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Abstract: Lactic acid is an important chemical with numerous commercial applications that can be
fermentatively produced from biological feedstocks. Producing lactic acid from corn grain could
complement the use of already existing infrastructure for corn grain-based ethanol production with a
higher value product. The objective of this study was to evaluate the techno-economic feasibility
of producing 100,000 metric tons (t) of lactic acid annually from corn grain in a biorefinery. The
study estimated the resources (equipment, raw materials, energy, and labor) requirements and costs
to produce lactic acid from bacteria, fungi and yeast-based fermentation pathways. Lactic acid
production costs were $1181, $1251 and $844, for bacteria, fungi and yeast, respectively. Genetically
engineered yeast strains capable of producing lactic acid at low pH support significantly cheaper
processes because they do not require simultaneous neutralization and recovery of lactic acid, resulting
in lower requirements for chemical, equipment, and utilities. Lactic acid production costs were highly
sensitive to sugar-to-lactic-acid conversion rates, grain price, plant size, annual operation hours, and
potential use of gypsum. Improvements in process efficiencies and lower equipment and chemical
costs would further reduce the cost of lactic acid production from corn grain.
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1. Introduction

Lactic acid is one of the few biobased chemicals with applications in food, pharmaceuticals,
cosmetics, and polymer industries. The global lactic acid demand is expected to increase from a
market value of $2.1 billion in 2016 [1] to $9.8 billion by 2025 [2]. U.S. Department of Energy’s
National Laboratories have also identified lactic acid as one of the few promising platform chemicals
that can be further converted to other important chemicals, such as acrylic acid, propylene glycol,
acetaldehyde, and 2,3-pentanedione and polymers such as poly-lactic acid [3]. Bio-based lactic acid
can be produced from different sources, including agricultural residues and food waste [4–8]. Lactic
acid production using sugarcane bagasse feedstock showed that cellulose-based processes have larger
lactic acid production rates and lower production costs than hemicellulose-based processes; and
gypsum-free scenarios had the lowest production costs [9]. Few other studies have evaluated the
techno-economics of lactic acid production using other feedstocks such as sugarcane juice, food waste,
and different technologies [10–15]. Lactic acid from starch-based biomass resources, such as corn
grain, can be an attractive option for biorefineries in the U.S. Corn grain contains large fraction of
starch, which can be hydrolyzed using enzymes to produce sugars, which can then be fermented to
produce lactic acid [16]. Corn grain is extensively used for ethanol production in the U.S. and the
technology to convert corn grain to fermentable sugars is well established [17]. Similar technology can
be used to obtain sugars for lactic acid fermentation. Lactic acid production from corn grain has other
advantages such as in place infrastructure for the production and processing, and well-established
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technology for the conversion of corn grain to sugars, which can contribute a major share in the U.S.
biofuel and bioproducts market [18,19]. Sugars can be fermented to lactic acid using either lactic acid
bacteria, fungi, or yeast [20]. The lactic acid purification and recovery processes after fermentation
differ based on the microorganisms used for fermentation. The feedstock cost, pretreatment method,
choice of fermentation organisms, and lactic acid yields affect the lactic acid production cost and its
economic feasibility.

Despite huge potentials and recently growing interest in commercial lactic acid production
from corn grain, literature lacks studies that evaluate the techno-economic feasibility of its
commercial production. Analysis of fermentation pathways using different microorganism and
their techno-economic feasibility can help determine the viable pathways for commercial lactic acid
production. Thus, the objective of this study was to evaluate the techno-economic feasibility of lactic
acid production from corn grain. The study estimated the resources required including, equipment;
chemicals; consumables; utilities; and labor for commercial-scale lactic acid production based on three
fermentation pathways using either lactic acid producing bacteria, fungi or yeast.

