Anaerobic Digestate Treatment Selection Model for Biogas Plant Costs and Emissions Reduction
Abstract
:1. Introduction
2. State-of-Art in Croatia
3. Materials and Methods
3.1. Optimization Model
3.2. Options for Digestate Treatment
3.3. Input Data and Constraints
- Share of dry matter in digestate;
- Share of dry matter in manure;
- Biogas potential for pig/cow manure;
- Biogas energy potential;
- Energy demand per pig/cow;
- Price of electrical energy;
- Number of pigs/cows on a farm during one year;
- Amount of produced pig/cow manure;
- Amount of produced digestate;
- Biogas plant size (power);
- Plant operational hours per year;
- FiT prices for electrical energy (tariff system—incentives for production from RES and CHP);
- Targeted reduction of GHG emissions;
- Targeted reduction of operational costs.
3.4. Calculation of Greenhouse Gas Emission Reductions
3.5. Calculation of Potential Cost Reduction and Profit
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Saedi, T.A.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. [Google Scholar]
- Lyng, K.-A.; Stensgård, A.; Hanssen, O.; Modahl, I. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. J. Clean. Prod. 2018, 182, 737–745. [Google Scholar] [CrossRef]
- Jensen, I.G.; Skovsgaard, L. The impact of CO2-costs on biogas usage. Energy 2017, 134, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Boldrin, A.; Baral, K.; Fitamo, T.; Vazifehkhoran, A.; Jensen, I.G.; Kjærgaard, I.; Lyng, K.-A.; van Nguyen, Q.; Nielsen, L.S.; Triolo, J.M. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting. Energy 2016, 112, 606–617. [Google Scholar] [CrossRef] [Green Version]
- Enitan, A.; Adeyemo, J.; Swalaha, F.; Kumari, S.; Bux, F. Optimization of biogas generation using anaerobic digestion models and computational intelligence approaches. Rev. Chem. Eng. 2017, 33, 309–335. [Google Scholar] [CrossRef]
- Qdais, H.; Hani, K.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Meyer, A.D.; Cattrysse, D.; Orshoven, J. A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS). Eur. J. Oper. Res. 2015, 245, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.; McLoone, S.; Bongards, M. Biogas Plant Control and Optimization Using Computational Intelligence Methods. Autom. Methoden Anwend. Steuer. Regel. Inf. 2009, 57, 638–649. [Google Scholar]
- Zareei, S.; Khodaei, J. Modeling and optimization of biogas production from cow manure and maize straw using an Adaptive Neuro-Fuzzy Inference System. Renew. Energy 2017, 114, 423–427. [Google Scholar] [CrossRef]
- Blumensaat, F.; Keller, J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 2005, 39, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, G.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. Anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.; Esquerre, K.; Queiroz, L.M. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion. Waste Manag. 2015, 35, 89–95. [Google Scholar] [CrossRef]
- Biernacki, P.; Steinigeweg, S.; Borchert, A.; Uhlenhut, F. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Bioresour. Technol. 2013, 127, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Gaida, D.; Luis, S.; Wolf, C.; Back, T.; Bongards, M.; McLoone, S. Optimal control of biogas plants using nonlinear model predictive control. In Proceedings of the 29th International System Safety Conference (ISSC 2011), Las Vegas, NV, USA, 23–24 June 2011. [Google Scholar]
- Uhlemair, H.; Karschin, I.; Geldermann, J. Optimizing the production and distribution system of bioenergy villages. Int. J. Prod. Econ. 2014, 147, 62–72. [Google Scholar] [CrossRef]
- Jensen, I.; Münster, M.; Pisinger, D. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses. Eur. J. Oper. Res. 2017, 262, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Lyng, K.-A.; Modahl, I.; Møller, H.; Morken, J.; Briseid, T.; Hanssen, O. The BioValueChain model: A Norwegian model for calculating environmental impacts of biogas value chains. Int. J. Life Cycle Assess. 2015, 20, 490–502. [Google Scholar] [CrossRef]
- Lyng, K.-A.; Bjerkestrand, M.; Stensgård, A.; Callewaert, P.; Hanssen, O. Optimising Anaerobic Digestion of Manure Resources at a Regional Level. Sustainability 2018, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Kataki, S.; Sarma, G.; Patowary, D.; Baruah, D. Prospects of Utilization of Liquid Fraction of Biogas Digestate as Substrate Supplement for Mushroom Cultivation. In Advances in Waste Management; Springer: Singapore, 2019; pp. 445–465. [Google Scholar]
- Lukehurst, C.; Frost, P.; Saedi, T. Utilisation of digestate from biogas plants as biofertilizer. IEA Bioenergy 2010, 2010, 1–36. [Google Scholar]
- Đurđević, D.; Blecich, P.; Lenić, K. Energy Potential of Digestate Produced by Anaerobic Digestion in Biogas Power Plants: The Case Study of Croatia. Environ. Eng. Sci. 2018, 35, 1286–1293. [Google Scholar] [CrossRef]
- Croatian Energy Market Operator. Yearly Report 2018; Croatian Energy Market Operator: Zagreb, Croatia, 2019. [Google Scholar]
- Energy Institute Hrvoje Požar. Case Studies in Biogas Action; EU Horizon 2020: Zagreb, Croatia, 2018. [Google Scholar]
- Chow, L. World’s First Large-Scale Carbon-Neutral Brewery Now in Operation Ethical Corporation. Available online: http://www.ethicalcorp.com/heineken-shows-its-bottle-climate (accessed on 30 September 2019).
