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Abstract: This paper provides a multi-aspect comparison of selected methods of ethyl acetate
production and shows the possibility of further reactive distillation process integration and
sophisticated intensification including process stream regeneration. The production pathways
were selected with respect to their practical applicability and sufficient experimental and feasibility
studies already published. A total of four case studies were designed and compared: conventional
process set-up (ethyl acetate is produced in a chemical reactor) is designed as a base case study; reactive
distillation with a separation unit is derived from the conventional process set-up. The mechanical
and chemical approach to reactive distillation process intensification and integration were assumed:
reactive distillation column with a stripper and reactive distillation column with an auxiliary chemical
reaction (ethylene oxide hydration). Process models were compiled in the Aspen Plus software.
Complex process flowsheets of selected case studies including separation and regeneration were
designed and optimized. Three different points of view were applied to evaluate the selected process
benefits and drawbacks. Process energy, economy, and safety were assessed. As a result, a reactive
distillation column with an auxiliary chemical reaction has been proven to be the most suitable
pathway for ethyl acetate production assuming all three evaluated aspects.

Keywords: reactive distillation; process integration and intensification; ethyl acetate; auxiliary
reaction; ethylene oxide; energy-economy-safety aspects

1. Introduction

Ethyl acetate is known as one of the key organic solvents. It is widely used in various
industries mainly due to its reasonable price, low toxicity, and suitable properties as a solvent [1].
Global consumption of ethyl acetate has been steadily increasing over the last decades [2]. At present,
the world’s annual production capacity is estimated at 3 million tons, which increases due to the
growing consumption of ethyl acetate expected in the following years. Therefore, it is necessary to
intensify existing ethyl acetate production and to design new plants employing more efficient processes
compared to the conventionally used ones.

The use of direct Fischer esterification is still the most commonly used method to produce
ethyl acetate. Ethanol and acetic acid are used as reactants in the presence of an acidic catalyst.
Other chemical paths for ethyl acetate production implemented on an industrial scale are based
on ethylene acetylation or ethanol dehydrogenation respectively. However, these paths have been
denoted as non-economic and even potentially dangerous [3]. Therefore, esterification is still preferred,
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especially due to the possibility of using different catalysts, the availability of raw materials from
renewable sources, and the potential for process intensification [4]. At present, much attention is given
to overcoming the limitations associated with the equilibrium esterification reaction; in particular,
separation of azeotropic mixtures formed during the production process, distillation boundaries,
by-product removal, energy consumption reduction, and improvement of process economy [5–7].

Several techniques are used to solve the separation of azeotropic mixtures containing water,
ethyl acetate, and ethanol, for example, azeotropic distillation, pressure swing distillation, and extractive
distillation. All these techniques are well known and the latest knowledge in this field including
heat integration [8], thermal coupling [9], dividing wall columns [10], pervaporation modules [11,12],
use of a new class of solvents (ionic liquids) [13,14] can be applied effectively. Although the separation
of azeotropic mixtures is possible, high energy consumption and a high number of devices should
be expected.

To overcome distillation boundaries and reduce energy demands and the number of equipment
units, reactive distillation (RD) can be used [6]. The concept of RD combining simultaneous chemical
reaction and separation in one unit has shown great potential in the production of esters [15,16].
Industrial-scale plants combining a reactive distillation column with a separation unit can be found all
over the world [16,17]. However, even though RD itself has brought benefits compared to conventional
production processes, it still shows potential for intensification. Taking RD to the next level of
process intensification requires more advanced RD configurations allowing an additional range of
operating conditions (not available in classic RD setups) [16]. Improvements can be achieved by
physical, chemical, or mechanical methods [4,18]. Physical methods are based on improving the
separation of reactive distillation products by adding a selective solvent (azeotropic reactive distillation
(ARD), reactive extractive distillation (RED)), or by changing operation conditions (pressure-swing
RD). The production of 2-phenylethyl acetate via azeotropic reactive distillation can be listed as
an illustrative example [19]. Employing an auxiliary chemical reaction in the RD system is used as the
chemical path of intensification. One by-product of the main reaction is consumed by the auxiliary
reaction; another valuable product can be obtained. Reactive distillation with an auxiliary reaction
(RDAR) is a very innovative method that can improve the main reaction and separation at the same
time [4,20]. Mechanical ways of RD intensification are focused on the use of special internal equipment
of columns to ease the separation (reactive distillation with a dividing wall (RDWC) and reactive
distillation with pervaporation (RDPV)); which intensify the chemical reaction (special catalyst beds in
case of a heterogeneous catalyst) [4]. Special attention is given to integrated columns with strippers
(RDS), recompression of superheated vapor, etc. [18,21].

1.1. Current Ethyl Acetate Production Methods

Usually, the esterification reaction of acetic acid by ethanol is used to form ethyl acetate. The process
composed of a continuous stirred tank reactor (CSTR) and several separation columns is reported
as the most widespread ethyl acetate commercial production method [15]. At least three distillation
columns are needed to separate the reaction mixture from the CSTR. First, unreacted acetic acid has
to be regenerated—this separation is a high energy-consuming [4,15] and azeotropic distillation is
recommended to reduce energy consumption in the first column [17]. One of the process products
(ethyl acetate) is used as an azeotropic agent. A decanter has to be deployed to overcome the distillation
boundary and thus allow separation of pure ethyl acetate in a second distillation column. The third
column is usually used for water regeneration. Despite several options for columns and recycles
integration, this process is energy-intensive [5]. Moreover, large recycles are used due to the distillation
boundary and the equipment has also to be relatively large. Reactive distillation is used as the
second method for ethyl acetate industrial production [16]. RD column, decanter, and two distillation
columns are employed. A water-ethanol-ethyl acetate azeotropic mixture is obtained in the RD column
and it is then separated in a similar way as in the conventional method. However, many other RD
configurations have been tested at a laboratory scale, including all three of the above-mentioned
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ways of improvement and intensification [4]. The research has been mainly focused on RDWC [22];
RDAR [23,24]; RDS [4,18], and RED [25]. However, so far, only a classic RD column with a separation
unit is used at the industrial scale. This is mainly due to the simplicity of design and control of this
approach compared to integrated RD configurations [15,16]. However, with the advancement of
process regulation and production design, it is clear that many production lines will be transformed
into fully integrated RD processes [16,22] in the future.

1.2. Methodology

The main goal of this paper is the comparison of selected ethyl acetate production pathways
and to point out the possibility of further reactive distillation process integration and sophisticated
intensification including process stream regeneration. Three different points of view were applied
to evaluate the selected process’s pros and cons. Process energy, economy, and safety are assessed.
Comprehensive research has been accomplished to select case studies demonstrating more levels of
process integration and intensification [4,16]. The production pathways have been selected with respect
to their practical applicability (both present and future), to sufficient experimental and feasibility studies
already published, and the intensification of reactive distillation via chemical and mechanical methods.
As the base case study, a conventional process from [15,17] was adopted. Operation sequence according
to Riemenschneider [1] consists of a continuous stirred tank reactor (CSTR) and several separation
columns. A classic reactive distillation process design was used as the second case study because of its
present practical industrial applicability [4]. Mechanical modification of RD is represented by the third
case study where an RD column with a stripper (RDS) is used. The RDS process set-up is well known
in the petrochemical industry. In the fourth case study, an auxiliary chemical reaction is included
as a chemical modification of RD. Hydration of ethylene oxide is proposed as the auxiliary reaction.
With this intensification method, ethyl acetate–water azeotrope is removed and pure ethyl acetate is
separated at the top of the RD column [23]. In addition, another valuable product (monoethylene
glycol) is obtained when the auxiliary reaction is included.

Process modeling was performed using the Aspen Plus software [26]. Reliable and complex
models were compiled to evaluate and compare individual case studies. An important benefit of this
work is the detailed design of all case studies including the rigorous non-equilibrium stage (NEQ)
model of reactive distillation and separation columns. More accurate results are expected when using
the NEQ model contrary to works where only the equilibrium stage model (EQ) is used [18–20]. Muthia
(2018) has proved that the reactive distillation EQ model is useful in the process feasibility analysis [27].
However, RD partial processes can be overestimated by this model; namely separation efficiency and
chemical reaction rate. In the EQ model, the separation efficiency has to be estimated and thus it can
be overestimated as well as underestimated.

The chemical reaction rate is influenced by mass transfer; therefore it can be significantly
overestimated [16,22]. Consequently, the equipment size is estimated incorrectly, and the energy
consumption is often underestimated [28,29]. Therefore, the NEQ model should be preferred when
assessing the economy and safety aspects [30,31].

Processes with uneven yield and poor recovery design have been compared previously [15,32].
Conclusions from these results have been confused because of incomplete process material balance
and comparison of incomplete design of process schemes. Therefore, recycling of process streams
and unification of case studies inlet and outlet streams have been included in this paper. With this
improvement, reproducible comparison of individual case studies is achieved; ethyl acetate yield and
water recovery problems are solved.

1.3. Process Sustainability Indicators

To evaluate the process efficiency and compare it with other alternatives, several indicators,
which consider energy, economy, and safety aspects of all selected process alternatives, are used.
A summary of evaluated indicators provides better insight into process sustainability.
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Energy requirements of processes can be quantified by specific energy consumption (SEC) [5,15].
SEC is expressed by Equation (1). In addition to SEC, process material efficiency is evaluated using
suitable indicators such as recovery, productivity, etc. Material efficiency can be excluded when using
identical material inputs and outputs from the designed process in compared alternatives.

Total production cost (TPC) can be used as an economic indicator. TPC is expressed by Equation (2);
total annual cost (TAC); total capital cost (TCC) and pay-back period are included. The price of the
equipment together with its installation represents the main part of TCC. TAC is composed of fixed cost,
utility cost, and raw materials cost [33]. Product sales are dependent on the actual market situation
and therefore the price can be quite volatile. Consequently, the long-term average has to be considered.
The profitability of the process is reflected in the payback period. Thus, the complex economy of the
process is considered via TPC. On the other hand, a detailed analysis of individual economic indicators
(TCC, TAC, utility cost, etc.) is needed to identify bottlenecks in the process.