2. Materials and Methods

2.1. System Overview

This study analyzed the techno-economic feasibility of converting corn grain to lactic acid. A
bio-based lactic acid production facility with an annual capacity of 100,000 metric tons (t), on the
higher end, was considered for this analysis. The annual production capacity for lactic acid production
facilities varies from a few thousand to about 140,000 t [21], with large facilities being established
in recent years [22,23]. Lactic acid production is also expected to grow in the future [2]. Corn is
extensively used for ethanol production in the U.S. [17]. The corn grain yield has increased steadily
over the years [24] and thus, can be available as a feedstock for lactic acid production.

This analysis considered three fermentation pathways using (1) bacteria, (2) fungi and (3) yeast.
The lactic acid yield from corn starch-based sugar using bacteria is high (Table 1). However, the lactic
acid production pathway using bacteria (Lactobacillus sp.) requires optimal conditions that include pH
between 5–7, temperature between 40–45 ◦C [25,26], and nutrients-rich and sterile conditions. The
lactic acid produced during fermentation should be neutralized to maintain the pH, which adds a
cost for the neutralization and recovery of lactic acid. Lactic acid fermentation can also be performed
using fungi (Rhizopus sp.). Fungi can grow in a nutrient-limited environment compared to bacteria,
and effectively ferment both hexose and pentose sugars [27–29]. However, fungal fermentation has a
lower lactic acid yield due to the formation of other products, such as ethanol and fumaric acid [30].
Fungal fermentation process also requires aeration for higher lactic acid yields which increase lactic
acid production costs. Lactic acid can also be produced using yeast, which can ferment at low pH levels
and thus, eliminate the need to neutralize and recover lactic acid [23]. The yeast-based fermentation
pathway has a high lactic acid yield.

Table 1. Technical parameters required to estimate the lactic acid production cost, and their range
required for sensitivity analysis.

Parameters Unit Average
Values a

Pessimistic
Value b

Optimistic
Value b

Plant size c t/yr. 100,000 80,000 120,000

Annual operation hours c h 7920 7560 8280

Corn grain (feedstock)price d $/t 180 279 138

Feedstock moisture content [31–33] % 15

Liquefaction and saccharification

Starch to dextrin [34,35] % 98

Residence time [34,35] min 7
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Table 1. Cont.

Parameters Unit Average
Values a

Pessimistic
Value b

Optimistic
Value b

Temperature [34,35] ◦C 120

Alpha amylase addition based on feedstock flow [34,35] % 0.02

Alpha amylase cost [36] $/kg 10 15 6

Lime addition [34,35] % 0.01

Residence time for enzymatic hydrolysis/saccharification
[34,35] h 48 53 43

Enzymatic hydrolysis/saccharification temperature [34,35] ◦C 60

Enzymatic hydrolysis reactor cost [37] $/unit 713,000 855,600 570,400

Glucoamylase addition [34,35] % 0.02

Glucoamylase cost [38] $/kg 8 14 4

Fermentation

Fermentation temperature [34,39] ◦C 32

Fermentation time [34,35,40] h 48 53 43

Fermentation tank cost [40] $/unit 966,000

Glucose to lactic acid conversion using bacteria [41,42] % 90 85 95

Glucose to lactic acid conversion using fungi [30,43] % 85 75 92

Glucose to lactic acid conversion using yeast [23] % 93 85 95

Nutrient cost $/kg 0.15 0.18 0.12

Product separation and recovery

Distillation temperature (after esterification) [44] ◦C 101

Distillation temperature (after hydrolysis) [44] ◦C 66

Drying temperature [44] ◦C 110

Lime cost [45] $/t 110 150 90

Sulfuric acid cost [46] $/t 70 94 57

Methanol cost [47] $/t 442 530 353

Gypsum use cost e $/t −50 −100 8

Stillage utilization

Drying temperature [44] ◦C 110

Distillers dried grain and soluble cost [48] $/t 140

Note: a Average values are used for the base case scenario analysis. The results presented for resources requirements
and costs are based on the average values. b Pessimistic and optimistic values are used for sensitivity analysis. c

Assumed for the analysis. d Corn grain price was based on 10-year corn price in the U.S. [49]. e Gypsum can be
disposed or utilized to produce different products. Gypsum use cost for the gypsum management/disposal is shown
as a negative value whereas gypsum use as a byproduct is shown as a positive value [50,51].

