Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass
Abstract
:1. Introduction
2. Methods and Assumptions
2.1. Experimental Setup and Process Simulation Model
2.2. Economic Analysis
2.3. Lifecycle Assessment
2.4. Scenario and Sensitivity Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MVP | Minimum viable price |
CED | Cumulative energy demand |
GHG | Greenhouse gas emissions |
CHP | Combined heat and power |
Cs/ASA | Cesium/amorphous silica alumina |
FOB | Free on board |
TCI | Total capital investment |
TDIC | Total direct and indirect costs |
FCI | Fixed capital investment |
EUR: Euro | Euro |
GJ | Gigajoule |
MJ | Megajoule |
MT | Metric tonne |
IRR | Internal rate of return |
NPV | Net present value |
LCA | Lifecycle assessment |
HHV | Higher heating value |
DO | Direct oil |
SC | Selectively catalyzed |
SH | Selectively hydrotreated |
HT | Hydrotreating |
m2a | Square meters annual |
References
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 211. [Google Scholar]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlack, R.D.; Stokes, B.J. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; ORNL/TM-2011/224; U.S. Department of Energy: Washington, DC, USA, 2011.
- Eisentraut, A. Sustainable Production of Second Generation Biofuels Potential and Perspectives in Major Economies and Developing Countries; International Energy Agency: Paris, France, 2010. [Google Scholar]
- Wright, M.M.; Daugaard, D.E.; Satrio, J.A.; Brown, R.C. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 2010, 89 (Suppl. 1), S2–S10. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.B.; Valkenburg, C.; Walton, C.W.; Elliot, D.; Holladay, J.E.; Stevens, D.J.; Kinchin, C.; Czernik, S. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case; Technical Report; U.S. Department of Energy Office: Richland, WA, USA, February 2009.
- Patel, A.D.; Zabeti, M.; Seshan, K.; Patel, M.K. Comparative Technical Process and Product Assessment of Catalytic and Thermal Pyrolysis of Lignocellulosic Biomass. Processes 2020, 8, 1600, submitted. [Google Scholar]
- Patel, A.D.; Meesters, K.; den Uil, H.; de Jong, E.; Worrell, E.; Patel, M.K. Early-Stage Comparative Sustainability Assessment of New Bio-based Processes. ChemSusChem 2013, 6, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Rotness, L.J.; Zacher, A.H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ. Prog. Sustain. Energy 2009, 28, 441. [Google Scholar] [CrossRef]
- Ringer, M.; Putsche, V.; Scahill, J. Large-Scale Pyrolysis Oil Production: A Technology November 2006 Assessment and Economic Analysis; NREL/TP-510-37779; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2006.
- Hsu, D.D. Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing. Biomass Bioenergy 2012, 45, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Mu, D.; Seager, T.; Rao, P.; Zhao, F. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion. Environ. Manag. 2010, 46, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.S.; Zabeti, M.; Lefferts, L.; Brem, G.; Seshan, K. Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 2013, 48, 100–110. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Zabeti, M.; Lefferts, L.; Brem, G.; Seshan, K. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresour. Technol. 2013, 142, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zabeti, M.; Nguyen, T.S.; Lefferts, L.; Heeres, H.J.; Seshan, K. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresour. Technol. 2012, 118, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattiya, A.; Titiloye, J.O.; Bridgwater, A.V.J. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. Appl. Pyrolysis 2008, 81, 72–79. [Google Scholar] [CrossRef]
- Triantafyllidis, K.S.; Iliopoulou, E.F.; Antonakou, E.V.; Lappas, A.A.; Wang, H.; Pinnavaia, T.J. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous Mesoporous Mater. 2007, 99, 132–139. [Google Scholar] [CrossRef]
- Wright, M.; Brown, R.C. Establishing the optimal sizes of different kinds of biorefineries. Biofuels Bioprod. Biorefining 2007, 1, 191–200. [Google Scholar] [CrossRef]
- Bradley, D. IEA Bioenergy Task 40: Low Cost, Long Distance Biomass Supply Chains; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Lozowski, D. Chemical Engineering’s Plant Cost Index. Available online: http://www.che.com/pci/2013 (accessed on 5 February 2014).
- Eurostat Industrial Producer Price Index Overview. Statistics Explained. Available online: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Industrial_producer_price_index_overview2014 (accessed on 5 February 2014).
- Merrow, E.W. An Analysis of Cost Improvement in Chemical Process Technologies; R-3357-DOE; Rand Corporation: Santa Monica, CA, USA, 1989. [Google Scholar]
- Patel, A.D.; Serrano-Ruiz, J.C.; Dumesic, J.A.; Anex, R.P. Techno-economic analysis of 5-nonanone production from levulinic acid. Chem. Eng. J. 2010, 160, 311–321. [Google Scholar] [CrossRef]
- Ereev, S.Y.; Patel, M.K. Standardized cost estimation for new technologies (SCENT) methodology and tool. J. Bus. Chem. 2012, 9, 31. [Google Scholar]
- Humbrid, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass toEthanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover; NREL/TP-5100-47764; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011.
