Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization
Abstract
:1. Introduction
2. Physical Model
3. Numerical Method
3.1. Governing Equations
3.2. Cavitation Model
3.3. Numerical Simulation
4. Optimization Design System
4.1. Runner Design Method
4.2. Optimization Strategy
5. Optimization Result
5.1. Effect of Blade Loading
5.2. Effect of The Blade Lean
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimmel, H.E. Cryogenic LNG Expanders Reduce Natural Gas Liquefaction Costs; Natural Gas Logistics, Handling and Contracts: Bali, Indonesia, 2011; pp. 18–22. [Google Scholar]
- Chen, J.; Hua, Y.; Su, Q.; Wan, X.; Li, Z. Development and industrial tests of the first LNG hydraulic turbine system in China. J. Nat. Gas Ind. B 2016, 3, 283–290. [Google Scholar] [CrossRef]
- Song, P.; Sun, J.; Wang, K. Swirling and cavitating flow suppression in a cryogenic liquid turbine expander through geometric optimization. J. Power Energy 2015, 229, 628–646. [Google Scholar] [CrossRef]
- Hord, J. Cavitation in Liquid Cryogens II-Hydrofoils; National Aeronautics and Space Administration: Washington, DC, USA, 1973; CR-2156. [Google Scholar]
- Hord, J. Cavitation in Liquid Cryogens III-Ogives; National Aeronautics and Space Administration: Washington, DC, USA, 1973; CR-2242. [Google Scholar]
- Hsiao, C.T.; Ma, J.; Chahine, G.L. Multiscale tow-phase flow modeling of sheet and cloud cavitation. Int. J. Multiph. Flow 2017, 90, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Du, T.Z.; Wang, Y.W.; Liao, L.J.; Huang, C.G. A numerical model for the evolution of internal structure of cavitation cloud. J. Phys. Fluids 2016, 28, 3–20. [Google Scholar] [CrossRef]
- Örley, F.; Trummler, T.; Hickel, S.; Mihatsch, M.S.; Schmidt, S.J.; Adams, N.A. Large-eddy simulation of cavitating nozzle flow and primary jet break-up. J. Phys. Fluids 2015, 27, 086101. [Google Scholar] [CrossRef] [Green Version]
- Kähler, G.; Bonelli, F.; Gonnella, G.; Lamura, A. Cavitation inception of a van der Waals fluid at a sack-wall obstacle. J. Phys. Fluids 2015, 27, 123307. [Google Scholar] [CrossRef] [Green Version]
- Utturkar, Y.; Wu, J.; Wang, G.; Shyy, W. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. J. Prog. Aerosp. Sci. 2005, 41, 558–608. [Google Scholar] [CrossRef]
- Chen, T.R.; Huang, B.; Wang, G.Y. Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics. Int. J. Heat Mass Transr. 2016, 101, 886–900. [Google Scholar] [CrossRef]
- Chen, T.; Huang, B.; Wang, G.; Zhang, H.; Wang, Y. Numerical investigation of thermo-sensitive cavitating flows in a wide range of free-stream temperatures and velocities in fluoroketone. Int. J. Heat Mass Transf. 2017, 112, 125–136. [Google Scholar] [CrossRef]
- Chen, T.; Chen, H.; Liang, W.; Huang, B.; Xiang, L. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. Int. J. Heat Mass Transf. 2019, 132, 618–630. [Google Scholar] [CrossRef]
- Cao, X.L.; Zhang, X.B.; Qiu, L.M.; Gan, Z.H. Validation of full cavitation model in cryogenic fluids. J. Chin. Sci. Bull. 2009, 54, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wu, Q.; Wang, G. Numerical investigation of cavitating flow in liquid hydrogen. Int. J. Hydrogen Energy 2014, 39, 1698–1709. [Google Scholar] [CrossRef]
- Fei, T.; Wen, L.J. Influence of thermodynamics effect on inducer rotating cavitation under low temperature condition. J. Rocket Propuls. 2013, 39, 29–34. [Google Scholar]
- Liu, Q.Z.; Su, W.T.; Li, X.B.; Zhang, Y.N. Dynamic characteristics of load rejection process in a reversible pump-turbine. J. Renew. Energy 2020, 146, 1922–1931. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Xian, H.; Du, X. A review of methods for vortex identification in hydroturbines. J. Renew. Sustain. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Arispe, T.M.; De Oliveira, W.; Ramirez, R.G. Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques. J. Renew. Energy 2018, 127, 114–124. [Google Scholar] [CrossRef]
- Yu, A.; Zou, Z.; Zhou, D.; Zheng, Y.; Luo, X. Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine. J. Renew. Energy 2020, 147, 1199–1208. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Tan, L.; Zhou, D.; Zhao, Y.; Cao, S. Optimization design of a reversible pump–turbine runner with high efficiency and stability. J. Renew. Energy 2015, 81, 366–376. [Google Scholar] [CrossRef]
- Chirkov, D.V.; Ankudinova, A.S.; Kryukov, A.E.; Cherny, S.G.; Skorospelov, V.A. Multi-objective shape optimization of a hydraulic turbine runner using efficiency, strength and weight criteria. J. Struct. Multidiscip. Optim. 2018, 58, 627–640. [Google Scholar] [CrossRef]