2.2. Discrete Production Processes, Sections and Data Sources

The analysis considered different distinct sections: feedstock preparation, liquefaction/jet cooking,
saccharification, fermentation, product recovery, and stillage utilization, to convert corn grain to
lactic acid (Figure 1). For these distinct sections, unit operations along with their conversion
efficiencies, assumptions, and resources requirements are also considered in this analysis (Table 1) and
discussed later.
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Figure 1. Overview of conversion steps of corn grain to lactic acid. 
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milled using a hammer mill (Figure 1) to reduce the particle size to fine flour, which exposes the 
starch for further processing and helps the enzyme to efficiently break down the starch to sugars. Dry 
milling process for corn grain was considered for this study as 90% of grain ethanol in the U.S. is 
produced from this process [17]. 

2.2.2. Liquefaction and Saccharification (Enzymatic Hydrolysis) 
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complex starch to simple sugars. During liquefaction, water is mixed with the fine corn flour and 
lime is added in the slurry to adjust the pH between 6 and 6.5 [35]. Corn grain is cooked at high 
temperature using steam in jet-cookers (Figure 1). The cooked slurry, also called mash, is then cooled 
to 80–90 °C and α-amylase enzyme is added while cooling, which further breaks down the starch into 
simpler sugars called dextrins [35]. Liquefaction is followed by the saccharification process where the 
mash is cooled to 30 °C and glucoamylase is added, which breaks down the dextrins to glucose 
(Figure 1). Simultaneous saccharification and fermentation (SSF) is common practice in most corn 
grain-based conversion systems in which saccharification usually occurs while the mash is 
transferred to the fermentation tanks and continues throughout fermentation. 

2.2.3. Fermentation 

The saccharified solution contains a mixture of fermentable sugars (glucose), corn fiber, protein, 
oil, and minerals, in addition to the unused chemicals from previous steps. Lactic acid can be 
produced by fermentation of glucose in the presence of either bacteria, fungi or yeast [52] in 
continuously stirred fermentation reactors (Figure 1). The pH of the fermentation slurry lowers as 
lactic acid is produced, which affects the viability and productivity of the microorganisms. Three 
fermentation pathways using bacteria, fungi and yeast were considered in this study. The 
effectiveness of the fermentation process depends on the lactic acid yields, lactic acid recovery and 
produced waste, and affects the lactic acid production cost (Figure 1). Corn steep liquor and 
diammonium phosphate (DAP) were considered as the nutrient and nitrogen source during 
fermentation, respectively. 
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The lactic acid broth produced after fermentation has impurities which need to be separated and 
purified. Lactic acid produced using the yeast-based pathway do not need to be neutralized and 
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Figure 1. Overview of conversion steps of corn grain to lactic acid.

2.2.1. Feedstock Preparation

This analysis considered corn grain delivered at 15% moisture content to the biorefinery. The
composition of wet corn grain: moisture (15%), corn starch (61.2%), fiber (8.7%), protein (8%), oil
(3.6%), simple sugars (2.2%), and mineral (1.2%) was obtained from previous studies [31–33]. The corn
grain was assumed to be stored in silos after delivery to the biorefinery. The grain was then milled
using a hammer mill (Figure 1) to reduce the particle size to fine flour, which exposes the starch for
further processing and helps the enzyme to efficiently break down the starch to sugars. Dry milling
process for corn grain was considered for this study as 90% of grain ethanol in the U.S. is produced
from this process [17].