Specific energy consumption (SEC) =
energy consumption (kW)

mass of product (t)
(1)

Total production cost (TPC) =

TAC
(
$ year−1

)
+

TCC ($)
payback period (year)

1.1×mass of product (t year−1)
(2)

1.4. Safety Indicators

Overall safety analysis in this work is based on the Chemical Process Quantitative Risk Analysis.
To evaluate and compare the safety aspects of the presented alternatives, the individual risk estimation
was performed for each case study. A large amount of frequency and consequence information
generated during quantitative process risk assessment must be integrated into a presentation that is
relatively easy to understand and use. The form of the presentation varies depending on the goal of the
analysis. As the main goal of the presented work is to evaluate process efficiency and to compare it with
other alternatives, the presentation of individual risk as a function of distance (individual risk profiles)
was chosen, which is a simplification of the individual risk contour plot where two assumptions are
used: risk source is compact (i.e., well approximated by a point source), and distribution of risk is equal
in all directions. In the initials steps of conceptual design, the final distribution of risk is unknown and
therefore the mentioned assumptions do not affect final results.

Calculation of individual risk assumes that contributions of all incident outcome cases are
additive [34]. Thus, the total individual risk of fatality at geographical location x, y (IRx,y) is equal to
the sum of individual risks of fatality at geographical location x, y from incident outcome case i (IRx,y,i):

IRx,y =
n∑

i=1

IRx,y,i (3)

where n is the total number of incident outcome cases considered in the analysis and each individual
risk of fatality from incident outcome case i (IRx,y,i) is obtained from the frequency of incident outcome
case i (fi) and the probability that incident outcome case i results in a fatality at location x, y (pf,i):

IRx,y,i = fip f ,i = FIpo,ip f ,i (4)

Calculation of frequency of incident outcome case i (fi) requires the evaluation of the frequency of
incident I (FI) and the incident outcome probability (po,i). To estimate incident frequencies, the Fault
Tree Analysis was used. Even Tree Analysis was used to quantitatively estimate the incident outcomes
probability [34].
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2. Process Modeling

2.1. Thermodynamic Model

A multicomponent model system is presented in this work. The basic model system contains ethyl
acetate (EtAc), ethanol (EtOH), water (H2O), and acetic acid (AA); one case study is extended by ethylene
oxide (EO) and monoethylene glycol (MEG). This system is strongly non-ideal. Two homogeneous
binary azeotropes (EtOH–H2O, EtOH–EtAc), one heterogeneous binary azeotrope (EtAc–H2O),
and one homogeneous ternary azeotrope (EtAc–EtOH–H2O) are reported in the literature [35,36]
and databases [26]. Despite acetic acid forming no azeotropic mixture with other participating
compounds, it is known for its strong association in the vapor phase and the formation of dimers [37].
Monoethylene glycol does not form an azeotropic mixture with other mentioned components.
Unlike other components, ethylene oxide is a gas at room temperature [38]. For such a system,
the NRTL-HOC thermodynamic model is highly recommended [15,22,28] as it is capable of calculating
the VLLE (vapor–liquid–liquid phase equilibria) correctly including two liquid phases, azeotropic
mixtures composition, and boing points, dimerization in the vapor phase. All the above-mentioned
papers have shown simulation results to be in good agreement with experiment data. Moreover,
reliable parameters for the NRTL-HOC model can be obtained from available databases (Aspen Plus [26],
DECHEMA, NIST).

2.2. Kinetic Model

Mechanism and reaction kinetics of the esterification reaction of ethanol and acetic acid in the
presence of acid catalysts has been studied in many works [1,39,40]. Three types of catalysis have
been reported: autocatalysis, homogeneous catalysis, and heterogeneous catalysis. The reaction rate
is low and achievable conversion is up to 20% at high residence times in the case of autocatalysis
reaction [39]. Strong mineral acids, such as sulfuric acid and hydrochloric acid, are traditionally used
as homogeneous catalysts [15]. High conversion, of up to 65.5%, is achieved in industrial applications
using sulfuric acid [1] in the range from 0.2 to 1.0 volume percent of the reactive mixture [15,23].
Acidic ion exchange resins in various forms have been used as heterogeneous catalysts to increase
conversion (slightly below 70%); however, no solid heterogeneous catalyst has been found to increase
the reaction rate in favor of ethyl acetate production better than sulfuric acid [15]. High reaction rate,
high conversion, and a smaller amount of catalyst are preferred from the industrial point of view.
In addition, process set-up and equipment design are much easier in the case of homogeneous catalysis.
On the other hand, equipment corrosion and catalyst recycling are major drawbacks of homogeneous
catalysis with sulfuric acid.

In this work, homogeneous catalysis using sulfuric acid was assumed, Equation (5). The reaction
rate (r [kmol m−3 s−1]) is expressed by Equation (6), which has been used in works [23,40]. The reaction
occurs in the liquid phase; liquid phase molar concentrations (C [kmol m−3]) are used. The concentration
of sulfuric acid catalyst was low [15,25], so its presence in the phase equilibria calculation was neglected.

As it was mentioned, an auxiliary chemical reaction was included to enhance the reactive
distillation process in the last case study. This auxiliary reaction was chosen to ensure the removal
of the main esterification reaction by-product—water. Ethylene oxide (EO) hydration was used,
Equation (7). Monoethylene glycol (MEG) is produced as the main product of the auxiliary reaction.
Further reactions towards higher glycols (diethylene glycol, triethylene glycol) were omitted because of
lower reaction rate and negligible change in the composition of product streams [23,38,41]. The auxiliary
reaction rate is expressed by Equation (8) [23,41].

O

OH

CH3 + CH3OH

O

OCH3 CH3 + OH2

 acetic acid      ethanol   ethyl acetate   water 

(5)

𝑟ଵ = 2.8 ×  10ସ  exp ൬−41,868𝑅𝑇 ൰𝐶𝐶ா௧ைு −  7.1 ×  10ଷ exp ൬−41,868𝑅𝑇 ൰𝐶ுమை𝐶ா௧ (6)

O + OH2 OH OH

 ethylene oxide water monoethylene glycol 

(7)

𝑟ଶ = 3.15 ×  10ଵଶ  exp ൬−79,374𝑅𝑇 ൰𝐶ாை𝐶ுమை (8)

2.3. Equipment Model 

Aspen Plus V10 simulation environment provides several options to compile a process model. 
In this work, three main types of equipment models were used: chemical reactor, heat exchanger, and 
distillation column/reactive distillation column.

A chemical reactor is simulated by a model of continuous stirred tank reactor (CSTR) which 
assumes ideal mixing along with rate-controlled chemical reaction based on known kinetics. The 
reactor can be operated as an isothermal as well as an adiabatic one. The residence time parameter 
was used to achieve the desired conversion. Valid phases (liquid, vapor, vapor–liquid) for the 
chemical reaction were specified; in case of esterification (5), the chemical reaction rate is expressed
by Equation (6) and takes place only in the liquid phase.

Heat exchangers were simulated by the Heater and HeatX models, respectively. A shortcut set-
up was applied to reach the desired stream temperature. Heat integration was applied to improve 
the optimal process design. The minimum stream temperature difference was set to 10 °C. 

A Rigorous RadFrac column model was used for RD modeling as well as for conventional
distillation. This model allows both EQ and NEQ approaches. Building an NEQ model of reactive 
separation or separation is not as straightforward as it is in the EQ model. The NEQ model requires 
much more reliable parameters compared to the EQ model. Consequently, the NEQ model is more 
difficult to calculate and convergence problems often occur. To improve NEQ model convergence, a 
good initial guess of stage temperature, liquid phase composition, and vapor phase composition have
to be used. For this purpose, the EQ model of each column was made in the first step of the simulation 
using initial column parameters such as the number of theoretical stages (N), reactive zone (NR), feed 
stage position (f), reflux ratio (R). These parameters can be found in the literature [5,15]. Results of 
the EQ model simulation provide a very good starting point for building the NEQ model [19,27]. 
Another advantage of first building the EQ model is the possibility of faster testing of individual case 
studies [28]. When the suitable case study concept is selected, the NEQ model is built based on the 
EQ model results. 

Rate-based set-up must be enabled in the Aspen Plus [26] in the NEQ model. Therefore, detailed 
column internal configuration is required next. A packed column is selected similarly to simulation-
experimental works [22,28]. Mass and heat transfer correlation methods were selected according to 

(5)
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r1 = 2.8× 104 exp
(
−

41, 868
RT

)
CAACEtOH − 7.1× 103 exp

(
−

41, 868
RT

)
CH2OCEtAc (6)
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reactor can be operated as an isothermal as well as an adiabatic one. The residence time parameter 
was used to achieve the desired conversion. Valid phases (liquid, vapor, vapor–liquid) for the 
chemical reaction were specified; in case of esterification (5), the chemical reaction rate is expressed
by Equation (6) and takes place only in the liquid phase.

Heat exchangers were simulated by the Heater and HeatX models, respectively. A shortcut set-
up was applied to reach the desired stream temperature. Heat integration was applied to improve 
the optimal process design. The minimum stream temperature difference was set to 10 °C. 

A Rigorous RadFrac column model was used for RD modeling as well as for conventional
distillation. This model allows both EQ and NEQ approaches. Building an NEQ model of reactive 
separation or separation is not as straightforward as it is in the EQ model. The NEQ model requires 
much more reliable parameters compared to the EQ model. Consequently, the NEQ model is more 
difficult to calculate and convergence problems often occur. To improve NEQ model convergence, a 
good initial guess of stage temperature, liquid phase composition, and vapor phase composition have
to be used. For this purpose, the EQ model of each column was made in the first step of the simulation 
using initial column parameters such as the number of theoretical stages (N), reactive zone (NR), feed 
stage position (f), reflux ratio (R). These parameters can be found in the literature [5,15]. Results of 
the EQ model simulation provide a very good starting point for building the NEQ model [19,27]. 
Another advantage of first building the EQ model is the possibility of faster testing of individual case 
studies [28]. When the suitable case study concept is selected, the NEQ model is built based on the 
EQ model results. 

Rate-based set-up must be enabled in the Aspen Plus [26] in the NEQ model. Therefore, detailed 
column internal configuration is required next. A packed column is selected similarly to simulation-
experimental works [22,28]. Mass and heat transfer correlation methods were selected according to 

(7)

r2 = 3.15× 1012 exp
(
−

79, 374
RT

)
CEOCH2O (8)

2.3. Equipment Model

Aspen Plus V10 simulation environment provides several options to compile a process model.
In this work, three main types of equipment models were used: chemical reactor, heat exchanger,
and distillation column/reactive distillation column.

