product, with a rapidly increasing
concentration in the beginning, but with an increasing reaction time the concentration of R becomes
higher because it is favored by thermodynamics, i.e., its formation has a higher equilibrium constant.
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Figure 9. The sum of the squared residuals as a function of the rate parameter k2 of the fast reaction
step 2 in the general case of a parallel reaction system compared to the special case (k1 = 1, K1 = 10 and
K2 = 2).

2.3. Example: Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide

Carbon dioxide reacts with methanol (MeOH) to yield dimethyl carbonate (DMC), which is a
green alternative to methyl tert-butyl ether (MTBE) and can be used as a carbonylating and methylating
agent [3,4]. The presence of a heterogeneous catalyst is required for the synthesis of DMC. We used
zirconia-based catalysts (ZrO2-MgO) in an isothermal and isobaric laboratory-scale batch reactor [5].
The thermodynamics for this reaction is extremely unfavorable, so a way to shift the equilibrium
is to include an additive to the reaction mixture; the role of the additive was to act as a chemical
dehydration agent, i.e., to capture the water formed in the reaction. Butylene oxide (BO) was selected
as the additive [5]. In this way, the process gains a more irreversible character and can be forced to the
side of the products. Methylene butylate (MB) appears as an intermediate species, forming butylene
glycol (BG) and thus preventing the water formation. The reaction scheme is displayed below in
Figure 10, where * denotes a vacant site on the surface of the catalyst, and MeOH* denotes adsorbed
methanol on the catalyst surface.
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Figure 10. Reaction scheme for the synthesis of dimethyl carbonate (DMC).

Steps 1–3 and 5 take place on the catalyst surface, while step 4 proceeds as a homogeneous
liquid-phase reaction. Reaction steps 2 and 4 in the scheme were assumed to be rate determining,
whereas the adsorption step of methanol was presumed to be rapid. In addition, steps 3 and 5 were
taken as rapid steps compared to steps 2 and 4. A constant-density system was assumed and the mass
balance of carbon dioxide was not included, since CO2 was constantly added to the system by keeping
the pressure constant. Thus, the saturation concentration of CO2 was presumed, and Henry’s law was
applied to relate the partial pressure of CO2 and the concentration of dissolved CO2. A large excess
of methanol was used. Based on the reaction mechanism displayed above, the rate equations for the
rate determining steps were derived. The details of the derivation of the rate equations are given as
supplementary material in Appendix A: Derivation of the Rate Equations.

2.3.1. Basic Mass Balances

The mass balances for bulk phase components in a batch reactor (assuming constant density)
at a constant CO2 concentration due to controlled pressure can be written as follows (ρB = mass of
catalyst-to-liquid volume, i.e., the catalyst bulk density)

d[DMC]
dt

= (r3 + r5)ρB (27)

d[BG]

dt
= r3ρB (28)

d[H2O]

dt
= r5ρB (29)

d[MeOH]

dt
= −r1ρB − r4 (30)

d[BO]

dt
= −r4 (31)

d[MB]
dt

= −r3ρB + r4 (32)

Applying a quasi-steady state to MC* and MeOH* gives relations (33) and (34),

rMC∗ = r2 − r3 − r5 ≈ 0 (33)

rMeOH∗ = r1 − r2 − r5 ≈ 0 (34)

Substituting Equations (33) and (34) into Equations (27)–(32) results in the following relationships:

d[DMC]
dt

= r2ρB (35)
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d[BG]

dt
= r3ρB (36)

d[H2O]

dt
= r5ρB (37)

d[MeOH]

dt
= −(r2 + r5)ρB − r4 (38)

d[BO]

dt
= −r4 (39)

d[MB]
dt

= −r3ρB + r4 (40)

2.3.2. Differential-Algebraic Problem

The addition of the mass balances further gives

d[MB]
dt

+
d[BG]

dt
= r4 (41)

d[MB]
dt

+
d[MeOH]

dt
= −2r2ρB (42)

d[H2O]

dt
+

d[BG]

dt
= r2ρB (43)

The ODEs (Equations (33) and (35)–(37)) give the stoichiometric relations

[DMC]∫
0

d[DMC] =
[H2O]∫

0
d[H2O] +

[BG]∫
0

d[BG]

[DMC] = [H2O] + [BG]

(44)

Equations (36), (39) and (40) give

−

[BO]∫
[BO]o

d[BO] =
[BG]∫
0

d[BG] +
[MB]∫
0

d[MB]

[BO]O = [BO] + [BG] + [MB]

(45)

From Equations (27), (30) and (32)–(34) is obtained

−2
[DMC]∫

0
d[DMC] =

[MeOH]∫
[MeOH]o

d[MeOH] +
[MB]∫
0

d[MB]

[MeOH]O = [MeOH] + 2[DMC] + [MB]

(46)

The following relationship between the concentrations was obtained by consideration of the
reaction mechanism [6] (α = K1K5/K3),

[DMC]
[BG]

= 1 + α
[MeOH]

[MB]
(47)

Equations (35), (39), (41)–(43) and (47) form a set of six differential-algebraic equations, with six
unknowns: ([DMC], [BO], [BG], [H2O], [MB], [MeOH]).

