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Abstract: The industry is generally preoccupied with the evolution towards Industry 4.0 principles and
the associated advantages as cost reduction, respectively safety, availability, and productivity increase.
So far, it is not completely clear how to reach these advantages and what their exact representation
or impact is. It is necessary for industrial systems, even legacy ones, to assure interoperability in
the context of chronologically dispersed and currently functional solutions, respectively; the Open
Platform Communications Unified Architecture (OPC UA) protocol is an essential requirement. Then,
following data accumulation, the resulting process-aware strategies have to present learning capabilities,
pattern identification, and conclusions to increase efficiency or safety. Finally, model-based analysis
and decision and control procedures applied in a non-invasive manner over functioning systems close
the optimizing loop. Drinking water facilities, as generally the entire water sector, are confronted with
several issues in their functioning, with a high variety of implemented technologies. The solution to
these problems is expected to create a more extensive connection between the physical and the digital
worlds. Following previous research focused on data accumulation and data dependency analysis,
the current paper aims to provide the next step in obtaining a proactive historian application and
proposes a non-invasive decision and control solution in the context of the Industrial Internet of Things,
meant to reduce energy consumption in a water treatment and distribution process. The solution
is conceived for the fog computing concept to be close to local automation, and it is automatically
adaptable to changes in the process’s main characteristics caused by various factors. The developments
were applied to a water facility model realized for this purpose and on a real system. The results prove
the efficiency of the concept.

Keywords: Industrial Internet of Things; Industry 4.0; data analysis; historian; fog computing;
water industry

1. Introduction

One of the main focuses of the industry today is represented by the transition towards the Industry
4.0 paradigm, which is stimulated by the associated advantages that this new concept promises to
deliver: productivity increase, cost reduction, increased availability, and safety.

The term of Industry 4.0 [1,2] is relatively recent, being intensely promoted by [3] and backed up
by the German Government. This concept is also closely related to the Industrial Internet of Things
(IIoT), both paradigms emphasizing the importance of information exchange and communication in
industrial environments [4,5].
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The classical automation pyramid is transforming under the Industry 4.0 guidance into a different
structure that facilitates direct connection and communication between entities [6–8].

The current functional solutions from the industrial environment consist of a large variety of
dispersed systems, both chronologically and by location, leading to the necessity of ensuring the
interoperability of those solutions.

Although the heterogeneity of devices used in industry naturally supported the appearance of
many communication protocols (see [9–11]), the Open Platform Communications Unified Architecture
(OPC UA) was gradually imposed as the standard IIoT protocol.

The studies from [12–14] analyze the current OPC UA implementations regarding Industry 4.0
specific digitalization solutions, while [15–18] have successfully used OPC UA for increasing both
interoperability and connectivity of different automation systems, thus emphasizing that OPC UA is
an essential requirement for any Industry 4.0 compliant technical system.

The superior connectivity and interoperability between entities from technical systems under the
Industry 4.0 guidance have led to the appearance of the data accumulation concept, which is primarily
implemented in industry using historian applications [19,20].

The data gathered by historian applications is mostly unused, although it opens new possibilities
in the proactive historian applications area. Research towards stored data analysis algorithms and
optimization strategies must provide insights into pattern identification, learning capabilities, and
solid conclusions regarding real-world optimizations. In order to develop a completely autonomous
optimizing loop, both model-based analysis as well as decision and control procedures must be applied
to the technical systems, but in a non-invasive manner. The large amount of gathered data is not able to
create any added value without the usage of data analytics, the study from [21] bringing more insight
into this aspect. Although, as in [22–24], ideas are emerging about the benefits of the next phase offered
by the data analysis, no clear, detailed, and complete perspective is yet available. A more significant
study is performed in [25], where data-driven analysis is approached for the somehow latent alarms
and events data in the IIoT context to gain valuable information regarding processes.

The fog computing concept is starting to become more significant to the industry under the Industry
4.0 context, thus providing solutions that are closer to the local automation. The study from [26] compares
a middleware platform, which supports the rapid development of IoT-based solutions in both fog and
cloud configurations, by analyzing its performance in water irrigation scenarios. Fog computing is
proposed also in [27,28] compared to a cloud perspective. The fog computing would also be successfully
applied to decision and control solutions associated with hybrid wind farms [29] The cloud perspective
would be useful in situations where large scale distributed processes would be analyzed from a less
granular view when trying to adjust/optimize the integrated process (e.g., a key supplier and multiple
downstream manufacturers, as in [30]).