- Štambaský, J.; Wellinger, A.; Scheidl, S. Biogas Action Brochure on Best Regional Integrated Biogas Plants; EU Horizon 2020: Copenhagen, Denmark, 2016. [Google Scholar]
- Đurđević, D.; Hulenić, I.; Kulišić, B. Degradation of Lignocellulosic Complex Through Production of Struvite from Digestate. Waste Biomass Valorization 2018, in press. [Google Scholar]
- Sigurnjak, I.; Vaneeckhaute, C.; Michels, E.; Ryckaert, B.; Ghekiere, G.; Tack, F.; Meers, E. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years. Sci. Total Environ. 2017, 599–600, 1885–1894. [Google Scholar] [CrossRef]
- Barzee, T.; Edalati, A.; El-Mashad, H.; Wang, D.; Scow, K.; Zhang, R. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Front. Sustain. Food Syst. 2019, 3, 58. [Google Scholar] [CrossRef]
- Kulišić, B.; Đurđević, D.; Ivić, I. Increasing the economy of biogas plant through innovative digestate evaluation. In Znanstveno-Stručna Radionica Proizvodnja Bioplina; Faculty of Chemical Engineering and Technology: Zagreb, Croatia, 2016. [Google Scholar]
- Møller, J.; Boldrin, A.; Christensen, T. Anaerobic digestion and digestate use: Accounting of greenhouse gases and global warming contribution. Waste Manag. Res. 2009, 27, 813–824. [Google Scholar] [CrossRef] [Green Version]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrere, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Visvanathan, Z.; Visvanathan, C. Evaluation of anaerobic digestate for greenhouse gas emissions at various stages of its management. Int. Biodeterior. Biodegrad. 2014, 95, 167–175. [Google Scholar]
- Gardoni, D.; Guarino, M. Drying and combustion of an anaerobic digestate: Results and economical evaluation of a demonstrative-scale plant. Int. J. Eng. Res. Sci. 2016, 2, 148–155. [Google Scholar]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Johansen, A.; Carter, M.S.; Jensen, E.; Hauggard-Nielsen, H.; Ambus, P. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl. Soil Ecol. 2013, 63, 36–44. [Google Scholar] [CrossRef]
- Wulf, S.; Maeting, M.; Clemens, J. Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. J. Environ. Qual. 2002, 31, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, B.; Song, D. Life-cycle energy production and emissions mitigation by comprehensive biogas–digestate utilization. Bioresour. Technol. 2012, 114, 357–364. [Google Scholar]
- Maldaner, L.; Wagner-Riddle, C.; VanderZaag, A.; Gordon, R.; Duke, C. Methane emissions from storage of digestate at a dairy manure biogas facility. Agric. For. Meteorol. 2018, 258, 96–107. [Google Scholar] [CrossRef]
- Baldé, H.; VanderZaag, A.; Burtt, S.; Wagner-Riddle, C.; Crolla, A.; Desjardins, R.; MacDonald, D. Methane emissions from digestate at an agricultural biogas plant. Bioresour. Technol. 2016, 216, 914–922. [Google Scholar] [PubMed]
- Molinos-Senante, M.; Hernandez-Sancho, F.; Sala-Garrido, R.; Garrido-Baserba, M. Economic Feasibility Study for Phosphorus Recovery Processes. Ambio 2011, 40, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croatian Energy Market Operator. Balancing Energy; Croatian Energy Market Operator: Zagreb, Croatia, 2017; Available online: https://www.hrote.hr/balancing-energy (accessed on 30 August 2019).