From Equation (47), the following expression can be obtained:

[BG]

[DMC]
=

1

1 + α
[MeOH]
[MB]

=
[MB]

[MB] + α[MeOH]
(48)
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From Equations (44) and (47), the following relationship is obtained:

[H2O]

[DMC]
= 1−

[BG]

[DMC]
(49)

[H2O]

[DMC]
=

α[MeOH]

[MB] + α[MeOH]
(50)

Equations (45) and (48) give the following relation:

[MB][DMC]
[MB] + α[MeOH]

+ [MB] = [BO]O − [BO] = ω (51)

i.e.,
[MB][DMC] + [MB]2 + α[MeOH][MB] = ω[MB] + α[MeOH]ω (52)

i.e.,
[MB]2 + ([DMC] −ω)[MB] + (α[MB] − αω)([MeOH]O − 2[DMC] − [MB]) = 0 (53)

Rearranging of Equation (53) gives

(1− α)[MB]2 + ([DMC] −ω+ αγ+ αω)[MB] − αγω = 0 (54)

where γ = [MeOH]O − 2[DMC]. The solution of the second-degree Equation (54) becomes

[MB] =
β±

√
β2 + 4(1− α)αγω

2(1− α)
(55)

where β = ω − [DMC] − α(γ+ω). The sign + in the nominator gives the physically meaningful
solution of Equation (55).

Equations (46), (48) and (50) give

[MeOH] = γ− [MB] (56)

[BG] =
[MB][DMC]

[MB] + α[MeOH]
(57)

[H2O] =
α[MeOH][DMC]
[MB] + α[MeOH]

(58)

A system of two ODEs Equations (35) and (39) can be solved by employing Equations (55)–(58).
Thus, the problem can in principle be solved as an ODE problem coupled to algebraic equations.

2.3.3. Transformation to ODEs

In order to obtain a more robust algorithm for parameter estimation, the differential-algebraic
problem is transformed to ODEs as follows.

From Equation (48),
[BG]

[DMC]
=

MB
MeOH

MB
MeOH + α

(59)

[BG] =
y

α+ y
[DMC] = f (y)[DMC] (60)

where y =
[MB]

[MeOH]
.
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The procedure is continued by differentiation as shown below,

d f
dt

=

dy
dt (α+ y) − dy

dt (y)

(α+ y)2 =
α

dy
dt

(α+ y)2 (61)

d[BG]

dt
=

d f
dt

[DMC] + f
d[DMC]

dt
(62)

d[BG]

dt
=
α[DMC]

(α+ y)2

dy
dt

+
y

α+ y
d[DMC]

dt
(63)

The definition y gives the relation

d[MB]
dt

=
dy
dt

[MeOH] + y
d[MeOH]

dt
(64)

dy
dt

=

d[MB]
dt

[MeOH]
− y

d[MeOH]
dt

[MeOH]
(65)

Equation (16) gives
d[MeOH]

dt
= −

d[MB]
dt

− 2r2ρB (66)

A combination of Equations (65) and (66) gives

dy
dt

=

d[MB]
dt

[MeOH]
+ y

(
d[MB]

dt + 2r2ρB

)
[MeOH]

(67)

Equations (41) and (63) give
d[BG]

dt = r4 −
d[MB]

dt

=
α[DMC]
(α+y)2

dy
dt +

y
α+y r2ρB

(68)

From Equation (68) dy/dt is solved:

dy
dt =

(α+y)2

α[DMC](
r4 −

y
α+y r2ρB −

d[MB]
dt

) (69)

Equations (67) and (69) are equal, therefore,

(1+y)
[MeOH]

d[MB]
dt + 2r2ρB

y
[MeOH]

=
(α+y)2

α[DMC]

(
r4 −

y
α+y r2ρB

)
−

(α+y)2

α[DMC]
d[MB]

dt

(70)

from which the time derivative is solved explicitly:[
(1+y)[DMC]

[MeOH]
+

(α+y)2

α

]
d[MB]

dt

= −
[
(α+y)y
α −

2y[DMC]
[MeOH]

]
r2ρB +

(α+y)2

α r4

(71)

[
α(1+y)[DMC]
(α+y)2[MeOH]

+ 1
]

d[MB]
dt

= r4 −
y

α+y

[
1− 2α

α+y
[DMC]
[MeOH]

]
r2ρB

(72)
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The final forms of the mass balances for the liquid-phase components in the batch reactor thus
become (α = constant):

d[DMC]
dt

= r2ρB (73)

d[BO]

dt
= −r4 (74)

d[MB]
dt = ω−1

{
r4 −

[ y
α+y

][
1− 2α

α+y
[DMC]
[MeOH]