- Aspen Technology. Aspen Plus Version 7; Aspen Technology: Bedford, MA, USA, 2013. [Google Scholar]
- Peters, M.; Timmerhaus, K.; West, R. Plant Design and Economics for Chemical Engineers; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Vinterback, J.; Charlotta, P. EUBIONET3: WP3: Wood Fuel Price Statistics in Europe; IEE/07/777/SI2.499477; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011. [Google Scholar]
- Patel, A.D.; Telalovic, S.; Bitter, J.H.; Worrell, E.; Patel, M.K. Analysis of sustainability metrics and application to the catalytic production of higher alcohols from ethanol. Catal. Today 2015, 239, 56–79. [Google Scholar] [CrossRef]
- Dutch Association of Cost Engineers. DACE prijzenboekje; Dutch Association of Cost Engineers: Nijkerk, The Netherlands, 2011. [Google Scholar]
- ICIS. CW Price Reports. Chemical Week 2015–2019; ICIS: Sutton, UK, 2019. [Google Scholar]
- Alibaba Group Chemicals. 2018. Available online: www.alibaba.com/Chemicals_p8 (accessed on 18 August 2018).
- Kazi, F.K.; Patel, A.D.; Serrano-Ruiz, J.C.; Dumesic, J.A.; Anex, R.P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 2011, 169, 329–338. [Google Scholar] [CrossRef]
- Ecoinvent. Ecoinvent Database Version 2; Ecoinvent: Zurich, Switzerland, 2018. [Google Scholar]
- European Union. European Union DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Union: Brussels, Belgium, 2009. [Google Scholar]
- Waters, M.E. World Port Source. 2013. Available online: http://www.worldportsource.com/waterways/systems/maps/Rhine_River_System_11.php (accessed on 8 February 2014).
- International Standards Organization. Environmental Management—Life Cycle Assessment—Principles and Framework, International Standardisation Organisation 14040; International Standards Organization: Geneva, Switzerland, 2006. [Google Scholar]
- International Standards Organization. Environmental Management—Life Cycle Assessment—Principles and Framework, International Standardisation Organisation 14044; International Standards Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Pitman, R.M. Wood ash use in forestry—A review of the environmental impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Risse, M.L.; Gaskin, J.W. Best Management Practices for Wood Ash as Agricultural Soil Amendment; The University of Georgia: Athens, GA, USA, 2013. [Google Scholar]
- Huijbregts, M.A.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.; Hungerbuhler, K.; Hendriks, A.J. Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environ. Sci. Technol. 2010, 44, 2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.D.; Meesters, K.; den Uil, H.; de Jong, E.; Blok, K.; Patel, M.K. Sustainability assessment of novel chemical processes at early stage: Application to biobased processes. Energy Environ. Sci. 2012, 5, 8430. [Google Scholar] [CrossRef] [Green Version]
Process Sections (Installed Costs) | Cost (in Million EUR) |
---|---|
Pretreatment | 3.4 |
Pyrolysis | 9.6 |
Oil separation | 2.5 |
Hydrogen production | 4.6 |
CHP unit | 20.7 |
Hydro-treating | 1.5 |
Storage | 6.4 |
Total installed equipment cost | 35.0 |
Total direct and indirect costs | 54.8 |
Contingency | 11.0 |
Fixed capital investment (FCI) | 65.8 |
Working capital | 9.9 |
Total capital investment | 75.7 |
Cost (in Million EUR/Year) | |
---|---|
Feedstock | 13.4 |
Utilities | 0.1 |
Waste disposal | 0.4 |
Labor costs | 2.3 |
Overhead and maintenance (O&M) | 2.1 |
Catalyst costs | 0.2 |
Other | 0.6 |
Total expenses before credit | 19.1 |
By-product credit | 17.9 |
Net total expenses | 1.2 |
Product | EUR/kg | EUR/liter | EUR/GJ |
---|---|---|---|
HT_Oil_Cs/ASA | 2.3 | 3.3 | 75.3 |
Gasoline | 0.9 | 0.7 | 18.7 |
Ethanol | 0.8 | 0.6 | 27.6 |
Impact | Units (Per MJ Product) | HT_Oil_Cs/ASA | Gasoline |
---|---|---|---|
Cumulative energy demand | MJ | 7.7 | 1.2 |
Non-renewable energy use | MJ | −6.6 | 1.2 |
Renewable energy use | MJ | 14.6 | 0.0 |
Greenhouse gas emissions | kg CO2 eq. | −0.4 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, A.D.; Zabeti, M.; Seshan, K.; Patel, M.K. Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass. Processes 2020, 8, 1612. https://doi.org/10.3390/pr8121612
Patel AD, Zabeti M, Seshan K, Patel MK. Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass. Processes. 2020; 8(12):1612. https://doi.org/10.3390/pr8121612
Chicago/Turabian StylePatel, Akshay D., Masoud Zabeti, K. Seshan, and Martin K. Patel. 2020. "Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass" Processes 8, no. 12: 1612. https://doi.org/10.3390/pr8121612
APA StylePatel, A. D., Zabeti, M., Seshan, K., & Patel, M. K. (2020). Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass. Processes, 8(12), 1612. https://doi.org/10.3390/pr8121612