Because many drinking water facilities are starting to adapt to the Industry 4.0, and therefore
the physical and digital worlds become more connected, several issues appear, such as high energy
consumption, maintenance, water sources quality changes [31], water pump failures [32], or high
consumption of substances (chlorine cost issues and other problems, as in [33]).

In [34], the authors studied the energy requirements and carbon footprint for tourist swimming
pool water, obtained from desalination plants. Although the study proposes an algorithm that identifies
the characteristic function which defines both the water and energy consumptions (stored data analysis),
the paper does not highlight any optimizing steps or procedures. Towards this system functioning
improvements, the study from [35] proposes a methodology for both control and optimization of water
loss in the water supply system by using real-time monitoring and industrial Supervisory Control
and Data Acquisition (SCADA) systems. In the same direction, the authors from [36] analyzed the
groundwater resources used for irrigation and identified a non-linear multi-year optimal distribution
model of groundwater, which is capitalized for obtaining a sustainable utilization of groundwater
in irrigation. The water demand pattern is analyzed in terms of impact over the calibration process
in [37]. The authors of [38] presented the optimization of water treatment regarding the water turbidity
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levels by using a natural coagulant, while the monitoring of water quality is analyzed in [39] from both
data collection and data analysis perspectives.

Regarding the wastewater treatment, Sandu et al. present a numerical study in [40] that creates
new water paths by introducing wall structures and thus ensuring that low velocity flows of water
(which facilitates the appearance of a sedimentation process that disturbs the normal water treatment
process) cannot form. Also, in the wastewater treatment domain, the study from [41] presented
predictive control schemes and tackled the wastewater treatment stability and efficiency improvement
problems, while paper [42] details an optimizing strategy regarding wastewater network and treatment
plant implemented non-invasively using IIoT concepts over legacy systems.

Considering the upper mentioned ideas, the current paper proposes a fog computing decision
and control solution (FDC) that reduces the energy consumption in a water treatment and distribution
process using IIoT driven concepts such as interoperability and non-invasive augmentation of local
control systems following recipe identification after long-term data dependency analysis.

The next chapter, in the first section, describes a drinking water facility, the main existing control
structures for water request and distribution, respectively, process and cost issues. The second section
of Section 2 focuses on describing the solution to increase energy efficiency in the treatment process,
also considering the interface of the existing functional systems. Section 3 presents the obtained results
in the context of two long-term scenarios. Both scenarios required long-term data accumulation,
analysis and concluding phases, finalized by strictly supervised tests on a real plant. The first scenario
uses the complete researched strategy and applies it through supervised short-term efficiency testing.
The second scenario depicts a longer-term, two-week continuous testing on the real system, but with
constraints imposed by the facility operators, causing the researched strategy to function without all
the implemented modules. The last chapter presents a concluding discussion.

2. Materials and Methods

2.1. Description of Drinking Water Facilities

The typical newer drinking water facility (DWF) is presented in Figure 1 (a functional real process)
and consists of water sources, water treatment plant (WTP), and water distribution facility (WDF).
Figure 1 expresses water wells (WW) as sources, each of them having two main local control loops in
the automatic regime that guide the water pumping. The main local control loop is flow-based and the
second one (used only as redundant structure) is level-based. The setpoints have fix values, set by
the operators. The presented DWF contains 6 WWs, but only 4 of them presented in Figure 1 were
encountered functioning in automatic regime during the first period of analysis.