2.2.2. Liquefaction and Saccharification (Enzymatic Hydrolysis)

This study considered liquefaction and saccharification (enzymatic hydrolysis) to break the
complex starch to simple sugars. During liquefaction, water is mixed with the fine corn flour and
lime is added in the slurry to adjust the pH between 6 and 6.5 [35]. Corn grain is cooked at high
temperature using steam in jet-cookers (Figure 1). The cooked slurry, also called mash, is then cooled
to 80–90 ◦C and α-amylase enzyme is added while cooling, which further breaks down the starch into
simpler sugars called dextrins [35]. Liquefaction is followed by the saccharification process where
the mash is cooled to 30 ◦C and glucoamylase is added, which breaks down the dextrins to glucose
(Figure 1). Simultaneous saccharification and fermentation (SSF) is common practice in most corn
grain-based conversion systems in which saccharification usually occurs while the mash is transferred
to the fermentation tanks and continues throughout fermentation.

2.2.3. Fermentation

The saccharified solution contains a mixture of fermentable sugars (glucose), corn fiber, protein,
oil, and minerals, in addition to the unused chemicals from previous steps. Lactic acid can be produced
by fermentation of glucose in the presence of either bacteria, fungi or yeast [52] in continuously stirred
fermentation reactors (Figure 1). The pH of the fermentation slurry lowers as lactic acid is produced,
which affects the viability and productivity of the microorganisms. Three fermentation pathways using
bacteria, fungi and yeast were considered in this study. The effectiveness of the fermentation process
depends on the lactic acid yields, lactic acid recovery and produced waste, and affects the lactic acid
production cost (Figure 1). Corn steep liquor and diammonium phosphate (DAP) were considered as
the nutrient and nitrogen source during fermentation, respectively.

2.2.4. Product Separation and Recovery

The lactic acid broth produced after fermentation has impurities which need to be separated
and purified. Lactic acid produced using the yeast-based pathway do not need to be neutralized
and precipitated, and directly undergo filtration. However, for bacteria and fungi-based pathways
requiring lactic acid neutralization, the lactic acid separation process involving neutralization of the
fermentation broth by lime followed by lactic acid recovery is preferred among few other routes due
to its low overall cost [44]. The broth including calcium lactate is then acidified with sulfuric acid
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to produce lactic acid and gypsum cake. The gypsum cake produced from the process (Figure 1) is
considered as a waste and collected and transported for disposal. However, in an optimistic scenario,
it can be sold as crude gypsum depending on the market demand.

The filtered broth containing lactic acid also has other impurities such as residual sugar, color and
other organic acids which need to be removed [44,53]. For all three pathways, lactic acid is further
purified by esterification, hydrolysis, distillation, and drying processes (Figure 1) [44,54]. The study
considered esterification of lactic acid using methanol to produce methyl lactate. The methyl lactate and
other impurities are then distilled to separate methyl lactate while the impurities are fed to the stillage
utilization section. The methyl lactate is then hydrolyzed and dried to obtain purified lactic acid.

2.2.5. Stillage Utilization

A large quantity of stillage is produced from commercial grain-based lactic acid production which
mainly includes distiller’s dried grain and solubles (DDGS) and wastewater, as with conventional
ethanol biorefinery [39]. The wastewater from stillage is considered as a waste stream in this analysis.
The DDGS was obtained by centrifugation and drying of waste slurry after distillation (Figure 1). In
this study, DDGS was sold as a byproduct.

2.3. Techno-Economic Modeling Overview

2.3.1. Process Modeling

The process model for this study was developed and analyzed using SuperPro Designer software
v9.5 [37]. A lactic acid production facility was assumed to be operated 24 h/day for 330 days/year to
account for equipment downtime and maintenance. The techno-economic model considered input
parameters such as performance parameters (e.g., productivities and efficiencies of equipment; energy,
fuel, and consumables required during each conversion step, yields for different conversion steps) and
temporal parameters (e.g., feedstock loading and milling time, residence time for each conversion step).
Equipment types and size, labor requirements, utilities requirements, and their costs were estimated
for each conversion step (Supplementary Material, Table S1). The mass and energy balances based on
stoichiometric equations and operation conditions for different conversion steps were used to estimate
the equipment size and quantity, utilities, raw materials, and consumables.

