Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Procedure
2.3. Water Activity Measurement
2.4. Mathematical Modeling
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Conditions on Drying Kinetics
3.2. Mathematical Model Selection
3.3. Effective Diffusion Coefficient Deff
3.4. Water Activity Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasban, A.; Sadrnia, H.; Mohebbi, M.; Shahidi, S.A. Spectral method for simulating 3D heat and mass transfer during drying of apple slices. J. Food Eng. 2017, 212, 201–212. [Google Scholar] [CrossRef]
- Tomic, N.; Djekic, I.; Zambon, A.; Spilimbergo, S.; Bourdoux, S.; Holtze, E.; Hofland, G.; Sut, S.; Dall’Acqua, S.; Smigic, N.; et al. Challenging chemical and quality changes of supercritical CO2 dried apple during long-term storage. LWT 2019, 110, 132–141. [Google Scholar] [CrossRef]
- Akharume, F.; Singh, K.; Jaczynski, J.; Sivanandan, L. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT 2018, 90, 61–69. [Google Scholar] [CrossRef]
- Timoumi, S.; Mihoubi, D.; Zagrouba, F. Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. LWT Food Sci. Technol. 2007, 40, 1648–1654. [Google Scholar] [CrossRef]
- Noori, A.W.; Royen, M.J.; Haydary, J. An active indirect solar system for food products drying. Acta Chim. Slovaca 2019, 12, 142–149. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Martynenko, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-objective optimization of convective drying of apple cubes. Comput. Electron. Agric. 2018, 145, 341–348. [Google Scholar] [CrossRef]
- Kwok, B.H.L.; Hu, C.; Durance, T.; Kitts, D.D. Dehydration techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Sci. 2004, 69, SNQ122–SNQ126. [Google Scholar] [CrossRef]
- Wojdylo, A.; Figiel, A.; Oszmianski, J. Influence of temperature and time of apple drying on phenolic compounds content and their antioxidant activity. Pol. J. Food Nutr. Sci. 2007, 57, 601–605. [Google Scholar]
- Paunović, D.M.; Zlatković, B.P.; Mirković, D.D. Kinetics of drying and quality of the apple cultivars Granny Smith, Idared and Jonagold. J. Agric. Sci. Belgrade 2010, 55, 261–272. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Bi, J.; Liu, X.; Li, X.; Guo, C. Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT 2019, 108, 421–428. [Google Scholar] [CrossRef]
- Antal, T.; Kerekes, B.; Sikolya, L.; Tarek, M. Quality and Drying Characteristics of Apple Cubes Subjected to Combined Drying (FD Pre-Drying and HAD Finish-Drying). J. Food Process. Preserv. 2015, 39, 994–1005. [Google Scholar] [CrossRef]
- Polat, A.; Taskin, O.; Izli, N.; Asik, B.B. Continuous and intermittent microwave-vacuum drying of apple: Drying kinetics, protein, mineral content, and color. J. Food Process Eng. 2019, 42, e13012. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Jakubczyk, E. Effect of hot air temperature on mechanical properties of dried apples. J. Food Eng. 2004, 64, 307–314. [Google Scholar] [CrossRef]
- Toğrul, H. Simple modeling of infrared drying of fresh apple slices. J. Food Eng. 2005, 71, 311–323. [Google Scholar] [CrossRef]