A chemical reactor is simulated by a model of continuous stirred tank reactor (CSTR) which
assumes ideal mixing along with rate-controlled chemical reaction based on known kinetics. The reactor
can be operated as an isothermal as well as an adiabatic one. The residence time parameter was used
to achieve the desired conversion. Valid phases (liquid, vapor, vapor–liquid) for the chemical reaction
were specified; in case of esterification (5), the chemical reaction rate is expressed by Equation (6) and
takes place only in the liquid phase.

Heat exchangers were simulated by the Heater and HeatX models, respectively. A shortcut set-up
was applied to reach the desired stream temperature. Heat integration was applied to improve the
optimal process design. The minimum stream temperature difference was set to 10 ◦C.

A Rigorous RadFrac column model was used for RD modeling as well as for conventional
distillation. This model allows both EQ and NEQ approaches. Building an NEQ model of reactive
separation or separation is not as straightforward as it is in the EQ model. The NEQ model requires
much more reliable parameters compared to the EQ model. Consequently, the NEQ model is more
difficult to calculate and convergence problems often occur. To improve NEQ model convergence,
a good initial guess of stage temperature, liquid phase composition, and vapor phase composition have
to be used. For this purpose, the EQ model of each column was made in the first step of the simulation
using initial column parameters such as the number of theoretical stages (N), reactive zone (NR),
feed stage position (f ), reflux ratio (R). These parameters can be found in the literature [5,15]. Results of
the EQ model simulation provide a very good starting point for building the NEQ model [19,27].
Another advantage of first building the EQ model is the possibility of faster testing of individual case
studies [28]. When the suitable case study concept is selected, the NEQ model is built based on the EQ
model results.

Rate-based set-up must be enabled in the Aspen Plus [26] in the NEQ model. Therefore,
detailed column internal configuration is required next. A packed column is selected similarly
to simulation-experimental works [22,28]. Mass and heat transfer correlation methods were selected
according to the recommendation for the packing type (Rashing Ralu-Ring). Column hydraulics
was simulated by Aspen Plus built-in hydraulic function assuming correlation for Rashing
Ralu-Ring packing type. Column internal configuration (internal diameter (d), packing height
(H), packing dimensions) were set during the calculation procedure with regard to reasonable column
hydraulics, pressure drop, and approach to flood.

In the case of an RD column, the chemical reaction rate is expressed by Equations (6) and (8).
A homogeneous catalyst (sulfuric acid) is fed to the column together with acetic acid [17,23].
The esterification reaction (5) is enabled in the reactive zone (NR) only, where acetic acid is presented.
On the other hand, the hydration reaction (7) is enabled in the whole RD column because ethylene
oxide reacts with water whenever they meet in the liquid phase. All the above-mentioned column
parameters (N, NR, f, R, d, H . . . ) were optimized to meet the design criteria of individual columns as
well as of the whole process.
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2.4. Simulation Strategy and Design Specification

Global simulation strategy is focused on minimizing the number of process units within maximal
raw material utilization and minimal energy consumption.

The separation sequence is designed to separate the component with the highest boiling point
(or to consume it by a reaction); solve energy-intensive separation (azeotropic distillation, decanter with
recirculation), and to regenerate other process streams (EtAc aqueous solutions). Process integration
and intensification were based on a conventional process case study. Other case studies (RD column
with a separation unit, RD column with a stripper, and RD column with an auxiliary reaction) were
derived from the base one. Also, heat integration was considered in all case studies.

The following initial input specifications were entered for all case studies: equimolar raw material
input (10 kmol h−1 of both ethanol and acetic acid); process inlet and outlet streams temperature of
25 ◦C; atmospheric pressure.

Process design specifications were defined to produce 10 kmol h−1 of pure ethyl acetate (99.9 mol.%),
prevent ethyl acetate loss in other product streams (full EtAc recovery), separate process by-products
(water or monoethylene glycol) in equimolar ratio to the main product (EtAc). Moreover, the total
conversion of all reactants was attempted. Process parameters were optimized while maintaining
fixed design specifications. The optimization was based on minimizing vapor flows in the individual
columns. Subsequently, the economy and safety parameters were evaluated.

3. Simulation Results

3.1. Conventional Process Set-Up

Most ethyl acetate production plants apply the process described by Riemenschneider (2008) [1,17]
which consists of a continuous stirred tank reactor (CSTR) and several separation columns. Even though
the capacity of large plants can be up to about 100,000 tons of EtAc per year [2], this process is problematic
and inefficient for several reasons [15], separation of the reaction mixture from the CSTR reactor
being the main problem. As is mentioned in Section 2.1, the azeotropic mixture is formed during the
separation. Moreover, separation of unreacted acetic acid is an energy-intensive process, even in large
distillation columns. Overcoming the distillation boundary to produce pure EtAc is reported as the
next issue. A decanter is most often used for this purpose adding a certain amount of pure water to
obtain an organic (EtAc rich) and an aqueous phase. Losses of ethyl acetate in the aqueous phase
and the regeneration of used water have also to be solved. Thus, high recycle flows and large energy
consumption of this process are inevitable.

3.1.1. Flowsheet Design (Figure 1)

The conventional set-up consists of four key equipment units. Esterification reaction proceeds in
a CSTR reactor, which is followed by an azeotropic distillation column and two conventional columns.
Detailed flowsheet with streams attachment is depicted in Figure 1. Raw material streams (AA0
and ETOH0) are mixed with recycled streams and lead to the adiabatic CSTR reactor (R1). As the
esterification reaction conversion is slightly over 60%, the reaction mixture contains four compounds
(acetic acid, ethanol, water, and ethyl acetate). Reactor products stream (P1) is then preheated in heat
exchanger EX1. This mixture is separated in azeotropic distillation column C1 (Figure 1) which has
two feed streams: reaction mixture from the CSTR (P2) and pure ethyl acetate (AZ) used as azeotropic
distillation entrainer. The bottom product (W11) contains unreacted acetic acid and water, and it is
recycled back to the CSTR. The water-ethanol-ethyl acetate azeotropic mixture is obtained as a distillate
(D11). Pure water is added to overcome the distillation boundary and the mixture (D12) is cooled down
in heat exchanger EX2. The water phase (H2OL) and organic phase (ORG) are separated in decanter
DEC (Figure 1). The organic phase contains mainly ethyl acetate. Pure ethyl acetate is separated in
distillation column C2 as a bottom product (W21). A part of pure ethyl acetate flow is recirculated
as the azeotropic entrainer (AZ) back to column C1. The final product (W22) is cooled down in heat



Processes 2020, 8, 1618 8 of 32

exchanger EX7. The C2 column distillate (D21) contains a ternary mixture of water, ethanol, and ethyl
acetate; it is cooled down in C2 preheater EX3 and recirculated back to the decanter. The water phase
(H2OL) is rich in unreacted ethanol; thus, it is regenerated in distillation column C3 (Figure 1). The C3
column feed (F31) is preheated in two heat exchangers: EX4 and EX5. Pure water (W31) is obtained as
the C3 column bottom product and concentrated ethanol-water mixture is separated in distillate (D31)
which is cooled down in EX4 and recirculated back to the CSTR. The bottom product (W31) is cooled
down in EX5 and then divided into water final product stream (H2OP1) and water for recirculation
back to the decanter (H2OREC)

3.1.2. Process Simulation Results & Equipment Parameters of Conventional Process Set-Up

Process simulation of the material balance of the conventional process depicted in Figure 1 is
listed in Table 1. Energy and economy aspects are discussed in Sections 4.1 and 4.2, respectively.

The CSTR (Figure 1) reactor is designed as an adiabatic one with a residence time of 200 min [15].
The esterification reaction is described by reaction kinetics, Equation (6). Lower acetic acid conversion
is achieved compared to that reported in the literature (53.0% compared to 63.0%). This is caused by the
connection of recycled streams (D32, W12) in which, in addition to EtAc, water is present. Therefore,
conversion in the CSTR reactor is slightly shifted towards the reactants side. The volume of the liquid
phase in CSTR is calculated to be 8.9 m3.

Separation of unreacted acetic acid is the primary function of the C1 column (Figure 1) employing
azeotropic distillation to make this process easier and less energy-intensive. No azeotropic agent
selection was done as a suitable agent (EtAc) is produced in the process directly. The ratio of recirculated
(AZ) and produced EtAc (W22) is set to 1. Such an amount of recirculated EtAc is sufficient to ensure
desired C1 column specifications at reasonable energy demands. If the ratio is below 0.8, azeotropic
distillation does not run. As EtAc forms a ternary azeotrope with water and ethanol at the lowest boiling
temperature in the system, separation of AA in the bottom product (W11) is possible. Total recovery of
AA in the bottom product (W11) is required (less than 0.001 mol.% of AA is allowed in the distillate
(D11)). The desired purity of AA (W11) was set to 70 mol.% based on recycle flow (W11) and energy
consumption optimization. Consequently, the C1 column reboiler temperature was below 100 ◦C.
Also, column hydraulics is an issue due to different liquid flows in the rectifying and stripping
section, which is caused by two feed streams and process intensification via azeotropic distillation.
Therefore, two packing diameters (25 mm and 35 mm) are used within one column diameter (1.0 m).
Designed C1 column parameters are listed in Table 2.

The next important separation step takes place in the decanter. Water to ethyl acetate mole flow
ratio in the stream (D13) is a crucial parameter of the decanter in overcoming the distillation boundary
and thus allowing separation of pure EtAc. The ratio was set to 4.1 and therefore the EtAc concentration
increased from 56.6 mol.% (D11) to 76.7 mol.% (ORG), Table 1. EtAc recovery in the decanter of over
90% was achieved, which is common in the separation of two liquid phases [5,22].