2.3.2. Economic Analysis

The lactic acid production costs were estimated based on the total capital investment and operating
costs. The total capital investment was estimated as the sum of direct fixed costs (DFC), working capital
and start-up cost. The direct fixed cost included total plant costs (TPC) as well as contractor’s fee and
contingencies. TPC included total plant direct and indirect costs. Total plant direct costs were estimated
as a sum of equipment purchase cost (PC) of all the direct costs related with plant establishment and
equipment installation (estimated as % of PC) (Table 2). The size and cost of the equipment were based
on equipment sizes used in existing commercial- and pilot-scale biochemical plants [40], and were
further adjusted for equipment sizing and inflation to the analysis year 2018 (Supplementary Material,
Table S1). Total plant indirect costs include engineering and construction costs and are estimated as
a percentage of plant direct costs (DC) (Table 2). Contractor’s fee and contingency were estimated
as a percentage of TPC and included in the direct fixed costs (Table 2). Working capital for 1 month
of operation was assumed for this analysis, which ensures that the biorefinery could continue its
operations and included short-term costs for raw materials, consumables, labor, and utilities. The
start-up cost (5% of direct fixed capital) considered in this analysis is a one-time expense incurred
to set up and start a new biorefinery, which covers registration, salaries, and labor wages during
facility development.
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Table 2. Economic parameters for the lactic acid production process using corn grain.

Time Parameters Values Capital Investment Parameters
(Contd.) Values

Analysis year * 2018 Buildings (% of PC) 3 45

Year construction starts * 2018 Yard improvement (% of PC) 3 15

Construction period (months) * 18 Auxilliary facilities (% of PC) 3 40

Start-up period (months) * 12 Plant indirect cost (IC) parameters

Project life (years) * 30 Engineering (% of DC) 3 20

Inflation rate (%) 1 2.1 Construction (% of DC) 3 20

Financing parameters Contractor’s fee (% of (DC + IC)) 3 5

Equity (%) 40 Contingencies (% of (DC + IC)) 3 10

Loan term (years) 12 Annual operating cost parameters Values

Loan interest (%) 2 8

Depreciation method 2 Straight line Equipment maintenance (% of PC)3 10

Depreciation period (years) 2 15 Insurance (% of DFC) 3 1

Income tax rate (%) 2 40 Local taxes (% of DFC) 3 2

Capital investment parameters Overhead expense (% of DFC) 3 5

Plant direct costs (DC) parameters Labor rate ($/h) 3 57

Process piping (% of equipment
purchase cost (PC)) 3 35

Instrumentation (% of PC) 3 40 Electricity cost ($/kWh) 3 0.07

Insulation (% of PC) 3 5 Steam cost ($/t) 3 12

Electrical (% of PC) 3 10 Cooling water cost ($/t) 3 0.05

Note: * Modeling assumptions. 1 Values based on inflation rate in the U.S. from 2000 to 2017 [55]. 2 NREL report
[40]. 3 Default value based on SuperPro Designer® software [37]. The equipment purchase cost (PC) is estimated
from SuperPro designer based on the required size and number of equipment for the analysis year. The cost of the
equipment used in the analysis is based on the base value and size of the equipment cost at base year (Supplementary
Material Table S1).

The lactic acid production cost was based on a plant service life of 30 years and includes
facility-dependent, raw materials, consumables, labor, utilities, and waste management costs. The
facility dependent cost is the cost related to the use of a facility, equipment maintenance, and other
costs such as insurance, taxes, and factory overhead expenses. The costs of feedstock, chemicals
and enzymes were obtained from previous studies (Table 1). The labor rate ($/h) was assumed to
include the basic rate, benefits, supervision, operating supplies, and administration. Costs of utilities
such as steam, cooling water, and electricity were also considered for this analysis (Table 2). The
minimum selling price (MSP) of the lactic acid to achieve an internal rate of return (IRR) of 10% to
ensure profitability was estimated using discounted cash flow analysis. Further financial analysis
estimated the net present value (NPV), return on investment (ROI), payback period, and gross margin
(GM) to obtain 10% IRR from the lactic acid production facility.