- Wang, J.; Chao, Y. Drying characteristics of irradiated apple slices. J. Food Eng. 2002, 52, 83–88. [Google Scholar] [CrossRef]
- Velić, D.; Planinić, M.; Tomas, S.; Bilić, M. Influence of airflow velocity on kinetics of convection apple drying. J. Food Eng. 2004, 64, 97–102. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Nadian, M.H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S.S. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food Bioprod. Process. 2015, 94, 263–274. [Google Scholar] [CrossRef]
- Celma, A.R.; Cuadros, F.; López-Rodríguez, F. Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 2009, 87, 282–291. [Google Scholar] [CrossRef]
- Aktaş, M.; Ceylan, İ.; Yilmaz, S. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 2009, 239, 266–275. [Google Scholar] [CrossRef]
- Oforkansi, B.C.; Oduola, M.K. Mathematical model of thin-layer drying process in a plantain sample. Int. J. Eng. Res. 2016, 5, 364–366. [Google Scholar]
- Silva, F.P.D.; Siqueira, V.C.; Quinzani, G.A.; Martins, E.A.; Goneli, A.L. Drying kinetics of niger seeds. Eng. Agrícola 2017, 37, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Seiiedlou, S.; Ghasemzadeh, H.R.; Hamdami, N.; Talati, F.; Moghaddam, M. Convective drying of apple: Mathematical modeling and determination of some quality parameters. Int. J. Agric. Biol. 2010, 12, 171–178. [Google Scholar]
- Akpinar, E.K. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers. Manag. 2010, 51, 2407–2418. [Google Scholar] [CrossRef]
- Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave-vacuum dried apple. J. Food Eng. 2019, 244, 170–177. [Google Scholar] [CrossRef]
- Royen, M.J.; Noori, A.W.; Haydary, J. Batch drying of sliced tomatoes at specific ambient conditions. Acta Chim. Slovaca 2018, 11, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Shahari, N.A. Mathematical Modelling of Drying Food Products: Application to Tropical Fruits. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2012. [Google Scholar]
- Younis, M.; Abdelkarim, D.; El-Abdein, A.Z. Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci. 2018, 25, 332–338. [Google Scholar] [CrossRef]
- Mariem, S.B.; Mabrouk, S.B.; Khan, M. Drying characteristics of tomato slices and mathematical modeling. Int. J. Energy Eng. 2014, 4, 17–24. [Google Scholar]
- Akpinar, E.K.; Bicer, Y. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Convers. Manag. 2008, 49, 1367–1375. [Google Scholar] [CrossRef]
- Sacilik, K.; Keskin, R.; Elicin, A.K. Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng. 2006, 73, 231–238. [Google Scholar] [CrossRef]
- Doymaz, İ. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod. Process. 2010, 88, 124–132. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short-and medium-wave infrared radiation. LWT Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K.; Winiczenko, R.; Chojnacka, A. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Convers. Manag. 2013, 67, 179–185. [Google Scholar] [CrossRef]
