Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Analytical Chemicals
2.3. Sample Preparation
2.4. Drying Methods
2.4.1. Freeze Drying Method
2.4.2. Microwave Drying Method
2.4.3. Hot Air Drying Method
2.4.4. Vacuum Drying Method
2.4.5. Sun Drying Method
2.5. Determination of Physical Properties
2.6. Determination of Bioactive Compounds
2.7. Determination of Antioxidant Capacity of Extracts
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impact of Microwave Drying on Physical, Phytochemical and Antioxidant Properties of Tuckeroo Fruits
3.2. Impact of Vacuum Drying on Physical, Phytochemical and Antioxidant Properties of Tuckeroo Fruits
3.3. Impact of Hot Air Drying on Physical, Phytochemical and Antioxidant Properties of Tuckeroo Fruits
3.4. Comparison of the Impact of Different Drying Methods Under Their Optimal Conditions on Physical, Phytochemical and Antioxidant Properties of Tuckeroo Fruits
3.5. Visual Relationship Exploration between Different Dehydration Methods, Relevant Phytochemicals and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhuyan, D.J.; Vuong, Q.V.; Bond, D.R.; Chalmers, A.C.; Van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Exploring the Least Studied Australian Eucalypt Genera: Corymbia and Angophora for Phytochemicals with Anticancer Activity against Pancreatic Malignancies. Chem. Biodivers. 2017, 14, e1600291. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.; Hirun, S.; Phillips, P.; Chuen, T.; Bowyer, M.; Goldsmith, C.; Scarlett, C. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from Australian native fruits. J. Ethnopharmacol. 2014, 152, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Konczak, I.; Sze, D.M.-Y.; Ramzan, I. Towards the discovery of novel phytochemicals for disease prevention from native Australian plants: An ethnobotanical approach. Asia Pac. J. Clin. Nutr. 2010, 19, 330. [Google Scholar] [PubMed]
- Smith, N.M. Ethnobotanical Field Notes from the Northern Territory; State Herbarium, Botanic Gardens Adelaide: Adelaide, Australia, 1991. [Google Scholar]
- Pennacchio, M.; Kemp, A.S.; Taylor, R.P.; Wickens, K.M.; Kienow, L. Interesting biological activities from plants traditionally used by Native Australians. J. Ethnopharmacol. 2005, 96, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Floyd, A.G. Rainforest Trees of Mainland South-Eastern Australia; Inkata Press: Melbourne, Australia, 1989. [Google Scholar]
- Thuong, P.T.; Khoi, N.M.; Scarlett, C. Vietnamese Medicinal Plants as Potential Anti-Cancer Agents. In Plant Bioactive Compound for Prevention and Treatment Pancreatic Cancer; Christopher, S., Vuong, Q.V., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2015. [Google Scholar]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. 2007, 45, 328–336. [Google Scholar] [CrossRef]