2.3.3. Sensitivity Analysis

The base case scenario for lactic acid production using average values of different input parameters
was considered to estimate the lactic acid production cost. Sensitivity analysis was performed to
evaluate the effect of variation in the different input parameters on lactic acid production cost by using
the most pessimistic and optimistic values available for these parameters (Table 1).

The base case for plant capacity considered in this analysis was 100,000 t/y of lactic acid production.
However, the location of the facility, feedstock availability and lactic acid demand could determine
the production plant. The pessimistic and optimistic values for plant capacity and equipment costs
were taken as ±20% of the base case plant size and equipment costs (Supplementary Material Table S1).
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Maintenance schedules, feedstock availability and market demand could affect the annual operation
hours of the lactic acid biorefinery. The corn grain price varied between $135–290/t in the last 10 years
depending on different factors including corn yield, availability and their demand for different uses [49].
The cost of consumables such as sulfuric acid, enzymes, nutrients, lime, and methanol can depend on
their quality, availability, and demand of the consumables; and the location of the production facility.
The gypsum produced in bacteria- and fungi-based pathways can be sold as crude gypsum [50] or can
be disposed, which adds the disposal cost [51], thus impacting the overall lactic acid production costs.

3. Results and Discussion

3.1. Material Balance

Lactic acid fermentation pathway using yeast required the lowest feedstock quantity due to s higher
glucose-to-lactic-acid conversion rate (Figure 2). The amounts of alpha-amylase and glucoamylase
enzymes for the conversion of corn starch to fermentable sugars were similar to feedstock requirement
ratios for the three pathways. The fermentation step required similar amounts of nitrogen sources
for all three pathways. The nutrient requirement was slightly higher for the fermentation pathways
using bacteria and yeast than fungi. Lactic acid bacteria- and fungi-based fermentation pathways
required 15.3 t/h of lime (30% calcium hydroxide) to neutralize the lactic acid during fermentation
to produce calcium lactate and 6.8 t/h of sulfuric acid to recover the lactic acid from calcium lactate,
producing large quantities of gypsum. All three pathways required similar quantities of methanol for
esterification of lactic acid. In addition, all the pathways also required varying quantities of water and
steam for different unit operations along the conversion process (Figure 2).Processes 2020, 8, 199 8 of 15 
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Figure 2. Material flow for lactic acid production from corn grain using three fermentation pathways
using bacteria, fungi and yeast for a biorefinery with 100,000 t/yr production capacity (Note: All
material flows are presented in t/h; first, second and third values within the parentheses represent
material flows for bacteria, fungi and yeast-based pathways, respectively).

3.2. Equipment, Utilities and Labor Requirement

All the pathways required the same type, size and number of equipment for feedstock preparation,
pretreatment and fermentation steps. The fungi-based fermentation pathway required an additional
air compressor and filtration unit to aerate the fermentation process. The yeast-based fermentation
pathway did not require lactic acid neutralization and thus, the reactor for recovering lactic acid from
the calcium lactate and filter for gypsum removal was not necessary.
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The external electrical energy requirement was highest for the fungi-based pathway due to
additional electrical power requirements for the operation of the air compressor and filtration unit
(Table 3). The yeast-based pathway had the lowest electrical energy requirement due to the removal
of the equipment used for gypsum formation and removal. The fermentation step had the highest
electricity requirement to operate large bioreactors. The yeast-based pathway also had lower steam and
cooling water requirements than bacteria- and fungi-based pathways due to a reduction in material
flow in the distillation step. The distillation process for lactic acid recovery required the highest amount
of steam and cooling water.

Table 3. Utilities requirements for different corn-grain-to-lactic-acid production pathways in a 100,000
t/y lactic acid production facility (based on average values reported in Table 1).

