The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of the Demulsifiers
2.3. Characterization of the Demulsifiers
2.4. Preparation of Oil-in-Water Emulsions
2.4.1. The Polymer Flooding Emulsion
2.4.2. The Microemulsion
2.5. Demulsification Tests
2.5.1. Demulsification Tests on the Polymer Flooding Emulsion
2.5.2. Demulsification Tests on the Microemulsion
3. Results and Discussion
3.1. Characterization of the Demulsifiers
3.2. Effects on Demulsification on the Polymer Flooding Emulsion
3.2.1. Effect of Concentration
3.2.2. Effect of Temperature
3.2.3. Effect of Settling Time
3.2.4. Interfacial Activity of Demulsifiers
3.2.5. ζ Potential
3.2.6. Turbidity
3.2.7. Demulsification Mechanism
3.3. Effects of Demulsification on the Microemulsion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trowbridge, A.; Reich, D.; Gaunt, M.J. Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature 2018, 561, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, Y.; Liu, G. Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric. Angew. Chem. 2016, 128, 1313–1316. [Google Scholar] [CrossRef]
- Zolfaghari, R.; Fakhru L-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 2016, 170, 377–407. [Google Scholar] [CrossRef]
- Musevic, I. Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects. Science 2006, 313, 954–958. [Google Scholar] [CrossRef]
- Shehzad, F.; Hussein, I.A.; Kamal, M.S.; Ahmad, W.; Sultan, A.S.; Nasser, M.S. Polymeric Surfactants and Emerging Alternatives used in the Demulsification of Produced Water: A Review. Polym. Rev. 2018, 58, 63–101. [Google Scholar] [CrossRef]
- Grenoble, Z.; Trabelsi, S. Mechanisms, performance optimization and new developments in demulsification processes for oil and gas applications. Adv. Colloid Interface Sci. 2018, 260, 32–45. [Google Scholar] [CrossRef]
- Rajak, V.K.; Singh, I.; Kumar, A.; Mandal, A. Optimization of separation of oil from oil-in-water emulsion by demulsification using different demulsifiers. Petrol. Sci. Technol. 2016, 34, 1026–1032. [Google Scholar] [CrossRef]
- Putatunda, S.; Bhattacharya, S.; Sen, D.; Bhattacharjee, C. A review on the application of different treatment processes for emulsified oily wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 2525–2536. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Kang, Y.; Wu, G.; Chen, S.C.; Wang, Y.Z. Reusable and Recyclable Superhydrophilic Electrospun Nanofibrous Membranes with In Situ Co-cross-linked Polymer-Chitin Nanowhisker Network for Robust Oil-in-Water Emulsion Separation. ACS Sustain. Chem. Eng. 2018, 6, 1753–1762. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Ezzat, A.O. Demulsification of heavy crude oil using new nonionic cardanol surfactants. J. Mol. Liq. 2018, 252, 311–320. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Gaffer, A.K. Synthesis and Application of Amphiphilic Poly(ionic liquid) Dendron from Cashew Nut Shell Oil as a Green Oilfield Chemical for Heavy Petroleum Crude Oil Emulsion. Energy Fuel 2018, 32, 4873–4884. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Panchanathan, D.; Mahmoudi, S.R.; Gondal, M.A.; McKinley, G.H.; Varanasi, K.K. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 2017, 8, 14968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, S.; Jaeger, W.; Paulke, B.R.; Bratskaya, S.; Smolka, N.; Bohrisch, J. Cationic Flocculants Carrying Hydrophobic Functionalities: Applications for Solid/Liquid Separation. J. Phys. Chem. B 2007, 111, 8649–8654. [Google Scholar] [CrossRef]
- Ma, J.; Fu, K.; Shi, J.; Sun, Y.; Zhang, X.; Ding, L. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohyd. Polym. 2016, 151, 565–575. [Google Scholar] [CrossRef]
- Tong, J.; Wei, Z.; Yang, H.; Yang, Z.; Chen, Y. Study on the phase transition behaviors of thermoresponsive hyperbranched polyampholytes in water. Polymer 2016, 84, 107–116. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Jia, W.; Li, Z.; Zhao, Y.; Ren, S. Demulsification of Crude Oil-in-Water Emulsions Driven by Graphene Oxide Nanosheets. Energy Fuel 2015, 29, 4644–4653. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Z.; Wang, T.; Li, Y.; Cui, M. Synthesis, Characterization, and Demulsification Behavior of Amphiphilic Dendritic Block Copolymers. J. Disper. Sci. Technol. 2015, 36, 1097–1105. [Google Scholar] [CrossRef]
- Haase, M.F.; Brujic, J. Tailoring of High-Order Multiple Emulsions by the Liquid-Liquid Phase Separation of Ternary Mixtures. Angew. Chem. Int. Ed. 2014, 53, 11793–11797. [Google Scholar] [CrossRef]