- Pham, N.M.Q.; Chalmers, A.C.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Characterising the Physical, Phytochemical and Antioxidant Properties of the Tuckeroo (Cupaniopsis anacardioides) Fruit. Technologies 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Phytochemical Retention and Antioxidant Capacity of Xao Tam Phan (Paramignya Trimera) Root as Prepared by Different Drying Methods. Dry. Technol. 2016, 34, 324–334. [Google Scholar] [CrossRef]
- John, C.H. Elements of Food Engineering; AVI Publishing Co., Inc.: Westport, CT, USA, 1976. [Google Scholar]
- Chan, E.; Lim, Y.; Wong, S.; Lim, K.; Tan, S.P.; Lianto, F.; Yong, M. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed Sweet Corn Has Higher Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.; Chun, J.; Lee, H.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Kang, K.S.; Kim, H.Y.; Pyo, J.S.; Yokozawa, T. Increase in the free radical scavenging activity of ginseng by heat-processing. Boil. Pharm. Bull. 2006, 29, 750–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Effects of Drying Conditions on Physicochemical and Antioxidant Properties of Banana (Musa cavendish) Peels. Drying Technology 2017, 35, 1141–1151. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. Int. J. Food Sci. Technol. 2017, 52, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Optimization of ultrasound-assisted extraction conditions for phenolic compounds and antioxidant capacity from Tuckeroo (Cupaniopsis anacardioides) fruit. Sep. Sci. Technol. 2019, 1–10. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Chuen, T.L.; Goldsmith, C.D.; Bowyer, M.C.; Chalmers, A.C.; Phillips, P.A.; Scarlett, C.J. Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J. Herb. Med. 2014, 4, 134–140. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: Cuprac Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D. Changes in quality of microwave-treated agricultural products—A review. Biosyst. Eng. 2007, 98, 1–16. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Roy, M.K.; Takenaka, M.; Isobe, S.; Tsushida, T. Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem. 2007, 103, 106–114. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- McMinn, W.; Magee, T.R.A. Principles, Methods and Applications of the Convective Drying of Foodstuffs. Food Bioprod. Process. 1999, 77, 175–193. [Google Scholar] [CrossRef]
- Prothon, F.; Ahrné, L.M. Application of the Guggenheim, Anderson and De Boer model to correlate water activity and moisture content during osmotic dehydration of apples. J. Food Eng. 2004, 61, 467–470. [Google Scholar] [CrossRef]
- Labuza, T.P. The Effect of Water Activity on Reaction Kinetics of Food Deterioration. Food Technol. 1980, 34, 36–41. [Google Scholar]
- Marques, L.G.; Silveira, A.M.; Freire, J.T. Freeze-Drying Characteristics of Tropical Fruits. Dry. Technol. 2006, 24, 457–463. [Google Scholar] [CrossRef]