Pathways Bacteria-Based Fungi-Based Yeast-Based

Electricity (kWh/h)
Feedstock preparation 421 447 393

Liquefaction and saccharification 553 587 517
Fermentation 3440 4378 2848

Product separation and recovery 863 896 577
Stillage utilization 540 556 471
Total electricity use 5816 6863 4806

Steam (t/h)
Feedstock preparation - - -

Liquefaction and saccharification 29.5 31.3 27.5
Fermentation - - -

Product separation and recovery 218.4 227.9 180.4
Stillage utilization 60.1 63.0 48.0

Total steam use 308.0 322.2 255.9
Cooling water (t/h)

Feedstock preparation - - -
Liquefaction and saccharification 1651 1753 1543

Fermentation 493 535 410
Product separation and recovery 5809 5983 4628

Stillage utilization 400 423 316
Total cooling water use 8353 8695 6898

The yeast-based fermentation pathway did not require any labor for the purification and recovery
steps, and thus, had the lowest overall labor requirement (Table 4). The fungi-based pathway required
additional labor hours to operate the aeration unit during the fermentation process, and thus, had
higher labor requirements. Labor requirements for pretreatment and fermentation units were higher
for all pathways as these processes require more equipment and frequent monitoring.

Table 4. Labor requirements (h/year) for different pathways of lactic acid production from corn grain.

Pathways Bacteria-Based Fungi-Based Yeast-Based

Feedstock preparation 2489 2489 2489
Liquefaction and saccharification 24,891 24,891 24,891

Fermentation 23,275 24,596 23,057
Product separation and recovery 20,562 20,562 16,971

Stillage utilization 19,234 19,234 19,234
Total 90,452 91,773 86,643

3.3. Capital Costs

The total capital investment for a 100,000 t/y lactic production facility for bacteria-, fungi- and
yeast-based pathways were ~$130, 147 and 113 million, respectively (Figure 3). The yeast-based
pathway did not require the lactic acid neutralization, recovery processes and the investments associated
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with the purchase and installation of equipment needed for these processes, thus lowering total capital
investments. The capital investment for the fungi-based pathway was highest, as this pathway requires
a continuous supply of air for effective fermentation using fungi. This required an additional air
compressor and filtration units, which increased the capital investment cost. The yeast-based pathway
required lower working capital due to reduced chemicals, utilities, and labor requirements for lactic
acid neutralization and recovery steps. The startup capital was estimated as 5% of direct fixed capital,
and thus, followed a similar trend to the direct fixed capital costs.
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3.4. Lactic Acid Production Costs

The total production costs of lactic acid from corn grain in a facility with an annual production
capacity of 100,000 t/y for bacteria-, fungi- and yeast-based pathways were ~$1181/t, $1251/t and
$844/t, respectively (Figure 4). Raw materials, facility and utility contributed the most to the lactic acid
production costs. The raw materials accounted for 44%, 44% and 39% of the total lactic acid production
costs for bacteria-, fungi- and yeast-based pathways, respectively. A major fraction of the raw materials
cost was for procuring the corn grain. Corn grain cost contributed most to the lactic acid production
costs associated with feedstock preparation. In addition, for bacteria- and fungi-based pathways, costs
for lime and sulfuric acid used during the fermentation and lactic acid recovery process contributed
to the raw material cost. Raw materials cost for the yeast-based pathway was 37% and 40% lower
than bacteria- and fungi-based pathways, respectively, as it did not require chemicals such as lime to
neutralize the lactic acid during fermentation and sulfuric acid and water to recover the lactic acid from
the neutralized solution. The cost for the fermentation step was lower for the yeast-based pathway
as it did not require lime for neutralization. The facilities contributed to 19%, 20% and 23% of the
total lactic acid production costs for bacteria-, fungi- and yeast-based pathways, respectively. The
fungi-based pathway had the highest facility-related costs due to the addition of an air compressor
and filtration units. The yeast-based pathway did not require reactors for gypsum formation and
removal, and thus, had the lowest facility-related costs. Utilities contributed to 28%, 28%, and 32%
of the total lactic acid production cost for bacteria-, fungi- and yeast-based pathways, respectively.
The fungi-based pathway had a higher utility requirement and cost to run the air compressor and
filtration units, whereas the yeast-based pathway had lower utility costs due to the removal of the
processes for gypsum formation and removal. Labor costs contributed between 4–6% of the total
lactic acid production cost for all pathways. The waste treatment costs were higher for bacteria- and
fungi-based pathways than the yeast-based pathway due to added costs to dispose waste produced
during the gypsum removal process. The cost for product separation and recovery was lowest for the
yeast-based pathway (Figure 4b) due to a reduction in utilities required for distillation and elimination
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of the processes for gypsum formation and removal, which also reduced chemical (sulfuric acid)
requirements and costs.
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3.5. Financial analysis