The water from the WWs flows into the WTP where it is treated according to the process presented
in Figure 2. The phases of the water treatment are aeration (aeration tank), filtering with sand and
charcoal (the exemplified plant contains 4 sand filters and 2 charcoal filters for a population of around
8000 inhabitants), disinfection (chlorine station with residual chlorine measuring and injection points)
and sludge treatment. The sand filters are reducing turbidity. The aeration and the charcoal filtering are
essential to obtain the desired PH and conductivity levels of the treated water. Therefore, to maintain
water acidity/alkalinity (PH) and conductivity levels inside legal limits requires energy and chlorine
consumptions (e.g., aeration blowers, maintenance of charcoal filters, chlorine station). The filters are
cleaned frequently using air or water because high turbidity may lead to clogging. Therefore, high
energy consumption and water losses are caused by filter cleaning. Regarding the chlorine station,
the basic, most-common water flow-based chlorine control strategy is augmented with a supplementary
closed-loop control having the residual chlorine on the feedback. This requires continuous water flow
from the WWs to the WTP because the second chlorine control loop requires around 30 minutes to
be efficient.
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The treated water after the filters is taken over by the WDF (see Figure 1). Generally, a WDF
contains a pumping station (PS3), electrical valves, and reservoirs. PS3 in the current research contains
three pumps with frequency converters (FC). The usual main type of implemented control algorithms
to distribute and request water are

• a pressure-based control loop for water distribution and functioning hours based pumps rotation;
• a primary level-based control loop that keeps the level in the reservoirs inside hysteresis limits. If the

level in the reservoirs decreases, water is requested from the WWs. The level in the reservoirs cannot
always be kept inside two hysteresis limits because of perturbing water consumption variation in
the distribution network, respectively, water reserve issues may occur, and, consequently, higher
energy consumption and water treatment process disturbances.

• a secondary flow-based control loop that is used for anticipating high water demands in the distribution
network at critical hours. Considering Figure 1, values of Flowmeters 4 and 1 are compared and if the
difference exceeds a threshold then water is requested from WWs. The secondary flow-based control
loop is much faster than the first. Both water requesting control loops are selecting WWs considering
functioning hours, and both should consider water and time losses inside the WTP.
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During nighttime, the water demand is lower and therefore the water sources may be automatically
stopped by the level control algorithm. However, most water distribution networks present water
losses. In this context, especially dictated by the higher flow-based control loop and the fixed WW local
fix flow setpoint, the water sources may start and stop multiple times during the night, causing pump
and water source to wear out. Other important outcome of the WWs multiple starts/stops would lead
to water treatment process disturbance due to the entire WTP activation for short periods of time that
would not be enough to enter in normal parameters (e.g., chlorine reaction, aeration, filtering).

WWs have different characteristics (flow capacity, water quality). Water quality indicators are
changing in time. The authors have analyzed in detail more than 50 DWFs over the years and the
WWs water quality indicators were not considered by any of the implemented automation solutions.
By monitoring parameters inside the DWF (e.g., residual chlorine, blowers functioning hours, filters
washing cycles, WWs states, flows, and functioning hours), WW quality indicators may be identified
and afterwards adapted. Therefore, with proper WWs quality indicators and variable flow setpoint
distribution, the energy and substances consumption can be reduced. Also, another cost variable
must be considered, equipment functioning hours and the number of starts, because maintenance/

replacement is expensive.
Regarding the encountered SCADA architectures, the WWs are equipped with programmable

logic controllers (PLC), functioning either in direct connection with the SCADA control room from
the WTP, or integrated into the PLC from the WDF. Some encountered solutions when WWs are
integrated directly in the WTP SCADA system are not requesting water from the WWs, considering
WDF reservoir levels and flow information. In this situation, either WWs are activated by aeration tank
level or simply by local pressure increase due to a WTP inlet valve closing. These older technologies
are not emphasized by the current FDC solution, but the energy consumption reduction rate would be
significantly higher as the legacy system lacks more evolved control strategies.

Newer WTP automation solutions are implemented around redundant PLCs. Usually, the WDF PLC
is integrated into the WTP SCADA system, which is centering mostly redundant servers. The electrical
parameters are monitored in real-time. Figure 3 depicts an example of the main values, as energy,
power, current, voltage for both power lines (usually redundant). The energies taken over from the WTP
automation (MCC), the WDF (PS3), the internal services panel, and the total WTP+WDF consumption
are of main importance in the concept of the current solution.
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A DWF is a critical infrastructure and any research is carefully monitored. Detailed motivation, strategy,
proofs, and approvals are necessary to implement research procedures. Therefore, any intervention towards
the legacy structures must be as non-invasive as possible. Even for newer WTP automation, constraints may
be applied by the infrastructure owners for the newly researched strategies that sometimes have to be tested
without their full capacity. In this sense, Section 3 presents, in the last part, relevant results after long-term
experiments with a real DWF, when several constraints regarding the control strategy are imposed by the
plant operators as caution measures. These results are compared with current operational strategy.