Distillation column C2 (Figure 1) is designed for pure EtAc (99.9 mol.%) separation, which is
a highly energy consuming process as EtAc–EtOH–water ternary azeotrope is formed in the distillate
(D21) and it has to be recirculated back to the decanter. To obtain 20 kmol h−1 of pure EtAc in the
C2 bottom product (W21), more than 41 kmol h−1 of organic phase flow (ORG) from the decanter is
needed and thus only 63.2% EtAc recovery can be achieved in the C2 column due to the distillation
boundary and the azeotrope composition. A high reflux ratio is also required because the ternary
azeotrope and pure ethyl acetate boiling point temperature are close. Designed C2 column parameters
are listed in Table 2.
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Figure 1. Ethyl acetate production via conventional process set-up. 
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Figure 1. Ethyl acetate production via conventional process set-up.
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Table 1. Material balance of designed conventional process set-up (Figure 1).

AA0 ETOH0 F11 F21 R1 P1 P2 W11 W12 D11 D12 D13 ORG F2 W21 AZ

ṅ [kmol h−1] 10.00 10.00 22.64 19.88 42.52 42.52 42.52 12.65 12.65 39.86 187.78 187.78 41.21 41.21 20.00 10.00
xH2O - - - 0.0869 0.0407 0.2756 0.2756 - - 0.2940 0.7608 0.7608 0.1604 0.1604 0.0003 0.0003
xAA 1.0000 - 0.8325 - 0.4433 0.2083 0.2083 0.7000 0.7000 - - - - - - -
xEtAc - - 0.1673 0.1301 0.1499 0.3848 0.3848 0.2996 0.2996 0.5660 0.1856 0.1856 0.7672 0.7672 0.9990 0.9990
xEtOH - 1.0000 0.0002 0.7830 0.3662 0.1312 0.1312 0.0004 0.0004 0.1400 0.0536 0.0536 0.0724 0.0724 0.0007 0.0007
T [◦C] 25.00 25.00 39.64 29.38 36.98 39.01 54.24 98.20 49.01 70.02 48.97 25.00 25.00 41.79 76.83 76.83
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.
V [m3 h−1] 0.56 0.58 1.44 1.19 2.65 2.66 2.72 0.95 0.88 2.90 6.71 6.50 3.37 3.45 2.12 1.06

W22 W23 D21 D22 H2OL BYPASS F31 F32 F33 D31 D32 W31 W32 H2OREC H2OIN H2OP1

ṅ [kmol h−1] 10.00 10.00 21.21 21.21 146.57 29.31 117.26 117.26 117.26 9.87 9.87 107.38 107.38 97.37 0.02 10.00
xH2O 0.0003 0.0003 0.3114 0.3114 0.9296 0.9296 0.9296 0.9296 0.9296 0.1749 0.1749 0.9990 0.9990 0.9990 1.0000 0.9990
xAA - - - - - - - - - - - - - - - -
xEtAc 0.9990 0.9990 0.5487 0.5487 0.0220 0.0220 0.0220 0.0220 0.0220 0.2619 0.2619 - - - - -
xEtOH 0.0007 0.0007 0.1399 0.1399 0.0484 0.0484 0.0484 0.0484 0.0484 0.5632 0.5632 0.0010 0.0010 0.0010 - 0.0010
T [◦C] 76.83 25.00 70.02 35.00 25.00 25.00 25.00 30.34 72.79 71.69 35.00 99.34 40.34 40.34 25.00 40.34
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.
V [m3 h−1] 1.06 0.98 1.51 1.43 3.18 0.64 2.55 2.56 59.33 a 0.65 0.61 2.11 1.98 1.80 0.00 0.18

a vapor–liquid mixture.
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Table 2. Parameters of designed columns—conventional set-up (Figure 1).

C1 C2 C3

N 60 60 30
f P12 35 - -
f AZ 34 - -
f F2 - 36 -
f F33 - - 18
DS1 xD1(AA) = 10−5 xW21(EtAc) = 0.999 xW31(H2O) = 0.999
DS2 xW11(AA) = 0.70 - xD31(EtOH) = 0.56
R 2.00 5.00 4.00
P [kPa] 101.3 101.3 101.3

Column geometry

Column section 1 2–40 2–59 2–29
N1 39 58 28
Packing type RALU-RING 25 mm RALU-RING 25 mm RALU-RING 38 mm
d1 [m] 1.0 1.20 0.60
H1 [m] 2 × 4.0 2 × 3.5 2 × 4.0
HETP1 [m] 0.21 0.12 0.29
∆P1 [kPa] 2.0 1.8 0.8
Column section 2 41–59 - -
N2 19 - -
Packing type RALU-RING 38 mm - -
d2 [m] 1.0 - -
H2 [m] 4.0 - -
HETP2 [m] 0.21 - -
∆P2 [kPa] 0.9 - -

The aqueous phase from the decanter (H2OL) contains also ethanol and ethyl acetate. A part
of this mixture is recirculated back to the decanter directly (BYPASS) as the water content is above
90 mol.%. Into the decanter (DEC), a maximum of 20% of the aqueous phase stream (H2OL) can be
directly recirculated, the remaining part of the aqueous phase has to be regenerated in distillation
column C3 (Figure 1). The C3 column is designed to separate pure water as a bottom product (W31)
and distillate containing all remaining ethanol and ethyl acetate (D31). Column design specifications
are set for total EtOH recovery in the distillate and 99.9 mol.% purity of water in the bottom product.
Designed C3 column parameters are listed in Table 2.

3.2. Reactive Distillation Column with a Separation Unit

Integration and intensification of the convention process set-up can be achieved by combining
reaction and separation together via the reactive distillation process. Several RD plants for ethyl
acetate production are operated worldwide with the reported individual plant annual production
capacity of around 20,000 tons of EtAc [4,15]. As RD is a multifunctional reactor concept combining the
mechanism of reaction and separation in one single unit, benefits such as the reduction of equipment
and plant size, improvement of process efficiency, and, consequently, better process economy are
expected [19]. In this case study, the main benefit expected is the reduction of the number of equipment
units and overcoming the distillation boundary which limits the conventional set-up. CSTR, EX1,
and C1 columns are put together into an RD column. As a result, one main equipment unit (CSTR) and
two heat exchangers are removed from the process compared to the conventional set-up (Figure 1).

3.2.1. Flowsheet Design (Figure 2)

The reactive distillation set-up is derived from the conventional one (Figure 1). Reaction and
separation are put together in one column (compare to three equipment units: CSTR, EX1, and C1,
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in Figure 1). A detailed process scheme is depicted in Figure 2. The reactive distillation column has
two feed streams: acetic acid feed (AA0) and mixed ethanol feed (ETOH). Raw ethanol is added to the
process in the (ETOH0) stream. All acetic acid is consumed in the RD. Therefore, RD distillate (D11)
contains a nearly azeotropic mixture of EtAc-EtOH-water, while the bottom product (W11) contains
a water-ethanol mixture (Figure 2). The distillate composition was from a different distillation region
than that of distillate in the conventional process set-up (D11 in Figure 1). Therefore, stream (D11 in
Figure 2) can be separated directly. Distillation column C1 is deployed to separate the final pure EtAc
(Figure 2). The C1 column bottom product (W21) contains pure EtAc which is cooled down in heat
exchanger EX5. The EtAc-EtOH-water ternary azeotrope is present in the C1 column distillate (D21 in
Figure 2) Thus, columns C1 column (Figure 2) and C2 in conventional process set-up (Figure 1) are
operated in the same way. The distillate (D21) is cooled down in heat exchangers EX1 and EX2 and
fed into decanter DEC to extract EtAc (Figure 2). Pure water is fed to DEC; organic phase (ORG1)
and aqueous phase (H2OL) are separated. The organic phase (ORG1) is preheated in EX1 and mixed
with (D11). The aqueous phase (H2OL) contains some amount of EtOH and EtAc and therefore it
has to be regenerated. The (H2OL) stream is mixed with the RD column bottom product (W11) and
preheated in heat exchanger EX3 (Figure 2). For water regeneration, distillation column C2 is used
(Figure 2). All EtOH and EtAc are obtained in the C2 distillate (D31) which is recirculated back to the
RD column. Pure water is separated in the C2 bottom product (W31) and it is cooled down in EX3
and EX4 (Figure 2). An equimolar ratio of water to EtAc product (W22) is separated (H2OP) as a final
by-product and the rest of the water is recirculated back to the decanter (H2OREC).

3.2.2. Process Simulation & Equipment Parameters of Reactive Distillation Column with a Separation Unit

The reactive distillation column was designed according to the philosophy described in Sections 2.3
and 2.4. However, column operating conditions are different. As the esterification reaction (5) proceeds,
reactants conversion (acetic acid, ethanol) has to be considered. From an energetic point of view,
consumption of all acetic acid is the most advantageous as no acetic acid is present in the distillate or the
bottom product of the RD column (Figure 2). To achieve total acetic acid conversion (xD11(AA) = 10−5,
xW11(AA) = 10−5), the RD column parameters were optimized including: acetic acid feed (f AA) and
ethanol feed (f EtOH) position; reflux ratio (R); number of theoretical stages (N). The reactive zone (NR)
is introduced from f AA to a reboiler. However, if the NEQ model is used to simulate the RD column,
the packing height (H), column internal diameter (d) as well as the packing type are crucial parameters.
Moreover, RD column hydraulics is limited by the reflux ratio with regard to design specifications.
At reflux ratios below 2, AA is present in the distillate; on the other hand, at reflux ratios above 3.5,
a part of the column is flooded and total AA conversion cannot be achieved. Final RD column design
parameters after the optimization are listed in Table 4.

Separation of pure EtAc is performed in distillation column C1 (Figure 2) designed in the same
way as the C2 column in the conventional set-up (C2 in Figure 1). The ethyl acetate purity of 99.9 mol.%
in the bottom product (W21) is set as the design criterion. Designed column (C1 in Figure 2) parameters
are listed in Table 4. Overheated vapors from the C1 column contain almost 54 mol.% of EtAc (Table 3)
which is extracted in decanter DEC (Figure 2). The same amount of water is added to DEC as in the
conventional process (Figure 1). The separated organic phase (ORG1) contains 75.5 mol.% of EtAc and
the overall EtAc yield in DEC is 90%.

The aqueous phase from decanter (H2OL) as well as the RD column bottom product (W11) are
regenerated in the C2 distillation column (Figure 2) employed for total EtOH recovery. This separation
is direct as pure water can be obtained in the bottom product (W31) and ethanol-water mixture in
the distillate (D31). The optimum ethanol content in the distillate is determined to be 62 mol.%.
Energy requirements are acceptable at the reflux ratio of 2.58, and the EtOH regeneration proceeds
properly. The separation results and internal geometry of the C2 column are listed in Table 4.
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Figure 2. Ethyl acetate production via reactive distillation column with a separation unit. 