]
r2ρB

}
ω =

[
α(1+y)[DMC]
(α+y)2[MeOH]

+ 1
]
y =

[MB]
[MeOH]

(75)

d[BG]

dt
= r4 −

d[MB]
dt

(76)

d[H2O]

dt
= r2ρB − r4 +

d[MB]
dt

(77)

d[MeOH]

dt
= −2r2ρB −

d[MB]
dt

(78)

The rates of the rate-determining steps (r2 and r4) were obtained from the mechanism—these rates
include only the concentrations of CO2, MeOH, DMC, MB, BO, BG and H2O, respectively (Appendix A:
Derivation of the Rate Equations). The rate equations are given below. The ODEs were solved with
the backward difference method during the parameter estimation, which was performed with the
Levenberg–Marquardt algorithm [7].

Rate equations:

r2 =
k2

(
[MeOH]PCO2 −

1
K

[DMC][BG]
[MB]

)
1 + K1[MeOH] + 1

K3

[DMC][BG]
[MB]

(79)

r4 = k4[BO][MeOH] (80)

2.3.4. Parameter Estimation Results

Rate parameters k2 and k4 were estimated from isothermal experiments shown as Equations (79)
and (80). The experimental temperature was 150 ◦C, and the pressure was 45 bar of CO2 initially.
Parameters K1 and 1/K3 (Table 3, Equations (47) and (48)) turned out not to be significant and were
approximated to zero in the rate expression r2. Parameter α was determined separately from the plot
according to Equation (47); α = 1.3 × 10−3. The thermodynamic equilibrium constant was estimated
from theoretical calculations: K = 0.08 × 10−5, at 150 ◦C.

Table 3. Parameter estimation results.

Parameter Value Error/%

k2 1.60 × 10−5 6.8
k4 1.12 × 10−2 6.7

K1 = 0, 1/K3 = 0, α = 1.3 × 10−3, K = 0.08 × 10−5, at 150 ◦C

The solution of ODEs and parameter estimation progressed very smoothly and led to an excellent
description of the experimental data. The errors of the kinetic parameters were clearly less than 10%.
The performance of the procedure is illustrated in Figure 11 The numerical values of the estimated
parameters are enlisted in Table 3. The overall degree of explanation was 99.98%.
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3. Conclusions

Solution of a differential-algebraic problem in connection to both fast and slow reaction steps is a
demanding task when coupled to a parameter estimation task. In order to surmount the numerical
problems often appearing for DAE systems, we propose a robust procedure, which implies the
transformation of the DAE system to a set of explicit ODEs that can be easily solved in-situ during the
estimation of kinetic parameters. The success of the methodology was illustrated with two generic
examples and a case study, synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide.
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wrote the paper. All authors have read and agreed to the published version of the manuscript.
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Notation

c concentration
c* concentration of an intermediate
f function
k reaction rate constant
r Rate
t Time
y concentration variable
α parameter in rate equation
β parameter in rate equation
γ merged concentration
ρB catalyst bulk density (mass of catalyst-to-liquid volume)
ω merged parameter
[] concentration

Appendix A. Derivation of the Rate Equations

MeOH + * = MeOH* (A1)

This rapid step is in quasi-equilibrium giving

K1 =
[MeOH∗]
[MeOH][∗]

(A2)
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from which the surface concentration is solved,

[MeOH∗] = K1[MeOH] (A3)

Analogously, for the rapid step
MB + MC* = DMC + BG + * (A4)

can be written

K3 =
[DMC][BG][∗]

[MC∗][MB]
(A5)

and the surface concentration of MC is solved,

[MC∗] =
[DMC][BG][∗]

K3[MB]
(A6)

The total balance of sites on the catalyst surface is (0* is the total concentration of available siters on
the surface)

[MeOH∗] + [MC∗] + [∗] = [0∗] (A7)

Equations (A3), (A6) and (A7) give the concentration of vacant sites,

[∗] =
[0∗]

K1[MeOH] + [DMC][BG]/(K3[MB])
(A8)

For the slow, rate determining step 2 is valid:

r2 = k′2[MeOH∗]PCO2 − k′
−2[MC∗] (A9)

r2 = (k′2K1[MeOH]PCO2 − k′
−2

[DMC][BG]

K3[MB]
)[∗] (A10)

The following merged constants are introduced

k′2/k′
−2 = K2,

K1K2K3 = K,
k′2K1[0∗] = k2

and introduced in Equation (A10). The final rate expression for step 2 becomes

r2 =
k2([MeOH]PCO2 −

[DMC][BG]
K[MB] )

1 + K1[MeOH] +
[DMC][BG]

K3[MB]

(A11)

The slow step
BO + MeOH = MB (A12)

takes place in the liquid bulk (not on the catalyst surface), and the rate is expressed in a straightforward way,

r4 = k4[BO][MeOH] (A13)
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