2.2. Increasing Energy Efficiency

To increase cost efficiency in DWF means to reduce consumption of energy and substances,
and to increase productivity and availability. Following long-term data analysis and dependencies
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considering thousands of tags from the process, the best recipe must be concluded regarding a cost
objective. The found recipe has to be tested on process models and, after that, it has to be non-invasively
implemented in practice in the fog of the real systems.

The conceived FDC solution have to interface the local systems, to vehiculate data, and to
non-invasively react over the process automation by applying the best-encountered recipe. The available
interfacing option with local SCADA from the WTPs is usually OPC UA and sometimes older OPC
Classic. If WDF and WWs are totally integrated into WTPs SCADA, then the main communication with
the local structures will be made through the redundant SCADA servers. However, FDC is also prepared
for local PLC interoperation, meaning most times legacy protocol availability. When redundant SCADA
is present, the direct PLC communication lines are implemented as backup structures and used only
when the SCADA servers are in maintenance or the OPC UA communication is not functioning (mainly
problems with the OPC UA server on the SCADA side).

For a significant connection with the industry, high technological readiness level, and the fog
computing abilities, the hardware and software environments used for FDC were the same as in [42].
Figure 4 details the fog-based FDC solution in direct relation with the local water infrastructure on
various protocols. Also, the configured OPC UA server of the FDC solution allows integration in the
regional/central SCADA control center. Besides the WTP SCADA, the OPC UA may be present at the
PLC level directly or using OPC UA based wrappers/gateways as developments in [43,44].

Following data gathering and dependency analysis from [19] and [45], quality indicators are
identified for the WWs. These quality indicators are considered in the current paper in relation to
the total energy consumption used for treating and distributing the water. After associating quality
indicators for the sources, the solution has to establish priorities and flow setpoint references for each
WW. Considering the control strategies described in Section 2.1, the currently proposed strategy to
increase energy efficiency is considered complete when the reaction over the analyzed local system is
realized both based on WW priority indicators and on WW flow setpoints.

After analyzing the local process, a priority is established for each WW. The priority will provide
sorting based on provided water quality and functioning hours, and it will influence the flow setpoint
that will be transmitted to the local flow-based control loop of the well. Therefore, variable flow
setpoints can replace the existing fix values.
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The WWs starting order and functioning frequencies will be sorted descending, from the highest
to the lowest priority in the group. The priority (Pf) of a WW will be

P f = α·PH f + β· PQ f (1)

where

• PHf is the priority indicator considering WW functioning hours; PH f ∈ [0 . . . 10];

• PQf is the priority indicator considering WW water quality indicator; PQ f ∈ [0 . . . 10];

• α is the weighting factor of PHf; α ∈ [0 . . . 1− β];
• β is the weighting factor of PQf; β ∈ [0 . . . 1− α];
• The following equality is valid α+ β = 1;
• P f ∈ [0 . . . 10].

The priority indicator PHf is normalized in domain 0 . . . 10:

PH f = 10− h f ·
10

max(h1, . . . , hn)
(2)

where hf indicates the functioning hours of the WW, and n is the number of the WWs.
E.g., for 6 WWs with h = [2 7 9 8 3 5], max(h) = 9 and therefore PF = [7.78 2.23 0 1.12 6.67 3.34].
The priority indicator PQf is normalized in domain 0 . . . 10:

PQ f = q f ·
10

max(q1, . . . , qn)
(3)

where qf indicates the quality indicator of the WW.
The flow setpoint control for a WW will be calculated as

Fw− f = F f−min + γ·
(
F f−max − F f−min

)
·
PQ f

10
(4)

where:

• FW_f indicates the flow setpoint of the WW.
• Ff_min indicates WW minimum flow.
• Ff_max indicates WW maximum flow.
• γ indicates a weighting factor that has to be experimentally determined.