- Lertworasirikul, S. Drying kinetics of semi-finished cassava crackers: A comparative study. LWT Food Sci. Technol. 2008, 41, 1360–1371. [Google Scholar] [CrossRef]
- Lahsasni, S.; Kouhila, M.; Mahrouz, M.; Jaouhari, J.T. Drying kinetics of prickly pear fruit (Opuntia ficus indica). J. Food Eng. 2004, 61, 173–179. [Google Scholar] [CrossRef]
- Atalay, H.; Coban, M.T.; Kıncay, O. Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy 2017, 134, 382–391. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Liao, X.; Chen, F.; Zhao, G.; Wu, J.; Hu, X. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 2007, 40, 39–46. [Google Scholar] [CrossRef]
- Babetto, A.C.; Freire, F.B.; Barrozo, M.A.S.; Freire, J.T. Drying of garlic slices: Kinetics and nonlinearity measures for selecting the best equilibrium moisture content equation. J. Food Eng. 2011, 107, 347–352. [Google Scholar] [CrossRef]
- Menlik, T.; Özdemir, M.B.; Kirmaci, V. Determination of freeze-drying behaviors of apples by artificial neural network. Expert Syst. Appl. 2010, 37, 7669–7677. [Google Scholar] [CrossRef]
- Assis, F.R.; Rodrigues, L.G.G.; Tribuzi, G.; de Souza, P.G.; Carciofi, B.A.M.; Laurindo, J.B. Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT 2019, 113, 108298. [Google Scholar] [CrossRef]
- Haydary, J.; Steltenpohl, P. Chemical Engineering II, 1st ed.; Ministry of higher education of Afghanistan: Kabul, Afghanistan, 2015. [Google Scholar]
- Corzo, O.; Bracho, N.; Alvarez, C. Water effective diffusion coefficient of mango slices at different maturity stages during air drying. J. Food Eng. 2008, 87, 479–484. [Google Scholar] [CrossRef]
- Fernando, W.J.N.; Low, H.C.; Ahmad, A.L. Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J. Food Eng. 2011, 102, 310–316. [Google Scholar] [CrossRef]
- Kaya, A.; Aydın, O.; Demirtaş, C. Drying kinetics of red delicious apple. Biosyst. Eng. 2007, 96, 517–524. [Google Scholar] [CrossRef]
- Gómez-Daza, J.C.; Ochoa-Martínez, C.I. Kinetic aspects of a dried thin layer carrot in a heat pump dryer. Dyna 2016, 83, 16–20. [Google Scholar] [CrossRef]
- Mohamed, L.A.; Kane, C.E.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N. Thin layer modelling of Gelidium sesquipedale solar drying process. Energy Convers. Manag. 2008, 49, 940–946. [Google Scholar] [CrossRef]
- Akoy, E.O.M. Experimental characterization and modeling of thin-layer drying of mango slices. Int. Food Res. J. 2014, 21, 1911–1917. [Google Scholar]
- Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291–1297. [Google Scholar] [CrossRef]
- Sacilik, K.; Elicin, A.K. The thin layer drying characteristics of organic apple slices. J. Food Eng. 2006, 73, 281–289. [Google Scholar] [CrossRef]
- Schössler, K.; Jäger, H.; Knorr, D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng. 2012, 108, 103–110. [Google Scholar] [CrossRef]
- Zeuthen, P.; Bøgh-Sørensen, L. (Eds.) Food Preservation Techniques; Woodhead Publishing Limited: Cambridge, UK, 2003. [Google Scholar]
- Akpinar, E.K.; Bicer, Y.; Midilli, A.D.N.A.N. Modeling and experimental study on drying of apple slices in a convective cyclone dryer. J. Food Process Eng. 2003, 26, 515–541. [Google Scholar] [CrossRef]