- Lu, Y.M.; Wang, X.F.; Wang, W.; Zhou, F.M. Application of the Modified Inverse Design Method in the Optimization of the Runner Blade of a Mixed-Flow Pump. Chin. J. Mech. Eng. 2018, 31, 105. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhu, B.; Bai, L.; Liu, X.; Zhao, Y. Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization. Energies 2017, 10, 1169. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhu, B.; Rao, C.; Shangguan, Y. Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner. Energies 2019, 12, 307. [Google Scholar] [CrossRef] [Green Version]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamics. In Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 30 May–4 June 2004. [Google Scholar]
- Goel, T.; Thakur, S.; Haftka, R.T.; Shyy, W.; Zhao, J. Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation. Int. J. Numer. Methods Eng. 2008, 58, 969–1007. [Google Scholar] [CrossRef] [Green Version]
- Senocak, I.; Shyy, W. Interfacial dynamics-based modeling of turbulent cavitating flows Part-1: Model development and steady-state computations. Int. J. Numer. Methods Fluids 2004, 44, 975–995. [Google Scholar] [CrossRef]
- Sun, T.Z.; Ma, X.F.; Wei, Y.J.; Wang, C. Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model. Sci. China Technol. Sci. 2016, 59, 337–346. [Google Scholar] [CrossRef]
- Lemmon, E.W.; McLinden, M.O.; Huber, M.L. Reference Fluid Thermodynamic and Transport Properties, Standard Database 23 version 7.0; NIST: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Zangeneh, M. A compressible three-dimensional design method for radial and mixed flow turbomachinery blades. Int. J. Numer. Methods Fluids 1991, 13, 599–624. [Google Scholar] [CrossRef]
- Zangeneh, M.; Goto, A.; Harada, H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. J. Turbomach. 1998, 120, 723–735. [Google Scholar] [CrossRef]
- Bonaiuti, D.; Zangeneh, M. On the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery blades. J. Turbomach. 2009, 131, 21014–21029. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chen, Z.; Baek, S.H.; Cho, H.; Choi, Y.D. Optimal design of J-groove shape on the suppression of unsteady flow in the Francis turbine draft tube. J. Mech. Sci. Technol. 2019, 33, 2211–2218. [Google Scholar] [CrossRef]
- Galván, S.; Rubio, C.; Pacheco, J.; Mendoza, C.; Toledo, M. Optimization methodology assessment for the inlet velocity profile of a hydraulic turbine draft tube: Part I—Computer optimization techniques. J. Global Optim. 2013, 55, 53–72. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Runner inlet diameter | 216 |
Runner outlet diameter | 96 |
Number of runner blades | 7 |
Number of guide vanes | 9 |
Optimized Inputs | Parameters | Value |
---|---|---|
Blade loading | −0.2 to 0.2 | |
−2.0 to 2.0 | ||
−2.0 to 2.0 | ||
−0.2 to 0.2 | ||
0.2 to 0.4 | ||
Blade lean angle | −10.0° to 10.0° |
Parameters | Value |
---|---|
Population size | 100 |
Number of generations | 100 |
Crossover probability | 0.9 |
Crossover distribution index | 10 |
Mutation distribution index | 20 |
Initialization mode | Random |
Head (m) | Loss Coefficient | |||
---|---|---|---|---|
RSM | CFD | RSM | CFD | |
Original | – | 19.85 | – | 40.00 |
Model A | 21.65 | 21.88 | 9.00 | 9.55 |
Model B | 23.10 | 23.60 | 15.00 | 14.50 |
Model C | 23.70 | 24.11 | 20.00 | 20.45 |
Model A | −0.0680 | −0.200 | 0.884 | −2.00 | 0.300 | 0.00 |
Model B | −0.0840 | −0.190 | 1.52 | −2.00 | 0.326 | 2.20 |
Model C | 0.00 | −0.200 | 1.70 | −1.90 | 0.280 | 3.76 |
Loss Coefficient | |||||||
---|---|---|---|---|---|---|---|
Model B1 | 0.00 | −0.200 | 1.70 | −2.00 | 0.300 | −10.00 | 12.98 |
Model B2 | 0.00 | −0.200 | 1.70 | −2.00 | 0.300 | −5.00 | 11.44 |
Model B3 | 0.00 | −0.200 | 1.70 | −2.00 | 0.300 | 0.00 | 9.14 |
Model B4 | 0.00 | −0.200 | 1.70 | −2.00 | 0.300 | 5.00 | 8.66 |
Model B5 | 0.00 | −0.200 | 1.70 | −2.00 | 0.300 | 10.00 | 21.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Li, Z.; Zhu, B. Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization. Processes 2020, 8, 270. https://doi.org/10.3390/pr8030270
Huang N, Li Z, Zhu B. Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization. Processes. 2020; 8(3):270. https://doi.org/10.3390/pr8030270
Chicago/Turabian StyleHuang, Ning, Zhenlin Li, and Baoshan Zhu. 2020. "Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization" Processes 8, no. 3: 270. https://doi.org/10.3390/pr8030270
APA StyleHuang, N., Li, Z., & Zhu, B. (2020). Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization. Processes, 8(3), 270. https://doi.org/10.3390/pr8030270