 

C1

MIXF2

MIX1

EX2

DEC

MIX2

EX1

RD

MIX3

EX3

EX5

EX4

F2

W21

D21

ETOH0

D23
H2ODEC

H2OIN

ORG1

H2OL

D22

ORG2

AA 0

ETOH

D11

W11

W12

W13

W31

W32

D31

H2OP

H2OREC

W22

W33

SPH2O

C2

Figure 2. Ethyl acetate production via reactive distillation column with a separation unit.
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Table 3. Material balance of designed RD column with a separation unit (Figure 2).

AA0 ETOH0 ETOH D11 W11 W12 W13 a D31 W31 W32 W33 H2OP H2OREC H2OIN H2ODEC H2OL

ṅ [kmol h−1] 10.00 10.00 18.66 20.94 7.72 77.34 77.34 8.66 68.70 68.70 68.70 10.02 58.67 0.01 58.69 69.62
xH2O - - 0.0909 0.2666 0.7918 0.9096 0.9096 0.1958 0.9995 0.9995 0.9995 0.9995 0.9995 1.0000 0.9995 0.9227
xAA 1.0000 - - - - - - - - - - - - - - -
xEtAc - - 0.0855 0.5536 - 0.0206 0.0206 0.1842 - - - - - - - 0.0229
xEtOH - 1.0000 0.8236 0.1798 0.2082 0.0697 0.0698 0.6200 0.0005 0.0005 0.0005 0.0005 0.0005 - - 0.0544
T [◦C] 25.00 25.00 47.88 70.02 82.47 31.20 72.04 72.65 99.50 45.00 25.00 25.00 25.00 25.00 25.00 25.00
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.

V [m3 h−1] 0.56 0.58 1.11 1.54 0.22 1.75 19.65a 0.53 1.35 1.27 1.25 0.18 1.06 0.00 1.06 1.53

ORG1 ORG2 F2 W21 W22 D21 D22 D23

ṅ [kmol h−1] 19.66 19.66 40.60 10.01 10.01 30.59 30.59 30.59
xH2O 0.1632 0.1632 0.2165 0.0002 0.0002 0.2873 0.2873 0.2873
xAA - - - - - - - -
xEtAc 0.7558 0.7558 0.6515 0.9990 0.9990 0.5378 0.5378 0.5378
xEtOH 0.0811 0.0811 0.1320 0.0008 0.0008 0.1749 0.1749 0.1749
T [◦C] 25.00 60.00 64.47 76.84 25.00 70.01 45.84 25.00
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.
V [m3 h−1] 1.59 1.68 3.21 1.06 0.98 2.20 2.12 2.06

a vapor–liquid mixture.
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Table 4. Parameters of designed columns—reactive distillation (RD) column with a separation unit (Figure 2).

RD C1 C2

N 100 60 50
NR 25–100 - -
f A00 25 - -
f ETOH0 70 - -
f F2 - 38 -
f W13 - - 32
DS1 xD11(AA) = 10−5 xW21(EtAc) = 0.999 xW31(H2O) = 0.999
DS2 xW11(AA) = 10−5 - xD31(EtOH) = 0.62
R 2.40 5.00 2.58
P [kPa] 101.3 101.3 101.3

Column geometry

Column section 1 2–75 2–59 2–49
N1 74 58 48
Packing type RALU-RING 25 mm RALU-RING 25 mm RALU-RING 25 mm
d1 [m] 0.75 1.30 0.40
H1 [m] 3 × 3.0 2 × 3.5 2 × 3.0
HETP1 [m] 0.12 0.12 0.13
∆P1 [kPa] 3.1 2.8 1.6
Column section 2 76–99 - -
N2 24 - -
Packing type RALU-RING 25 mm - -
d2 [m] 0.75 - -
H2 [m] 3.5 - -
HETP2 [m] 0.15 - -
∆P2 [kPa] 0.8 - -

The material balance of the whole process simulation is presented in Table 3. Energy and economy
aspects are discussed in Sections 4.1 and 4.2, respectively.

3.3. Reactive Distillation Column with a Stripper

Even though the RD column with a separation unit (Figure 2) represents process integration and
intensification compared to the conventional set-up (Figure 1), there is still a place for improvement such
as the reduction of the large flow of the recycled stream to the decanter or reduction of equipment number.
As the reaction in the RD process has overcome the distillation boundary, it is possible to remove the
decanter and to solve azeotropic mixture regeneration via distillation. Also, the ethanol-water mixture
from the RD column (W11 in Figure 2) can be easily separated into pure water (high boiling point) and
ethanol-water mixture at high ethanol concentrations. Therefore, the flowsheet of the RD column with
a separation unit (Figure 2) was modified: C2 column is integrated into the bottom part of the RD
column; decanter and heat exchangers EX1 and EX2 are removed; C1 column condenser is removed
and overheated vapors from C1 are recirculated back to the RD column (Figure 3). Thus, the process
scheme in Figure 3 contains two columns and three heat exchangers less than the process scheme
shown in Figure 2.

The main idea of such integration is based on the thermal coupling. Two columns are thermally
coupled if a vapor (liquid) stream is sent from the first column to the second one and then a return
liquid (vapor) stream is set between the same columns. These streams, when introduced at the top or
bottom of a column, provide (at least partial) reflux or boil-up to this column [42]. This approach is
commonly used in the petrochemical industry [43,44].
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Figure 3. Ethyl acetate production via reactive distillation column with a stripper. 
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Figure 3. Ethyl acetate production via reactive distillation column with a stripper.
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3.3.1. Flowsheet Design (Figure 3)

This process set-up is composed of two columns: reactive distillation column RD and stripper
column C1 (Figure 3). The reactive distillation column has three feed streams: (AA0) consists of pure
acetic acid and is led to the upper section of the RD column; (ETOH0) contains pure ethanol and is
attached to the bottom section of the RD column; and overheated vapors (AZ1) from stripper C1 fed in
the middle of the RD column (Figure 3). The RD column has two product streams: liquid distillate
(D1) brought to the head of stripper C1; liquid bottom product (W11) which is cooled down in heat
exchanger EX1. The stripper column has only one product stream (W21), which is cooled down in heat
exchanger EX2.

3.3.2. Process Simulation and Equipment Parameters of Reactive Distillation Column with a Stripper

The main task in designing an RD column with a stripper (RDS in Figure 3) is to ensure total
conversion of acetic acid in the RD column. Thus, no acetic acid should be present in the distillate or
bottom product, the same as in the RD column with a separation unit concept (Figure 2). To meet this
requirement, a high number of theoretical stages, suitable position of feed stages, proper RD column
reflux ratio, and amount of recirculated vapors have to be considered. In contrast to the RD column
with a separation unit (Figure 2), in the case of an RD column with a stripper (Figure 3), three feed
streams are attached: two subcooled liquid streams and one overheated vapor stream (AZ1 in Figure 3).
Composition of the (AZ1) stream is expected to be close to the azeotropic mixture EtAc-EtOH-water)
and therefore is the (AZ1) stream feed stage (f AZ1) located in the middle part of the main RD column,
between the acetic acid feed stage (f AA0) and the ethanol feed stage (f EtOH0). Acetic acid conversion is
significantly affected by a change of f AZ1. If f AZ1 is attached above f AA0, the RD column does not work
at all as the high amount of ethanol in (AZ1) stream cannot be consumed in the reaction (5). On the
other hand, if f AZ0 is attached below f EtOH0, the esterification reaction (5) is slowed down because
of an excess of its products (EtAc and water) in the stripping section of the RD column. The reflux
ratio is calculated based on the design specification (xD1(AA) = 10−5); however, it is also significantly
influenced by stripper C1. Intense recirculation of overheated vapors leads to partial boil-up in the RD
column while the RD column distillate (D1 in Figure 3) leads to liquid reflux of stripper C1. The vapors
flow (ṅAZ1 in Table 5) is the key process parameter along with the feed stage position (f AZ1). At least
130 kmol h−1 of overheated vapor are needed to operate the process successfully. At lower vapor
flow, desired product purity (xW11(H2O) = 0.999 and xW21(EtAc) = 0.999) cannot be achieved either in
the RD column or in the C1 striper. A slightly higher amount of recirculated vapors (135.5 kmol h−1,
see Table 5) is used to ensure process stability and reasonable column hydraulics.

Table 5. Material balance of the designed RD column with a stripper (RDS) process (Figure 3).

AA0 ETOH0 W11 W12 D1 AZ1 a W21 W22

ṅ [kmol h−1] 10.00 10.00 10.00 10.00 145.54 135.54 10.00 10.00
xH2O - - 0.9990 0.9990 0.2738 0.2940 0.0002 0.0002
xAA 1.0000 - 0.0008 0.0008 - - - -
xEtAc - - - - 0.5902 0.5600 0.9990 0.9990
xEtOH - 1.0000 0.0002 0.0002 0.1360 0.1460 0.0008 0.0008
T [◦C] 25.00 25.00 99.60 25.00 70.04 70.04 76.84 25.00
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.
V [m3 h−1] 0.56 0.58 0.20 0.18 10.88 3740.18 a 1.06 0.98

a overheated vapor.

As stated above, various vapor flows occur in the RD column and a different column design is
required when overheated vapor stream feed is present. Consequently, a RD column with two different
diameters is used; wider column internal diameter is used in the upper section (d1 = 1.15 m) compared
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to the bottom section (d2 = 0.65 m). Sections are divided by the (AZ1) feed stream. Detailed results are
presented in Table 6.

The design of the C1 stripper column (Figure 3) is similar to that of columns for EtAc separation
in previous case studies (C2 column in the conventional set-up (Figure 1) and C1 column in the RD
column with a separation unit (Figure 2) but without the column condenser. Therefore, the C1 stripper
column is composed of a column tower and a reboiler only. The C1 column (Figure 3) liquid reflux is
directly dependent on the RD column distillate flow (D11). Some differences in the column geometry
can be observed compared to the previous case studies. Column diameter and overall packing height
increased due to the larger flow. The column parameters are listed in Table 6.