- Tambunan, A.H.; Yudistira; Kisdiyani; Hernani. Freeze drying characteristics of medicinal herbs. Dry. Technol. 2001, 19, 325–331. [Google Scholar] [CrossRef]
Microwave Power | 240 W | 480 W | 720 W | 960 W | 1200 W |
---|---|---|---|---|---|
Irradiation time | 7 min 10 s ± 0.05 a | 7 min 10 s ± 0.05 a | 6 min 10 s ± 0.02 b | 5 min 10 s ± 0.02 c | 3 min 10 s ± 0.02 d |
Physical properties | |||||
Yield (%) | 39.87 ± 1.2 a | 39.65 ± 1.0 a | 40.49 ± 1.78 a | 37.36 ± 3.0 ab | 35.57 ± 0.31 b |
Moisture (%) | 8.87 ± 0.20 ab | 8.65 ± 0.01 b | 9.49 ± 0.71 a | 6.36 ± 0.63 c | 4.57 ± 0.02 d |
Aw | 0.47 ± 0.00 b | 0.46 ± 0.00 c | 0.48 ± 0.00 a | 0.44 ± 0.00 d | 0.38 ± 0.00 e |
Extractable solid (%) | 43.67 ± 0.79 a | 42.08 ± 1.09 b | 44.10 ± 0.21 a | 40.24 ± 0.83 c | 38.17 ± 0.53 d |
Phytochemical properties | |||||
TPC (mg GAE/g) | 44.89 ± 0.6 b | 37.9 ± 0.32 c | 54.14 ± 3.18 a | 31.78 ± 0.57 d | 33.51 ± 0.88 d |
TFC (mg CAE/g) | 64.97 ± 0.8 b | 51.01 ± 0.61 c | 77.9 ± 1.58 a | 42.65 ± 2.04 d | 43.27 ± 0.8 d |
TPro (mg CAE/g) | 50.56 ± 0.38 a | 42.69 ± 1.13 b | 50.37 ± 0.87 a | 36.46 ± 0.55 c | 37.46 ± 1.61 c |
Antioxidant properties | |||||
DPPH (mgTE/g) | 108.21 ± 0.85 a | 106.47 ± 0.51 b | 107.96 ± 0.2 a | 96.21 ± 0.42 c | 96.99 ± 0.4 c |
ABTS (mgTE/g) | 156.19 ± 0.15 b | 140.97 ± 0.54 c | 176.92 ± 1.49 a | 103.64 ± 0.6 e | 116.48 ± 1.54 d |
FRAP (mgTE/g) | 60.0 ± 0.34 a | 48.2 ± 1.67 b | 61.19 ± 0.36 a | 41.11 ± 1.38 c | 42.78 ± 1.27 c |
CUPRAC (mgTE/g) | 145.11 ± 0.68 a | 118.71± 4.85 b | 147.49± 0.72 a | 104.75 ± 1.73 d | 110.66 ± 2.54 c |
Temperature (°C) | 40 | 60 | 80 | 100 | 120 |
---|---|---|---|---|---|
Drying time | 24 h | 8 h | 7 h | 5 h | 4.5 h |
Physical properties | |||||
Yield (%) | 48.25 ± 1.99 a | 46.94 ± 4.4 ab | 41.73 ± 1.83 bc | 40.8 ± 1.51 cd | 34.8 ± 4.56 e |
Moisture (%) | 17.25 ± 0.12 a | 15.94 ± 0.64 b | 10.73 ± 0.19 c | 9.8 ± 0.32 d | 3.8 ± 0.03 e |
Aw | 0.55 ± 0.00 a | 0.53 ± 0.00 b | 0.49 ± 0.00 c | 0.48 ± 0.00 d | 0.32 ± 0.00 e |
Extractable solid (%) | 33.78 ± 1.79 d | 37.09 ± 2.12 c | 38.82 ± 1.07 bc | 43.45 ± 0.61 a | 40.73 ± 0.16 b |
Phytochemical properties | |||||
TPC (mg GAE/g) | 30.64 ± 1.09 d | 54.03 ± 0.38 b | 52.65 ± 0.76 b | 57.29 ± 1.91 a | 36.23 ± 2.17 c |
TFC (mg CAE/g) | 56.05 ± 2.26 d | 74.71 ± 1.26 c | 83.49 ± 2.7 b | 90.83 ± 1.92 a | 44.06 ± 3.59 e |
TPro (mg CAE/g) | 29.78 ± 0.14 d | 70.41 ± 1.23 b | 72.91 ± 1.41 a | 74.0 ± 1.68 a | 42.14 ± 0.9 c |
Antioxidant properties | |||||
DPPH (mgTE/g) | 94.95 ± 0.7 c | 108.73 ± 0.34 a | 108.44 ± 0.16 a | 108.84 ± 0.2 a | 103.6 ± 0.58 b |
ABTS (mgTE/g) | 104.67 ± 0.39 e | 154.82 ± 2.58 c | 159.98 ± 0.26 b | 194.64 ± 1.32 a | 112.5 ± 3.72 d |
FRAP (mgTE/g) | 40.99 ± 1.03 e | 75.18 ± 1.23 bc | 76.13 ± 1.61 ab | 78.76 ± 2.41 a | 48.48 ± 0.55 d |