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment—Updated Bioeconomy Strategy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. Closing the Loop: Commission Adopts Ambitious New Circular Economy Package to Boost Competitiveness, Create Jobs and Generate Sustainable Growth; European Commission: Brussels, Belgium, 2015. [Google Scholar]
Option 1 | Option 2 | Option 3 | Option 4 | |
---|---|---|---|---|
Economic cost for operator | Investment in additional plant, operational and maintenance cost, chemicals | Investment in additional plant, operational and maintenance cost, chemicals | Investment in additional plant, operational and maintenance cost, potential ash management (landfill) | No change |
Income for the operator | Market cost of high-quality fertilizer | Lower cost of maize silage used as feedstock | Additional energy produced from incineration process | No change |
Emissions of greenhouse gases | Pre-storage of manure, anaerobic digestion (energy use, capital goods), chemicals | Pre-storage of manure, anaerobic digestion (energy use, capital goods), chemicals | Pre-storage of manure, anaerobic digestion (energy use, capital goods), emissions from incineration process | Storage of manure and storage and spreading of digestate |
Avoided emissions of greenhouse gases | Electricity and heat production, digestate use as fertilizer (no storage) | Electricity and heat production, utilization of surplus heat for digestate drying and heat treatment | Electricity and heat production, surplus heat for digestate drying and start of incineration process | Electricity and heat production |
Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|
Amount of produced digestate that can be used as fertilizer | Plant energy demand | Energy demand for digestate drying and plant operation | GHG emissions from digestate |
Market price of produced fertilizer | Digestate share treated and recirculated | Digestate energy potential | Corn silage price per year |
Plant energy demand | Corn silage share replaced by treated digestate | GHG emissions from incineration plant | Total energy efficiency of the biogas plant |
Digestate share used for fertilizer production | Biogas yield increase due to treated digestate recirculation | Ash treatment cost | Amount of manure used in AD |
GHG emission due to utilization of fertilizer (struvite) on soil | Market price for fertigation liquid | Additional energy (biogas + digestate incineration) | Amount of corn silage used in AD |
Market price for fertigation liquid | |||
Maintenance costs per year | |||
Plant lifetime | |||
Plant capital cost (CAPEX) | |||
Plant operational cost (OPEX) | |||
Interest rate for each plant |
Factor | Greenhouse Gas | CO2eq [kg CO2eq/t Digestate] | Source |
---|---|---|---|
Emissions from AD digestate | CH4, N2O | 216.96 | [21] |
Biogas production | CH4, N2O, CO2 | 5.8–9.4 | [20,34,35,36] |
Digestate recirculation | CH4 | / | [35] |
Digestate incineration | CH4, CO2, NOx | 1410 | [35,37] |
Fertilization with digestate | CH4, CO2, N2O, NH3 | 107.2 | [38,39,40,41] |
Digestate storage (no cover) | CH4 | 69.58 | [42,43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đurđević, D.; Hulenić, I. Anaerobic Digestate Treatment Selection Model for Biogas Plant Costs and Emissions Reduction. Processes 2020, 8, 142. https://doi.org/10.3390/pr8020142
Đurđević D, Hulenić I. Anaerobic Digestate Treatment Selection Model for Biogas Plant Costs and Emissions Reduction. Processes. 2020; 8(2):142. https://doi.org/10.3390/pr8020142
Chicago/Turabian StyleĐurđević, Dinko, and Ivona Hulenić. 2020. "Anaerobic Digestate Treatment Selection Model for Biogas Plant Costs and Emissions Reduction" Processes 8, no. 2: 142. https://doi.org/10.3390/pr8020142
APA StyleĐurđević, D., & Hulenić, I. (2020). Anaerobic Digestate Treatment Selection Model for Biogas Plant Costs and Emissions Reduction. Processes, 8(2), 142. https://doi.org/10.3390/pr8020142