Complete material balance of RDS (Figure 3) is presented in Table 5. Energetic aspects of the RDS
configuration are discussed in Section 4.1 in more detail.

Table 6. Parameters of designed columns—RDS (Figure 3).

RD C1

N 100 60
NR 30–100 -
f AA0 30 -
f AZ1 45 -
f EtOH0 60 -
f D1 - 1
DS1 xD1(AA) = 10−5 xW21(EtAc) = 0.999
DS2 xW11(H2O) = 0.999 -
R 0.32 -
P [kPa] 101.3 101.3

Column geometry

Column section 1 2–44 1–59
N1 43 59
Packing type RALU-RING 25 mm RALU-RING 25 mm
d1 [m] 1.15 1.30
H1 [m] 3 × 3.4 3 × 3.0
HETP1 [m] 0.24 0.15
∆P1 [kPa] 3.6 1.7
Column section 2 45–99 -
N2 55 -
Packing type RALU-RING 15 mm -
d2 [m] 0.65 -
H2 [m] 3 × 4.0 -
HETP2 [m] 0.22 -
∆P2 [kPa] 2.4 -

3.4. Reactive Distillation Column with an Auxiliary Reaction

The RD column with a stripper set-up (Figure 3) has reduced the number of equipment units
significantly compared to the conventional process set-up (Figure 1) and the RD column with
a separation unit (Figure 2). Further process integration and intensification is limited by the presence
of water. As the ternary azeotrope EtAc-EtOH-water is formed, at least two columns (RDS) are needed
for its separation. Moreover, equilibrium esterification reaction (5) conversion is suppressed by the
increasing concentration of products. Therefore, the removal of water as a by-product is attempted to
intensify the process and reduce the number of equipment units.

Water can be consumed by an auxiliary chemical reaction [23]. If Ethylene oxide (EO) hydration
is applied as the auxiliary chemical reaction; the ternary azeotrope is removed and another valuable
product, monoethylene glycol (MEG), is obtained. The idea is derived from industrial glycol production.
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An RD column with total reflux and selective ethylene oxide hydration is used to obtain the desired
glycol in the RD column bottom product [38,41].

Such an innovative approach was first tested by Tavan [23] who used the simulation environment
of Aspen HYSYS. However, inaccurate results can be obtained because of the presence of acetic acid.
The Aspen Plus software is more suitable for the simulation of processes with organic acids as its built-in
thermodynamic model NRTL-HOC, omitted in HYSYS [26], can be used. In this paper, a rigorous NEQ
model of the RD column has been build and the RD column internals have been designed in more
detail providing more accurate simulation results compared to the EQ model used by Tavan [23].

3.4.1. Flowsheet Design (Figure 4)

The last flowsheet contains only one column (Figure 4) with three feed streams: raw acetic acid
(AA0) is fed to the top section; raw ethanol (ETOH0) is fed to the middle section and pure ethylene
oxide (EO) is fed to the lower part of the RD column. As this set-up is fully integrated and intensified,
there are two product streams only: distillate (D1) contains pure EtAc and bottom product (W1)
contains monoethylene glycol. Both product streams are cooled down in heat exchangers EX1 and
EX2, respectively (Figure 4).
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Figure 4. Ethyl acetate production via reactive distillation column with an auxiliary reaction.

3.4.2. Process Simulation and Equipment Parameters of Reactive Distillation Column with
Auxiliary Reaction

The design and simulation of the RD column with an auxiliary reaction (RDAR) are depicted
in Figure 4. Despite the simplicity of the material balance of the overall system (Table 7),
complex optimization is required to meet the design criteria (xD1(EtAc) = 0.999, xW1(MEG) = 0.999).
Feed stage position of inlet streams (f AA, f EtOH, f EO), reflux ratio (R), and column internal design (d, H)
are the key parameters.

Two chemical reactions are employed: esterification reaction (5) takes place from f AA to RD
column reboiler (NR1), and hydration (7) in the whole column (NR2).

The acetic acid feed stage (f AA) is located in the upper section of the column; the ethanol feed stage
(f EtOH) is located at the bottom of the RD column like in all previous case studies. The ethylene oxide
feed stage (f EO) has to be placed so that water is rapidly consumed by the auxiliary reaction. Based on
previous case studies, the highest water concentration is under f EtOH. Therefore, f EO is attached at the
bottom of the RD column, Table 8. If the (EO) stream is attached above f AA or between f AA and f EtOH,
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a large amount of EO passes into the distillate and its conversion is very low. The hydration reaction (7)
is much faster than esterification (5), however, hydration proceeds in the liquid phase only. Therefore,
EO (gas) diffusion to the liquid phase is the process rate limiting factor. The diffusion rate is influenced
by several aspects; however, the key one is the column hydraulics. If the EO feed stage is attached to
the upper part of the column, the column can operate with high residence time and at a high reflux
ratio only, which is not economical, and obtaining the desired product purity is also questionable.

Table 7. Material balance of designed RD column with an auxiliary reaction (Figure 4).

AA0 ETOH0 EO D1 D2 W1 W2

ṅ [kmol h−1] 10.00 10.00 10.00 10.00 10.00 10.00 10.00
xH2O - - - - - - -
xAA 1.0000 - - - - 0.0004 0.0004
xEtAc - - - 0.9993 0.9993 0.0003 0.0003
xEtOH - 1.0000 - 0.0004 0.0004 - -
xEO - - 1.0000 0.0003 0.0003 - -
xMEG - - - - - 0.9993 0.9993
T [◦C] 25.00 25.00 25.00 76.81 25.00 194.63 25.00
P [kPa] 101.3 101.3 101.3 101.3 101.3 101.3 101.3
.
V [m3 h−1] 0.56 0.58 241.61 a 1.06 0.98 0.65 0.55

a gas.

Table 8. Parameters of the designed column—RDAR (Figure 4).

RD

N 80
NR1 20–80
NR2 1–80
f AA0 20
f ETOH0 66
f EO 72
DS1 xD1(EtAc) = 0.999
DS2 xW1(MEG) = 0.999
R 3.43
P [kPa] 101.3

Column geometry

Column section 1 2–66
N1 65
Packing type RALU-RING 25 mm
d1 [m] 0.70
H1 [m] 4 × 4.0
HETP1 [m] 0.25
∆P1 [kPa] 4.2
Column section 2 67–79
N2 13
Packing type RALU-RING 15 mm
d2 [m] 0.40
H2 [m] 4.0
HETP2 [m] 0.31
∆P2 [kPa] 1.1
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The desired purity of the final products can be achieved by changing the reflux ratio (R). However,
the range of the reflux ratio values is limited by column hydraulics and convergence stability. At reflux
ratios below 2, a part of the column packing dries up due to insufficient liquid flow in the rectification
section while at reflux ratios above 4.2, the process simulation convergence is unstable. This may
indicate multiple steady states as this behavior is well known from the production of glycols by
hydration [41].

In this case study, total conversion of all reactants (AA, EtOH, and EO) is ensured by high packing
height (H) to ensure high separation efficiency, and small packing diameter (25 mm and 15 mm
RALU-RING) to increase the residence time, Table 8. Multidiameter column design is used because of
various vapor and liquid flows present in the RD column sections. Detailed RD column parameters
are listed in Table 8.

The complete material balance of RDAR (Figure 4) is presented in Table 7. Energetic aspects of the
RDAR configuration are discussed in Section 4.1 in more detail.

4. Discussion

4.1. Energy Requirements of Individual Case Studies

Energy consumption of individual equipment units is calculated based on the simulation results.
Reboiler duty (

.
QW) and condenser duty (

.
QC) of each column are evaluated as well as the cooling duty

of heat exchangers including heat integration. Overall energy consumption (OEC) is calculated as
a sum of required heating or cooling duties respectively; heat integration is excluded. To better compare
individual case studies, OEC is normalized to the specific energy consumption (SEC, Equation (1)),
which is related to the production of one ton of pure EtAc. Summary results of energy requirements
are listed in Table 9.

The conventional process set-up (Figure 1) has three distillation columns in which both reboiler
and condenser are included. Thus, a highly energy-intensive process is expected. Distillation column
for water regeneration C3 consumes almost 550 kW of heat, which represents 18.4% of the total heat
duty required in whole the conventional path (Figure 1). However, the column for separation of
unreacted acetic acid C1 and that for EtAc separation C2 are even more energy-consuming (Figure 1).
Overall, 81.6% of the total required heat duty is consumed in these two columns. All three column
condensers consume 2851 kW of cooling duty, which corresponds to 94.6% of the total cooling duty
required. EX2, EX6, and EX7 heat exchangers consume less than 164 kW of cooling capacity to
reach the required stream temperature. Therefore, from the energetic point of view, the C1 and C2
columns are the key equipment units, Table 9. This is mainly due to large recycle flows (Table 1) and
energy-intensive separation of the azeotropic mixture. The process is even more energy-intensive if
the C1column (Figure 1) is not operated as an azeotropic distillation column with an SEC of 3408 kW
of heating duty and 3427 kW of cooling duty. Overall, five main equipment units along with seven
heat exchangers are used (distillation columns reboilers and condensers are included as a part of the
main column equipment), Table 9.

In the RD column with a separation unit (Figure 2), process energy demands are improved in
more ways. Both heat consumption and cooling demands in the RD column are improved by 40.4%
compared to the reaction part (CSTR reactor + C1 column) of the conventional process (Figure 1).
This is mainly due to the process integration and reduction of the flow of some streams. The process
integration has a positive effect on the regeneration of unreacted ethanol in distillation column C2
(Figure 2). Here, 361.9 kW of heat duty is consumed in the column reboiler; 323.1 kW of cooling
duty is required in the column condenser. This is by 34.1% less of reboiler duty and by 35.7% less
of condenser duty compared to regeneration column C3 in the conventional path (Figure 1). It is
caused by a lower amount of aqueous solution to be regenerated; 77 kmol h−1 (Figure 2) compared
to 117 kmol h−1 in the conventional process (Figure 1). The water content showed a similar trend
(91 mol.%). On the other hand, the separation of pure EtAc in distillation column C1 (Figure 2) is
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the most energy-consuming process. The C1 column (Figure 2) reboiler duty is 1760 kW, which is
by almost 28.0% more energy-intensive than the separation of pure EtAc in the conventional process
(Figure 1). A similar increase was observed for the cooling duty increase (around 30.7%) due to
different content of EtAc in the column feed stream (F2); 65 mol.% in the RD with a separation unit
(Figure 2) compared to 77 mol.% in the conventional process (Figure 1). Consequently, EtAc separation
from diluted aqueous solution is more energy-intensive. Some energy savings can be reached when
higher water flow to the decanter is used or a slightly different column with higher packing height
is used. However, the RD column with a separation unit (Figure 2) is more energy-efficient than the
conventional process (Figure 1). SEC is lower by 6.0% in case of both heat consumption and cooling
demands. Moreover, the number of equipment units is lower; CSTR and two heat exchangers have
been removed. Results can be found in Table 9.