The lactic acid production costs ($/t) using corn grain for the three pathways were between
$844–1251, respectively. Additional revenues ($/t lactic acid) from selling the distillers’ dried
grain solubles (DDGS) were in between $79–125 (Table 5). The fungi-based pathway had lower
sugar-to-lactic-acid conversion rates, and thus, the remaining organic matter was used as DDGS. Based
on the unit production costs, unit revenues and 10% IRR (after tax), the minimum selling price ($/t) for
lactic acid produced using corn grain was in the range $842–1226. The minimum selling price was
within the range of lactic acid price in the market which varied from $650–2300/t, depending on the
lactic acid grade and the vendors [3]. Based on the financial analysis, the yeast-based fermentation
pathway was the most economically preferred lactic acid production pathway using corn grain.

Table 5. Financial analysis for different lactic acid production pathways.

Pathways Bacteria-Based Fungi-Based Yeast-Based

Unit production cost ($/t) 1181 1251 844
Byproduct revenues ($/t) 110 125 79

Minimum selling price ($/t) 1161 1226 842
Gross margin (%) 7.2 7.4 8.4

Return on investment (%) 13.1 13.0 13.1
Payback period (years) 7.6 7.7 7.6

Net present value (million $) 39.3 43.6 33.7

3.6. Sensitivity Analysis

The sensitivity analysis indicated that the lactic acid production costs were most sensitive to
glucose-to-lactic-acid conversion rate, feedstock costs, production plant size, lime cost, provision
for gypsum use, enzymatic hydrolysis (saccharification) reactor cost, and annual operation hours
(Figure 5). For all three pathways, lactic acid production costs were sensitive to a large variation in the
sugar-to-lactic-acid conversion rates. Feedstock cost was one of the main contributors to lactic acid
production cost as an increase in feedstock cost directly increased the unit cost of lactic acid production,
and vice versa. Higher production plant size impacted the economy of scale and reduced the unit
lactic acid production costs. An increase in reactor cost increased the capital investment cost and the
lactic acid production cost. An increase in annual operation hours increased the yearly biorefinery
productivity, and thus, increased the lactic acid production with the same capital investment. Gypsum
use and lime costs also affected the lactic acid production cost for bacteria- and fungi-based pathways
as large quantities of lime were required to neutralize the lactic acid during fermentation. A large
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quantity of gypsum produced during lactic acid recovery needed to be properly disposed or utilized,
resulting in the variation in lactic acid production costs.
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4. Conclusions

This study evaluated the techno-economics of lactic-acid production using corn grain from three
fermentation pathways using bacteria, fungi and yeast. The minimum selling price for the lactic acid
produced from corn grain using different fermentation pathways was comparable to the market price of
lactic acid. The fermentation pathways using microorganisms, such as yeast, which can withstand low
pH levels and have high lactic acid yields, had the lowest production costs. Improvements in process
efficiencies and lower feedstock, equipment and chemical costs could further lower the production costs
and improve the techno-economic feasibility of lactic acid production. Life cycle assessment of lactic
acid production using different fermentation pathways and a comparison with petroleum-based lactic
acid production could identify sustainable production pathways. The identification of a technically
feasible, cost-effective and environmentally friendly lactic acid production method using bio-based
resources could contribute to a sustainable bio-economy in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/2/199/s1,
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