- Nowak, D.; Lewicki, P.P. Quality of infrared dried apple slices. Dry. Technol. 2005, 23, 831–846. [Google Scholar] [CrossRef]
No. of Run | Temperature (°C) | Air Velocity (m/s) | Thickness (mm) | Air relative Humidity (%) |
---|---|---|---|---|
1 | 40 | 0.60 | 6 | 40–45 |
2 | 40 | 0.85 | 6 | 40–45 |
3 | 40 | 1.10 | 6 | 40–45 |
4 | 45 | 0.60 | 6 | 40–45 |
5 | 45 | 0.85 | 6 | 40–45 |
6 | 45 | 1.10 | 6 | 40–45 |
7 | 50 | 0.60 | 6 | 40–45 |
8 | 50 | 0.85 | 6 | 40–45 |
9 | 50 | 1.10 | 6 | 40–45 |
Effect of thickness | ||||
10 | 50 | 1.10 | 4 | 35–38 |
11 | 50 | 1.10 | 6 | 35–38 |
12 | 50 | 1.10 | 8 | 35–38 |
13 | 50 | 1.10 | 10 | 35–38 |
14 | 50 | 1.10 | 12 | 35–38 |
Effect of air relative humidity | ||||
15 | 50 | 1.10 | 6 | 25–28 |
16 | 50 | 1.10 | 6 | 35–38 |
17 | 50 | 1.10 | 6 | 40–45 |
Runs for water activity measurement | ||||
18 | 40 | 0.85 | 6 | 40–45 |
19 | 45 | 0.85 | 6 | 40–45 |
20 | 50 | 0.85 | 6 | 40–45 |
21 | 40 | 1.10 | 6 | 40–45 |
22 | 45 | 1.10 | 6 | 40–45 |
23 | 50 | 1.10 | 6 | 40–45 |
No. | Model Name | Model | Reference |
---|---|---|---|
1 | Newton (Lewis) | [19,31] | |
2 | Page | [32,33] | |
3 | Modified Page | [34,35] | |
4 | Logarithmic | [23,36] | |
5 | Henderson and Pabis | [37,38] |
Model | Drying Temperature (°C) | Air flow Velocity (m/s) | Drying Constant (k) | Drying Coefficient (n, a, c) | R2 | X2 | RMSE |
---|---|---|---|---|---|---|---|
Newton | 40 | 0.60 | 0.00336 | - | 0.97296 | 0.00242 | 0.04908 |
45 | 0.60 | 0.00382 | - | 0.96203 | 0.00351 | 0.05917 | |
50 | 0.60 | 0.00479 | - | 0.96515 | 0.00313 | 0.05586 | |
Page | 40 | 0.60 | 0.00049 | 1.32869 | 0.99817 | 0.00016 | 0.01278 |
45 | 0.60 | 0.00040 | 1.39538 | 0.99549 | 0.00042 | 0.02039 | |
50 | 0.60 | 0.00060 | 1.37892 | 0.99643 | 0.00032 | 0.01788 | |
Modified Page | 40 | 0.60 | 0.00289 | 1.16368 | 0.97296 | 0.00242 | 0.04908 |
45 | 0.60 | 0.00308 | 1.23968 | 0.96203 | 0.00098 | 0.05917 | |
50 | 0.60 | 0.00345 | 1.38842 | 0.96515 | 0.00314 | 0.05586 | |
Logarithmic | 40 | 0.60 | 0.00371 | 1.10563 | 0.98434 | 0.00141 | 0.03736 |
45 | 0.60 | 0.00423 | 1.11139 | 0.97498 | 0.00233 | 0.04803 | |
50 | 0.60 | 0.00531 | 1.11041 | 0.97776 | 0.00201 | 0.04462 | |
Henderson and Pabis | 40 | 0.60 | 0.00371 | 1.10565 | 0.98434 | 0.00140 | 0.03736 |
45 | 0.60 | 0.00423 | 1.11139 | 0.97498 | 0.00232 | 0.04803 | |
50 | 0.60 | 0.00531 | 1.11041 | 0.97776 | 0.00201 | 0.04462 | |
Newton | 40 | 0.85 | 0.00380 | - | 0.98540 | 0.06675 | 0.03117 |
45 | 0.85 | 0.00520 | - | 0.97407 | 0.00236 | 0.04846 | |
50 | 0.85 | 0.00558 | - | 0.96617 | 0.00317 | 0.05619 | |
Page | 40 | 0.85 | 0.00120 | 1.20096 | 0.99895 | 0.00007 | 0.00834 |
45 | 0.85 | 0.00083 | 1.33731 | 0.99848 | 0.00014 | 0.01174 | |
50 | 0.85 | 0.00072 | 1.38314 | 0.99658 | 0.00032 | 0.01788 | |
Modified Page | 40 | 0.85 | 0.00307 | 1.23618 | 0.80533 | 0.00098 | 0.03117 |
45 | 0.85 | 0.00359 | 1.44698 | 0.97407 | 0.00236 | 0.04846 | |
50 | 0.85 | 0.00372 | 1.49887 | 0.96617 | 0.00318 | 0.05619 | |