RD column with a stripper (Figure 3) shows significant process integration and intensification.
The process philosophy has been improved as several equipment were removed or integrated into the
main two columns (Figure 3). The RD column reboiler duty (556 kW) is 2.31 times lower compared to
that of the C1 stripper (Figure 3, 1286 kW). Also, vapor flow in the stripper is almost three times higher
than that in the second section of the RD column. Energy demands of both columns (Figure 3) are quite
high compare to the conventional path (Figure 1) and the RD column with a separation unit (Figure 2).
In the designed RD column, the heat consumption decreased by almost 21% compared to the RD
column with a separation unit (Figure 2), (Table 9). The C1 stripper (Figure 3) reboiler duty is lower
by 26.8% compared to that of the C1 distillation column for EtAc separation in the RD column with
a separation unit (Figure 2). On the other hand, 1816 kW of cooling duty are required in the condenser
of the designed RD column (Figure 3), the highest cooling duty of all designed equipment, mainly due
to the large flow of internal liquid recycle (D1 in Figure 3) and internal vapor recycle (AZ1 in Figure 3).
Fortunately, no other condenser is included in the process (Figure 3). Consequently, the RD column
condenser covers all main cooling demands. SEC has vastly decreased compared to the RD column
with a separation unit (Figure 2); heat consumption is by almost 35% lower as well as the cooling
duties (34.5%). The number of equipment units has decreased as a decanter, distillation column for
water regeneration and three heat exchangers have been eliminated. Results are listed in Table 9.

RD column with an auxiliary reaction (Figure 4) represents a fully integrated and intensified
concept. Several aspects have brought significant energy savings; the synergy of two chemical reactions
is used; reaction heat partially covers the process heating demands; product separation is enhanced
by increased relative volatility of produced EtAc to MEG; the number of equipment units has been
reduced to the RD column only. Designed RDAR energy requirements are very low compared to the
previously designed processes (Figures 1–3). SEC has vastly decreased; cooling duties are by more than
70% lower compared to the RDS (Figure 3); heat consumption is a tenth only of that in RDS. This can
be explained by the hydration reaction of ethylene oxide (7) which is highly exothermic, reaction heat
is −98,867.6 kJ kmol−1 at 25 ◦C. Therefore, almost 275 kW of heat generated by the hydration reaction
is created in the RD column. This reaction-generated heat along with external heat (reboiler duty)
suffices to operate the RD column. Results are listed in Table 9.
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Table 9. Energy requirements and the number of the equipment for designed ethyl acetate production pathways.

Conventional Process
Set-Up

(Figure 1)

RD Column with
a Separation Unit

(Figure 2)

RD Column with
a Stripper (RDS)

(Figure 3)

RD Column with an Auxiliary
Reaction (RDAR)

(Figure 4)

Equipment
.

QC [kW]
.

QW [kW]
.

QC [kW]
.

QW [kW]
.

QC [kW]
.

QW [kW]
.

QC [kW]
.

QW [kW]

CSTR a/RD - - 676.69 703.86 1816.43 556.42 396.70 152.57
C1 1135.23 1181.19 1750.31 1759.95 - 1286.57 - -
C2 1212.97 1267.94 323.10 361.93 - - - -
C3 502.97 549.35 - - - - - -
DEC 0.85 - 8.07 - - - - -
EX1 25.01 b - 31.04 b - 15.39 - 25.85 -
EX2 133.75 - 28.61 - 25.87 - 77.20 -
EX3 31.04 b - 77.70 b - - - - -
EX4 13.73 b - 27.83 - - - - -
EX5 131.31 b - 25.89 - - - - -
EX6 3.10 - - - - - - -
EX7 25.85 - - - - - - -
OEC 3014.72 2998.48 2840.50 2825.74 1857.69 1842.99 499.76 152.57
SEC [kW t−1

EtAc] 3426.87 3408.41 3223.86 3207.11 2110.30 2093.59 567.68 173.30

Number of main equipment units 5 4 2 1
Number of heat exchangers 7 5 2 2

a adiabatic reactor, b heat integration—no external energy source is required.
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4.2. Economy Aspects of Individual Case Studies

An economic evaluation of the presented case studies is based on optimized simulations of the
process models. Prices of commodities were selected according to market research [45–47]. Prices of
both reactants and products were chosen as a long-term average. Electricity, cooling water, and steam
are considered to be energy utilities and their costs were obtained from the Aspen Plus database [26].
These utility costs correspond with actual prices. Exact values are listed in Table 10.

Table 10. Prices of raw materials, products, and energy used in process economic evaluation.

Raw Materials References

EtOH 800 $ t−1 [46,47]
AA 400 $ t−1 [46]
EO 1000 $ t−1 [46]

Products

EtAc 1300 $ t−1 [45]
MEG 1100 $ t−1 [46]

Energy [26]

Electricity 0.0775 $ kWh−1

cooling water 0.0317 $ m−3

steam (0.7 MPa) 0.0179 $ kg−1

steam (2.7 MPa) 0.0258 $ kg−1

Equipment cost was calculated using the Aspen Process Economic Analyzer software [26].
Individual mapping and sizing of each equipment unit was applied, which is important as the case
studies simulations were calculated using rate-based modeling with known equipment dimensions.
Also, special RD column configuration has been introduced in the RDS and RDAR case studies
(Figures 3 and 4)—multiple diameter columns, stripper column (without condenser, etc.). Detailed
individual equipment cost and installed cost are listed in Appendix A, Table A1.

Energy requirements of individual case studies (Table 9) were recalculated to utility consumption and
further to the price per hour. The conventional production path (Figure 1) is the most energy-intensive,
which is reflected in cooling water and steam consumption. The cooling water consumption was
233.11 m3 h−1, which is by more than 5.8% higher compared to the RD column with a separation
unit (Figure 2) (219.36 m3 h−1) and by more than 38.2% higher compared to the RD column with
a stripper (Figure 3) (143.87 m3 h−1). The same trend was observed in steam consumption, Table 11.
The RDAR set-up (Figure 4) has the lowest energy consumption. The cooling water flow is by more
than 83% lower compared to the conventional process (Figure 1). Despite the use of more expensive
high-pressure steam (2.7 MPa) compared to all other case studies where low-pressure steam (0.7 MPa)
is used, the RDAR set-up (Figure 4) has the lowest heating cost. Detailed results are listed in Table 11.
Comparison of total installed cost and total utility cost of individual case studies is depicted in Figure 5.

Table 11. Utility costs of designed ethyl acetate production pathways.

Conventional Path RD Column with
a Separation Unit RDS RDAR

(Figure 1) (Figure 2) (Figure 3) (Figure 4)

Rate Price
[$ h−1]

Rate Price
[$ h−1]

Rate Price
[$ h−1]

Rate Price
[$ h−1]

electricity [kW] 104.17 8.07 58.10 4.50 56.05 4.34 53.81 4.17
cooling water [m3 h−1] 233.11 7.39 219.36 6.95 143.87 4.56 38.71 1.23
steam (0.7 MPa) [kg h−1] 5219.95 93.68 4920.70 88.31 3209.30 57.59 - -
steam (2.7 MPa) [kg h−1] - - - - - - 302.55 7.81
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To complete the economic analysis, total capital costs, total annual costs, total raw material
cost, and product sales were calculated. A return rate of 20% per year and an annual work fund of
340 days were assumed. The capital costs are almost 10 mil. $ in the conventional path (Figure 1).
Process integration and intensification can decrease total capital cost by 11% (RD column with
a separation unit); 35% (RDS); or even 57% (RDAR). Total raw materials cost is similar (5.45 mil. $)
except for RDAS (Figure 4) as the price of ethylene oxide has to be included. However, the highest
product sales are in the RDAS set-up (16.4 mil. $ compared to 10.3 mil. $). Finally, a simple payback
period was calculated: two years of project feasibility and preparation (projecting, building, licensing,
etc.) is included. The conventional process (Figure 1) has a payback period of over 10 years because of
the highest capital and utilities cost. RD column with a separation unit (Figure 2) becomes profitable
1.5 years earlier than the conventional process (Figure 1). The payback period is almost halved in the
case of RDS (Figure 3), and only one-third in the case of RDAR (Figure 4) compared to the conventional
process (Figure 1). Finally, total production cost (TPC) was evaluated, Equation (2), and the results are
presented in Table 12. Comparison of total capital and annual costs with product sales are presented in
Figure 6. From Figure 6 and the TPC, it is clear that the most promising concepts are RDS (Figure 3)
and RDAR (Figure 4) from the economic point of view.

Table 12. Total annual costs of individual case studies.

Conventional Path RD Column with
a Separation Unit RDS RDAR

(Figure 1) (Figure 2) (Figure 3) (Figure 4)

Total capital cost [ mil. $] 9.91 8.84 6.43 4.24
Total installed cost [mil. $] 3.74 3.33 2.43 1.60
Total annual cost [mil. $ year−1] 9.15 9.04 8.65 13.72
Total raw materials cost [mil. $ year−1] 5.46 5.46 5.46 9.42
Total product sales [mil. $ year−1] 10.27 10.27 10.27 16.40
Total utilities cost [mil. $ year−1] 0.89 0.81 0.54 0.11
Pay-back period [year] 10.86 9.19 5.97 3.58
Total production cost [$ t−1] 1273.91 1266.14 1231.32 1018.09 a

a both products (EtAc and MEG) are included.
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Figure 6. Total capital, total annual costs, and product sales for individual case studies; 1—Conventional
path; 2—RD column with a separation unit; 3—RDS; 4—RDAR.