- Abdulraheim, A.M. Green polymeric surface active agents for crude oil demulsification. J. Mol. Liq. 2018, 271, 329–341. [Google Scholar] [CrossRef]
- Lü, T.; Zhang, S.; Qi, D.; Zhang, D.; Zhao, H. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant. J. Colloid Interface Sci. 2018, 518, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Caminade, A.; Yanc, D.; Smith, D.K. Dendrimers and hyperbranched polymers. Chem. Soc. Rev. 2015, 44, 3870–3873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, G.; Wang, F.; Dong, S.; Chen, Y. Demulsification by amphiphilic dendrimer copolymers. J. Colloid Interface Sci. 2005, 282, 1–4. [Google Scholar] [CrossRef]
- Ghasempour, A.; Pajootan, E.; Bahrami, H.; Arami, M. Introduction of amine terminated dendritic structure to graphene oxide using Poly propylene Imine) dendrimer to evaluate its organic contaminant removal. J. Taiwan Inst. Chem. E 2017, 71, 285–297. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.Q.; Qu, H.J.; Hu, F.L.; Yang, Y. Terminal Group Effects on Demulsification Using Dendrimers. Petrol. Sci. Technol. 2010, 28, 883–891. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, B.; Zhang, L.; Sun, Y.; Xiao, X.; Zhang, Z.; Zhao, Z. Synthesis of a Novel Dendrimer-Based Demulsifier and Its Application in the Treatment of Typical Diesel-in-Water Emulsions with Ultrafine Oil Droplets. Energy Fuel 2014, 28, 5998–6005. [Google Scholar] [CrossRef]
- Xinliang, Y.; Chi, A. Demulsification Performance and Mechanism of Demulsification of a Dendritic Polyamidoamine. Chem. Technol. Fuels Oil 2016, 52, 306–309. [Google Scholar] [CrossRef]
- Hao, L.; Jiang, B.; Zhang, L.; Yang, H.; Sun, Y.; Wang, B.; Yang, N. Efficient Demulsification of Diesel-in-Water Emulsions by Different Structural Dendrimer-Based Demulsifiers. Ind. Eng. Chem. Res. 2016, 55, 1748–1759. [Google Scholar] [CrossRef]
- Bi, Y.; Li, W.; Liu, C.; Xu, Z.; Jia, X. Dendrimer-Based Demulsifiers for Polymer Flooding Oil-in-Water Emulsions. Energy Fuel 2017, 31, 5395–5401. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.Q.; Li, J.; Yang, J.Z. Demulsification of Crude Oil Emulsion Using polyamidoamine dendrimers. Sep. Sci. Technol. 2015, 9, 2111–2120. [Google Scholar] [CrossRef]
- Zhang, L.; Ying, H.; Yan, S.; Zhan, N.; Guo, Y.; Fang, W. Hyperbranched poly(amido amine) as an effective demulsifier for oil-in-water emulsions of microdroplets. Fuel 2018, 211, 197–205. [Google Scholar] [CrossRef]
- Zhang, L.; Ying, H.; Yan, S.; Zhan, N.; Guo, Y.; Fang, W. Hyperbranched poly(amido amine) demulsifiers with ethylenediamine/1,3-propanediamine as an initiator for oil-in-water emulsions with microdroplets. Fuel 2018, 226, 381–388. [Google Scholar] [CrossRef]
- Helden, L.; Dietrich, K.; Bechinger, C. Interactions of colloidal particles and droplets with water-oil interfaces measured by total internal reflection microscopy. Langmuir 2016, 32, 13752–13758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, H.; Liu, X.; Shi, X.; Zhang, J.; Yang, G.; Sun, K.; Wang, J. The dynamic interfacial adsorption and demulsification behaviors of novel amphiphilic dendrimers. Colloids Surf. A 2014, 443, 473–480. [Google Scholar] [CrossRef]
- Liu, C.; Gao, C.; Yan, D. Synergistic Supramolecular Encapsulation of Amphiphilic Hyperbranched Polymer to Dyes. Macromolecules 2006, 39, 8102–8111. [Google Scholar] [CrossRef]
- Yanez Arteta, M.; Campbell, R.A.; Nylander, T. Adsorption of Mixtures of Poly(amidoamine) Dendrimers and Sodium Dodecyl Sulfate at the Air-Water Interface. Langmuir 2014, 30, 5817–5828. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Tan, Z.; Wang, L.; Li, W.; Liu, C.; Wang, Z.; Liu, X.; Jia, X. The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions. Processes 2020, 8, 176. https://doi.org/10.3390/pr8020176
Bi Y, Tan Z, Wang L, Li W, Liu C, Wang Z, Liu X, Jia X. The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions. Processes. 2020; 8(2):176. https://doi.org/10.3390/pr8020176
Chicago/Turabian StyleBi, Yangang, Zhi Tan, Liang Wang, Wusong Li, Congcong Liu, Zhantao Wang, Xiangchen Liu, and Xinru Jia. 2020. "The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions" Processes 8, no. 2: 176. https://doi.org/10.3390/pr8020176
APA StyleBi, Y., Tan, Z., Wang, L., Li, W., Liu, C., Wang, Z., Liu, X., & Jia, X. (2020). The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions. Processes, 8(2), 176. https://doi.org/10.3390/pr8020176