Logarithmic | 40 | 0.85 | 0.00406 | 1.06945 | 0.99304 | 0.00047 | 0.02152 |
45 | 0.85 | 0.00575 | 1.11311 | 0.98542 | 0.00133 | 0.03635 | |
50 | 0.85 | 0.00618 | 1.11459 | 0.97840 | 0.00204 | 0.04490 | |
Henderson and Pabis | 40 | 0.85 | 0.00406 | 1.06945 | 0.99304 | 0.00047 | 0.02152 |
45 | 0.85 | 0.00575 | 1.11311 | 0.98542 | 0.00133 | 0.03635 | |
50 | 0.85 | 0.00618 | 1.11459 | 0.97840 | 0.00203 | 0.04490 | |
Newton | 40 | 1.10 | 0.00412 | - | 0.98471 | 0.00125 | 0.03532 |
45 | 1.10 | 0.00521 | - | 0.97948 | 0.00177 | 0.04198 | |
50 | 1.10 | 0.00642 | - | 0.96824 | 0.00266 | 0.05148 | |
Page | 40 | 1.10 | 0.00105 | 1.25230 | 0.99442 | 0.00046 | 0.02133 |
45 | 1.10 | 0.00124 | 1.26371 | 0.99687 | 0.00027 | 0.01638 | |
50 | 1.10 | 0.00109 | 1.34141 | 0.99522 | 0.00040 | 0.01998 | |
Modified Page | 40 | 1.10 | 0.00328 | 1.31841 | 0.98245 | 0.00144 | 0.03785 |
45 | 1.10 | 0.00360 | 1.44849 | 0.97948 | 0.00178 | 0.04198 | |
50 | 1.10 | 0.00399 | 1.60718 | 0.96824 | 0.00268 | 0.05148 | |
Logarithmic | 40 | 1.10 | 0.00463 | 1.07414 | 0.98693 | 0.00108 | 0.03266 |
45 | 1.10 | 0.00564 | 1.08396 | 0.98652 | 0.00117 | 0.03403 | |
50 | 1.10 | 0.00707 | 1.10481 | 0.97972 | 0.00172 | 0.04113 | |
Henderson and Pabis | 40 | 1.10 | 0.00463 | 1.07412 | 0.98692 | 0.00107 | 0.03267 |
45 | 1.10 | 0.00564 | 1.08396 | 0.98652 | 0.00117 | 0.03403 | |
50 | 1.10 | 0.00707 | 1.10480 | 0.97972 | 0.00171 | 0.04113 |
Model | Thickness (mm) | Drying Constant (k) | Drying Coefficient (n, a, c) | R2 | X2 | RMSE |
---|---|---|---|---|---|---|
Newton | 4 | 0.00725 | - | 0.95970 | 0.00366 | 0.06029 |
6 | 0.00644 | - | 0.96797 | 0.00288 | 0.05355 | |
8 | 0.00540 | - | 0.98094 | 0.00163 | 0.04036 | |
10 | 0.00417 | - | 0.97879 | 0.00175 | 0.04172 | |
12 | 0.00330 | - | 0.96746 | 0.00288 | 0.05362 | |
Page | 4 | 0.00097 | 1.40099 | 0.99473 | 0.00048 | 0.02180 |
6 | 0.00110 | 1.34178 | 0.99534 | 0.00042 | 0.02042 | |
8 | 0.00138 | 1.25262 | 0.99694 | 0.00026 | 0.01617 | |
10 | 0.00118 | 1.22320 | 0.99210 | 0.00065 | 0.02546 | |
12 | 0.00056 | 1.30152 | 0.98886 | 0.00099 | 0.03137 | |
Modified Page | 4 | 0.00498 | 1.45533 | 0.95970 | 0.00368 | 0.06029 |
6 | 0.00400 | 1.61058 | 0.96797 | 0.00290 | 0.05355 | |
8 | 0.00366 | 1.47381 | 0.98094 | 0.00164 | 0.04036 | |
10 | 0.00322 | 1.29577 | 0.97879 | 0.00175 | 0.04172 | |
12 | 0.00286 | 1.15224 | 0.96746 | 0.00289 | 0.05362 | |
Logarithmic | 4 | 0.00804 | 1.10655 | 0.97304 | 0.00248 | 0.04931 |
6 | 0.00711 | 1.10273 | 0.97960 | 0.00186 | 0.04274 | |
8 | 0.00582 | 1.08208 | 0.98748 | 0.00108 | 0.03270 | |
10 | 0.00440 | 1.05694 | 0.98233 | 0.00146 | 0.03808 | |
12 | 0.00357 | 1.08547 | 0.97469 | 0.00225 | 0.04729 | |
Henderson and Pabis | 4 | 0.00804 | 1.10655 | 0.97304 | 0.00246 | 0.04931 |
6 | 0.00711 | 1.10273 | 0.97960 | 0.00185 | 0.04274 | |
8 | 0.00582 | 1.08208 | 0.98748 | 0.00108 | 0.03270 | |
10 | 0.00440 | 1.05694 | 0.98233 | 0.00146 | 0.03808 | |
12 | 0.00357 | 1.08547 | 0.97469 | 0.00225 | 0.04729 |
Model | Relative Humidity (%) | Drying Constant (k) | Drying Coefficient (n, a, c) | R2 | X2 | RMSE |