4.3. Safety Aspects of Individual Case Studies

Individual risk is a risk assessment methodology that allows for numerical estimates of the level
of risk associated with a certain activity or a series of activities to be estimated and then assessed.
To identify the list of incidents a semi-automated approach was used. For each type of unit, a predefined
set of representative incidents was prepared. The final choice of incidents is very difficult and requires
judgment from an analyst; therefore, three main factors were taken into consideration: the size
of the release, state of releasing material (liquid, vapor), and whether the release is instantaneous
or continuous.

• For distillation and reactive distillation columns, the incident list contained: liquid leaks (full bore
rupture and hole equivalent to 20% of diameter), vapor leaks, and complete rupture of column.

• For heat exchangers, small leaks and full rupture were used.
• For all pipelines in the simulation, the only full rupture was considered.

For the list of representative incidents, a number of different incident outcomes are possible.
To define the incident outcomes, three different generic event trees were used:

• continuous liquid release,
• continuous gaseous release and
• instantaneous release.

Probabilities were adjusted based on a recommendation from [48]. Consequence modeling
was performed using standard (and widely used) software system ALOHA (The Areal Location of
Hazardous Atmospheres) provided by the US Environmental Protection Agency. Three representative
weather conditions (wind speed 1, 2, and 4 m s−1 and atmospheric stability F, D, and C) were taken
into account for all case studies. The wind was assumed to be uniformly distributed in all directions.
Probabilities of individual representative weather conditions were adopted from information provided
by the Slovak Hydrometeorological Institute.

Results of individual risk estimation for the presented case studies are depicted in Figure 7.
To compare all investigated case studies, individual risk is presented in form of risk profiles as
a function of distance. Based on the risk profiles, it is possible to conclude that, from the safety point of
view, the conventional process set-up (Figure 1) and reactive distillation column with a separation
unit (Figure 2) are the worst alternatives. Both profiles are practically identical. Close to the center
of the production unit, the conventional process set-up (Figure 1) shows the highest individual risk
from all presented case studies. If we focused only on the boundary of acceptable risk, 1 × 10−5 year−1
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for existing plants (Table 13), the least suitable set-up is the distillation column with a separation unit
(Figure 2) due to the high number of equipment units but mainly due to the recirculation of large
quantities of material and high flow rates through the columns.

Based on the presented analysis, the best alternative, from the safety analysis point of view,
is the reactive distillation column with an auxiliary reaction. This result can be a little bit surprising
because in this case study, ethylene oxide (extremely flammable, explosive, and toxic gas) is added
as a feedstock. On the other hand, the main advantage of this set-up (Figure 4) compared with the
previous three, is the minimal number of operation units and no material recycles. Main reactions
and separation are performed only in one unit (reactive distillation column and vapor and liquid
flow through the column are lower than in all previous case studies. For this reason, the volume of
hazardous materials in the column, reboiler, and other auxiliary equipment are also lower compared to
the previous case studies. The concentration of the extremely flammable ethylene oxide is very low
in the column and its mole fraction in the whole system is below 10%; except for 10 trays close to its
feed location.

From the comparison of individual risk of fatality estimation (Figure 7 resp. Table 13), it is clear
that minimizing the number of equipment and internal recycles leads to a reduction of the level of risk.
In the presented study, only the production and separation part of the case studies were evaluated. If
required, the safety study can be extended to include storage facilities for each case study.

Table 13. Distance from the center for individual case studies up to which individual risk of fatality is
lower than 10−5 resp. 10−4 year−1.

Individual Risk 10−5 Year−1 Individual Risk 10−4 Year−1

Distance from the Center [m] Distance from the Center [m]

Conventional path (Figure 1) 122 95
RD column with separation unit (Figure 2) 166 59
RDS (Figure 3) 122 43
RDAR (Figure 4) 62 28

Figure 7. Individual risk of fatality estimation for presented case studies.
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5. Conclusions

Intensification and integration of ethyl acetate production via reactive distillation have been studied.
Four detailed process flowsheets were designed: conventional process set-up (Figure 1); reactive
distillation column with a separation unit (Figure 2), reactive distillation column with a stripper (RDS)
(Figure 3), and reactive distillation column with an auxiliary reaction (RDAR) (Figure 4). A multi-aspect
comparison of the set-ups covering energy requirements, economy, and safety analysis was done.

Process modeling was performed in Aspen Plus [26]. Thermodynamic model NTRL-HOC with
reliable parameters was used for phase equilibrium calculations. Chemical reactions (esterification
(5) and hydration (7)) were modeled by rate Equations (6) and (8) obtained from extensive literature
research. A rigorous non-equilibrium stage model of the distillation/reactive distillation column
was used. Detailed column internal configuration was designed (packed column) and therefore,
more accurate simulation results were obtained including reasonable column hydraulics.

Process streams regeneration and recovery were solved to achieve defined specifications
(production of 10 kmol h−1 of pure ethyl acetate (99.9 mol.%); prevention of ethyl acetate losses in
other product streams (full EtAc recovery); separation of process by-products (water or monoethylene
glycol) in equal amount and purity as the main product (EtAc)). This was successfully achieved in
all designed processes (Figures 1–4). In the conventional process set-up (Figure 1), regeneration was
energy-intensive due to large recycle flows. Energy requirements for recycle regeneration decreased
significantly due to process integration. Regeneration was less energy-intensive in the case of RD
column with a separation unit (Figure 2) compared to the conventional set-up (Figure 1, by around 35%).
No process stream regeneration was needed in the case of either RDS (Figure 3) or RDAR (Figure 4).
Therefore, energy consumption was reduced by process integration and intensification remarkably.
The lowest energy consumption was achieved in a fully integrated and intensified process—RDAR
(Figure 4), due to the synergy of two chemical reactions and enhanced product separation (Table 9).

Economic and energy aspects showed similar trends in the designed processes. The total utility
costs were the highest in the case of commercial process set-up (Figure 1)—almost 0.9 mil. $ per year.
Savings of 10% in the utility costs were observed when the conventional process (Figure 1) was replaced
by an RD column with a separation unit (Figure 2). Further utilities cost savings were achieved by
RD process integration and intensification via RDS (Figure 3), up to 39%, and via RDAR (Figure 4) up
to 88%, respectively. More remarkable savings were observed in total capital cost (TCC) (Table 12).
As the number of equipment units was reduced, TCC decreased accordingly. On the other hand,
the price of individual equipment units increased because of larger columns with sophisticated internal
configuration. Detailed prices of individual equipment are listed in the Appendix A in Table A1.

An integral part of the intensification process of ethyl acetate production is the safety analysis.
To translate the probability and impact of risk into a measurable quantity, individual risk estimation
was used. Results in the form of risk profiles can be easily compared for several alternatives of ethyl
acetate production and prioritize the safer ones. From the safety analysis point of view, a reactive
distillation column with an auxiliary reaction (Figure 4) comes out as the best alternative even though
ethylene oxide (extremely flammable, explosive, and toxic gas) is added as feedstock. This is due to
the minimum number of equipment and the elimination of recycles in the system.
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List of Symbols

C molar concentration kmol m−3

d column internal diameter m
f feed stage position
fi frequency of incident outcome i year−1

FI frequency of incident I year−1

H packed section height m
IRx,y total individual risk of fatality at geographical location x, y year−1

n total number of incident outcome case
ṅ molar flow kmol h−1

N number of theoretical stages, total condenser, and reboiler are included
NR reactive section stages
pf,i fatality at location x, y
po,i incident outcome probability
P total pressure kPa
∆P column section pressure drop kPa
.

QC condenser duty kW
.

QW reboiler duty kW
r reaction rate kmol m−3 s−1

R gas constant kJ kmol−1 K−1

R reflux ratio
T temperature ◦C
T thermodynamic temperature in Equations (6) and (8) K
.

V volume flow m3 h−1

x molar fraction in the liquid phase

Subscripts

AA acetic acid
C condenser
D distillate
EtAc ethyl acetate
EtOH ethanol
F feed
i incident outcome case
I incident
H2O water
R reaction occurrence
W reboiler
x, y geographical location

Abbreviations

AA acetic acid
ARD azeotropic reactive distillation
CSTR continuous stirred tank reactor
DS design specification
EQ equilibrium stage
EtAc ethyl acetate
EtOH ethanol
HETP height equivalent of theoretical plate
HOC Hayden–O’Connell equation of state
NEQ non-equilibrium stage
NRTL non-random two liquids
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OEC overall energy consumption kW
RD reactive distillation
RDAR reactive distillation with auxiliary reaction
RDPV reactive distillation with pervaporation
RDS reactive distillation with stripper
RDWC reactive distillation with a dividing wall
RED reactive extractive distillation
SEC specific energy consumption kW t−1

EtAc
TAC total annual cost $ year−1

TCC total capital cost $
TPC total production cost $ t−1

VL vapor–liquid
VLLE vapor–liquid–liquid phase equilibria

Appendix A

Table A1. Equipment cost and total installed cost of individual equipment.

Conventional Path
(Figure 1)

RD Column with
Separation Unit

(Figure 2)

RD Column with
Stripper

(Figure 3)

RD Column with
Auxiliary Reaction

(Figure 4)

Equipment
Cost

Installed
Cost

Equipment
Cost

Installed
Cost

Equipment
Cost

Installed
Cost

Equipment
Cost

Installed
Cost

Item [103 $] [103 $] [103 $] [103 $] [103 $] [103 $] [103 $] [103 $]

CSTR/RD 173.7 334.3 680.5 1214.0 840.5 1614.0 790.4 1480.5
C1 620.7 1147.2 610.6 1185.2 380.2 695.2 - -
C2 594.5 1138.1 148.0 487.8 - - - -
C3 172.6 564.0 - - - - - -

DEC 16.1 108.9 16.1 108.9 - - - -
EX1 8.5 53.0 8.7 59.1 8.5 58.6 10.1 61.0
EX2 39.3 120.0 19.3 85.4 10.5 60.3 10.5 60.3
EX3 8.7 59.1 9.9 62.6 - - - -
EX4 8.5 45.7 14.3 70.7 - - - -
EX5 11.0 63.9 10.9 60.8 - - - -
EX6 8.5 45.7 - - - - - -
EX7 10.5 60.3 - - - - - -

Sum 1672.6 3740.2 1518.3 3334.5 1239.7 2428.1 811.0 1601.8
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