CUPRAC (mgTE/g) | 106.11 ± 2.03 c | 174.00 ± 0.67 a | 177.33 ± 3.16 a | 178.49 ± 7.58 a | 122.07 ± 1.11 b |
Temperature (°C) | 40 | 60 | 80 | 100 | 120 |
---|---|---|---|---|---|
Drying time | 25 h | 11 h | 7 h 20 min | 5.5 h | 3.5 h |
Physical properties | |||||
Yield (%) | 45.36 ± 2.57 a | 34.04 ± 3.68 c | 40.26 ± 0.26 b | 40.11 ± 1.44 b | 35.71 ± 0.38 c |
Moisture (%) | 14.36 ± 0.25 a | 3.04 ± 0.15 d | 9.26 ± 0.07 b | 9.11 ± 0.21 b | 4.71 ± 0.08 c |
Aw | 0.52 ± 0.00 a | 0.29 ± 0.00 d | 0.47 ± 0.00 b | 0.47 ± 0.00 b | 0.35 ± 0.00 c |
Extractable solid (%) | 35.07 ± 0.29 b | 41.23 ± 1.07 a | 43.25 ± 2.00 a | 43.01 ± 2.70 a | 44.04 ± 1.81 a |
Phytochemical properties | |||||
TPC (mg GAE/g) | 39.29 ± 0.67 b | 31.2 ± 0.69 d | 36.53 ± 2.64 c | 35.38 ± 1.49 c | 50.18 ± 0.29 a |
TFC (mg CAE/g) | 46.18 ± 1.25 b | 44.1 ± 1.57 b | 47.2 ± 0.69 b | 46.36 ± 0.69 b | 66.66 ± 2.94 a |
TPro (mg CAE/g) | 38.44 ± 0.81 c | 30.09 ± 0.96 d | 42.85 ± 0.43 b | 37.97 ± 0.99 c | 58.28 ± 1.29 a |
Antioxidant properties | |||||
DPPH (mg TE/g) | 105.93 ± 0.15 b | 96.94 ± 1.84 d | 101.96 ± 0.11 c | 106.54 ± 1.23 b | 108.67 ± 0.24 a |
ABTS (mg TE/g) | 117.58 ± 0.98 b | 73.19 ± 3.94 e | 86.87 ± 3.94 d | 100.55 ± 4.55 c | 184.92 ± 3.14 a |
FRAP (mg TE/g) | 53.86 ± 0.33 b | 42.77 ± 2.44 d | 47.53 ± 2.78 c | 49.02 ± 0.65 c | 72.93 ± 2.34 a |
CUPRAC (mg TE/g) | 132.82 ± 0.65 b | 112.23 ± 2.83 e | 117.38 ± 0.73 d | 123.5 ± 2.33 c | 168.84 ± 1.08 a |
Drying Method | Freeze Drying | Microwave | Vacuum | Hot Air | Sun Drying |
---|---|---|---|---|---|
Drying conditions | −40 °C, 48 h | 720 W, 6 min 10 s | 100 °C, 5 h | 120 °C, 3.5 h | 36.5 °C, 30 h |
Yield (%) | 33.79 ± 0.18 d | 40.49 ± 1.78 b | 40.8 ± 1.51 b | 35.71 ± 0.38 c | 46.14 ± 2.21 a |
Moisture (%) | 2.79 ± 0.03 d | 9.49 ± 0.71 b | 9.8 ± 0.32 b | 4.71 ± 0.08 c | 15.14 ± 0.54 a |
Aw | 0.26 ± 0.00 d | 0.48 ± 0.00 b | 0.48 ± 0.00 b | 0.35 ± 0.00 c | 0.52 ± 0.00 a |
Extractable solid (%) | 44.62 ± 1.77 a | 44.10 ± 0.21 a | 43.45± 0.61 a | 44.04 ± 1.81 a | 36.92 ± 2.18 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, N.M.Q.; Vuong, Q.V.; Le, A.V.; Bowyer, M.C.; Scarlett, C.J. Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits. Processes 2020, 8, 151. https://doi.org/10.3390/pr8020151
Pham NMQ, Vuong QV, Le AV, Bowyer MC, Scarlett CJ. Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits. Processes. 2020; 8(2):151. https://doi.org/10.3390/pr8020151
Chicago/Turabian StylePham, Ngoc Minh Quynh, Quan V. Vuong, Anh V. Le, Michael C. Bowyer, and Christopher J. Scarlett. 2020. "Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits" Processes 8, no. 2: 151. https://doi.org/10.3390/pr8020151
APA StylePham, N. M. Q., Vuong, Q. V., Le, A. V., Bowyer, M. C., & Scarlett, C. J. (2020). Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits. Processes, 8(2), 151. https://doi.org/10.3390/pr8020151