---|---|---|---|---|---|---|
Newton | 25–28 | 0.00823 | - | 0.97114 | 0.00248 | 0.04962 |
35–38 | 0.00668 | - | 0.97523 | 0.00220 | 0.04672 | |
40–45 | 0.00642 | - | 0.96824 | 0.00266 | 0.05148 | |
Page | 25–28 | 0.00198 | 1.29042 | 0.99231 | 0.00067 | 0.02561 |
35–38 | 0.00141 | 1.30652 | 0.99775 | 0.00020 | 0.01407 | |
40–45 | 0.00109 | 1.34141 | 0.99522 | 0.00040 | 0.01998 | |
Modified Page | 25–28 | 0.00452 | 1.82000 | 0.97114 | 0.00250 | 0.04962 |
35–38 | 0.00407 | 1.64022 | 0.97523 | 0.00221 | 0.04672 | |
40–45 | 0.00399 | 1.60718 | 0.96824 | 0.00268 | 0.05148 | |
Logarithmic | 25–28 | 0.00888 | 1.07675 | 0.97839 | 0.00188 | 0.04294 |
35–38 | 0.00732 | 1.09008 | 0.98503 | 0.00134 | 0.03631 | |
40–45 | 0.00707 | 1.10481 | 0.97972 | 0.00172 | 0.04113 | |
Henderson and Pabis | 25–28 | 0.00888 | 1.07676 | 0.97839 | 0.00187 | 0.04294 |
35–38 | 0.00732 | 1.09007 | 0.98503 | 0.00133 | 0.03631 | |
40–45 | 0.00707 | 1.10480 | 0.97972 | 0.00171 | 0.04113 |
Model | Drying Temperature Range (°C) | Air velocity Range (m/s) | Thickness Range (mm) | Air relative Humidity Range (%) |
---|---|---|---|---|
Haydary | 40–50 | 0.6–1.1 | 4–12 | 27.5–42.5 |
Tmin (°C) | vmin (m/s) | dmin (mm) | φmin (%) | |
40 | 0.6 | 4 | 27.5 | |
k | p | n | r | |
0.001357 | 1.287293 | 0.72286 | 0.018861 | |
R2 | X2 | RMSE | - | |
0.977496 | 0.002001 | 0.044714 | - |
Exp. Run | Temperature (°C) | Air Velocity m/s | Thickness (mm) | Relative Humidity (%) | Drying Time (h) |
---|---|---|---|---|---|
1 | 40 | 0.60 | 6 | 40–45 | 13.33 |
2 | 45 | 0.60 | 6 | 40–45 | 11.10 |
3 | 50 | 0.60 | 6 | 40–45 | 9.00 |
4 | 40 | 0.85 | 6 | 40–45 | 12.20 |
5 | 45 | 0.85 | 6 | 40–45 | 10.07 |
6 | 50 | 0.85 | 6 | 40–45 | 8.67 |
7 | 40 | 1.10 | 6 | 40–45 | 11.57 |
8 | 45 | 1.10 | 6 | 40–45 | 9.36 |
9 | 50 | 1.10 | 6 | 40–45 | 6.90 |
Exp. Run | Temperature (°C) | Air Velocity m/s | Thickness (mm) | Relative Humidity (%) | Drying Time (h) |
---|---|---|---|---|---|
1 | 50 | 1.10 | 12 | 35–38 | 14.57 |
2 | 50 | 1.10 | 10 | 35–38 | 11.23 |
3 | 50 | 1.10 | 8 | 35–38 | 9.40 |
4 | 50 | 1.10 | 6 | 35–38 | 6.40 |
5 | 50 | 1.10 | 4 | 35–38 | 5.23 |
No. | Temperature (°C) | Air Velocity m/s | Thickness (mm) | Relative Humidity (%) | Drying Time (h) |
---|---|---|---|---|---|
1 | 50 | 1.10 | 6 | 40–45 | 6.90 |
2 | 50 | 1.10 | 6 | 35–38 | 5.53 |
3 | 50 | 1.10 | 6 | 25–28 | 4.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royen, M.J.; Noori, A.W.; Haydary, J. Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes 2020, 8, 1562. https://doi.org/10.3390/pr8121562
Royen MJ, Noori AW, Haydary J. Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes. 2020; 8(12):1562. https://doi.org/10.3390/pr8121562
Chicago/Turabian StyleRoyen, Mohammad Jafar, Abdul Wasim Noori, and Juma Haydary. 2020. "Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices" Processes 8, no. 12: 1562. https://doi.org/10.3390/pr8121562
APA StyleRoyen, M. J., Noori, A. W., & Haydary, J. (2020). Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes, 8(12), 1562. https://doi.org/10.3390/pr8121562