Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Turbulence Models
2.2. Geometric Model Construction and Mesh Generation
2.3. Boundary Condition Setting
3. Results and Analysis
3.1. Experiment Analysis
3.2. Pressure Distribution
3.3. Velocity Distribution
3.4. Vortex Structure
3.5. Prediction Performance of the Three Turbulent Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
k | Turbulent kinetic energy [m2/s2] | ε | Turbulent dissipation rate [m2/s3] |
N | Rotating speed [rpm] | ω | Relative velocity [m/s] |
ui | Time-averaged velocity [m/s] | ν | Turbulent viscosity [m2/s] |
Xi | Coordinate [m] | ρ | density [kg/m3] |
t | Time [s] | μ | Circumferential velocity [m/s] |
P | Fluid pressure [Pa] | μt | Turbulence viscosity coefficient |
τij | Reynolds stress |
References
- Del Álamo, J.C.; Jiménez, J. Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 2009, 640, 5–26. [Google Scholar]
- Bull, M. Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 1967, 28, 719–754. [Google Scholar]
- Favre, A. Review on space-time correlations in turbulent fluids. J. Appl. Mech. 1965, 32, 241–257. [Google Scholar]
- Favre, A.; Gaviglio, J.; Dumas, R. Further space-time correlations of velocity in a turbulent boundary layer. J. Fluid Mech. 1958, 3, 344–356. [Google Scholar]
- Favre, A.; Gaviglio, J.; Dumas, R. Structure of Velocity Space-Time Correlations in a Boundary Layer. Phys. Fluids 1967, 10, S138–S145. [Google Scholar]
- Demetriades, A. Turbulence correlations in a compressible wake. J. Fluid Mech. 1976, 74, 251–267. [Google Scholar]
- Ganapathisubramani, B.; Hutchins, N.; Hambleton, W.T.; Longmire, E.K.; Marusic, I. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 2005, 524, 57–80. [Google Scholar]
- Kline, S.J.; Reynolds, W.C.; Schraub, F.A.; Runstadler, P.W. The structure of turbulent boundary layers. J. Fluid Mech. 1967, 30, 741–773. [Google Scholar]
- Falco, R.E. Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 1977, 20, S124. [Google Scholar]
- Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 1982, 118, 341–377. [Google Scholar]
- Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 1987, 177, 133–166. [Google Scholar] [CrossRef] [Green Version]
- Moser, R.D.; Kim, J.; Mansour, N.N. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 1999, 11, 943–945. [Google Scholar] [CrossRef]
- Abe, H.; Kawamura, H.; Matsuo, Y. Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng. Trans. ASME 2001, 123, 382–393. [Google Scholar] [CrossRef]
- Wallace, J.M.; Eckelmann, H.; Brodkey, R.S. The wall region in turbulent shear flow. J. Fluid Mech. 1972, 54, 39–48. [Google Scholar] [CrossRef]
- Lozano-Durán, A.; Flores, O.; Jiménez, J. The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech 2012, 694, 100–130. [Google Scholar] [CrossRef]
- Robinson, S.K. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 1991, 23, 601–639. [Google Scholar] [CrossRef]
- Adrian, R.J. Hairpin vortex organization in wall turbulence. Phys. Fluids 2007, 19, 041301. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J. Coherent structures in wall-bounded turbulence. J. Fluid Mech. 2018, 842, 1. [Google Scholar] [CrossRef] [Green Version]
- Calautit, J.K.; Chaudhry, H.N.; Hughes, B.R.; Sim, L.F. A validated design methodology for a closed-loop subsonic wind tunnel. J. Wind Eng. Ind. Aerodyn. 2014, 125, 180–194. [Google Scholar] [CrossRef]
- Lu, P.; Gao, Q.; Wang, Y. The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management. Appl. Therm. Eng. 2016, 104, 42–53. [Google Scholar] [CrossRef]
- Galvan, S.; Reggio, M.; Guibault, F. Assessment study of k-ε turbulence models and near-wall modeling for steady state swirling flow analysis in draft tube using fluent. Eng. Appl. Comput. Fluid Mech. 2011, 5, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gupta, S.; Kuo, T.W.; Gopalakrishnan, V. RANS and large Eddy simulation of internal combustion engine flows-a comparative study. J. Eng. Gas Turbines Power 2014, 136, 051507. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.; Lu, X. Large-eddy and detached-eddy simulations of the separated flow around a circu-lar cylinder. J. Hydrodyn. 2007, 19, 559–563. [Google Scholar] [CrossRef]
- Wood, H.G.; Yan, Q.; Wei, W. Parametric analysis and optimization of inlet deflection angle in Torque converters. J. Fluid Eng. 2015, 137, 031101. [Google Scholar]
- Chen, X.; Liu, Y. Finite Element Modeling and Simulation with ANSYS Workbench; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yu, C.; Qin, S.; Liu, Y.; Chai, B. Heat exchange performance optimization of a wheel loader cooling system based on computational fluid dynamic simulation. Adv. Mech. Eng. 2018, 10, 1687814018803984. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Qin, S.; Chai, B.; Huang, S.; Liu, Y. The Effect of Compressible Flow on Heat Transfer Performance of Heat Exchanger by Computational Fluid Dynamics (CFD) Simulation. Entropy 2019, 21, 829. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Sicheng, Q. The optimization design of Off-Highway machinery radiator based on genetic algorithm and ε-NTU. Acta Tech. CSAV 2017, 62, 465–476. [Google Scholar]
- Ji, B.; Wang, J.; Luo, X.; Miyagawa, K.; Xiao, L.Z.; Long, X.; Tsujimoto, Y. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 2016, 30, 2507–2514. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Stud. Turbul. Using Numer. Simul. Databases 1988, 2, 193–208. [Google Scholar]
Analysis Type | Transient State |
---|---|
Turbulence Model | LES, DES, and Standard model |
Pressure-Velocity Coupling | SIMPLEC |
Transient Formulation | Second-order implicit |
Fan Status | Varied from 0 rpm to 2000 rpm |
Vent Status | Outflow |
Environment Temperature | 25 °C |
Inlet velocity | 1.5 m/s |
Model | CPU Time (h) |
---|---|
RANS | 12.3 |
DES | 22.1 |
LES | 34.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Xue, X.; Shi, K.; Shao, M.; Liu, Y. Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator. Processes 2020, 8, 1687. https://doi.org/10.3390/pr8121687
Yu C, Xue X, Shi K, Shao M, Liu Y. Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator. Processes. 2020; 8(12):1687. https://doi.org/10.3390/pr8121687
Chicago/Turabian StyleYu, Chao, Xiangyao Xue, Kui Shi, Mingzhen Shao, and Yang Liu. 2020. "Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator" Processes 8, no. 12: 1687. https://doi.org/10.3390/pr8121687
APA StyleYu, C., Xue, X., Shi, K., Shao, M., & Liu, Y. (2020). Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator. Processes, 8(12), 1687. https://doi.org/10.3390/pr8121687