The FW_f value for a WW will be determined always considering the minimum flow added with
the weighting factor that considers the WW water quality. If PQf = 10 then for γ = 0, FW_f = Ff_min,
and for γ = 1, FW_f = Ff_max. Using γ, the influence of the water quality indicator over PQf =10, the flow
setpoint, can be controlled. If γ = 1 and for example PQf = 6, Ff_min = 10 mc/h, Ff_max = 30 mc/h,
the maximum flow setpoint is FW_f = 22 mc/h, according to (4).

The decision and control algorithm distinguishes a scenario when the level in the reservoirs is
under the minimal hysteresis limit. The total flow requested from the WWs (Ft_r) is increased (but
being limited by the WTP water treatment capacity) until the level in the reservoirs reaches the higher
hysteresis limit. Tint from (5) is determined through simulations as 100 s.

Ft_r = WDF_output_ f low·
1

Tint·s
(5)
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The level data is affected by noise, influencing the behavior of the control structure. Therefore,
a low-pass filter is implemented with a filtering constant of 100 s:

Hlevel_data_ f ilter(s) =
1

100s + 1
(6)

According to the quality indicator of the wells, the logic of the flow setpoint requests is briefly
depicted as follows:

• If the calculated FW_f for the highest priority WW covers Ft_r, then other WWs will have flow
setpoint set to zero.

• If the sum of the calculated flows for the highest priority WWs is smaller than Ft_r, then a next
WW will be activated and set to minimal reference flow and previous one will adapt its setpoint
value. All other setpoints are zero. The flow distribution algorithm is extendable if Ft_r increases
dramatically in time, exceeding the optimal capacity of the WWs, with a first raise of γ and then
with a raise of β.

To avoid sudden multiple flow setpoint changes for the WWs that may be caused by noise in the
WDF output flow signal evolution, a lowpass filter from was considered for all referenced flow signals.

3. Results

The FDC solution was tested on a DWF developed and calibrated model using input real data and
on a real system. Applying new research directly on a functional critical infrastructure such as a WTP
is not possible, even testing the current experimental model was a long-term procedure. The chapter
presents two scenarios.

The first scenario presents the obtained results using the complete FDC solution. After the first
long-term data accumulation, analysis, and concluding phases, the scenario consists of model-based and
short-term real system tests to prove the energy efficiency increase, under strict operator supervision.
The real system complete tests in the first scenario were only short term.

After finalizing the first type of scenario, in order to better prove the impact of the solution on a real
system and to reach higher TRL, the solution had to be tested on a longer-term and reacting (applying
the conclusions) autonomously over the local system. The second scenario depicts a longer-term,
two-week continuous testing on the real system, but with several constraints imposed by the facility
operators. The most impacting imposed constraints were that the prescribed flow setpoints for WWs
must not be changed from their fixed individual values, respectively; no additional WWs should be
activated besides those selected. Particularly for the presented scenario, the selected WWs were also
4 from the 6 available, but WW4 was replaced with WW1. Therefore, the FDC solution was tested
on the plant in the second scenario without all the implemented modules (without the WW variable
individual flow setpoint and the activation of all available wells). The supplementary data analysis
with the proactive historian, when transiting towards longer-term tests, lasted around 1 more year.

The scenarios are focusing on the DWF from Figure 1, having the WTP process from Figure 2.
The local PLCs from the WDF and WWs are interfaced using an S7 protocol. The WTP is automated
using two redundant S7-400 H PLCs, and the SCADA is WinCC 7.2 with Connectivity Pack on two
redundant servers and two clients, integrating the entire DWF. Therefore Figure 4 is reduced for the
current scenario to Figure 5, where OPC UA is the main interface to vehiculate data, and the S7 protocol
is used for backup.

In the first scenario, the entire FDC solution will non-invasively augment the DWF local system,
and short-term efficiency tests will be realized on the real plant. Initially, Figure 6 presents the evolution
of the flows from the four WWs in the context of the fixed flow setpoint operation, without FDC.
This way, the water demand will activate WWs without taking into consideration the quality and the
quantity from the sources.
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The first scenario that is presented using Figures 7–10 applies priority setting results (Figure 8) for
the four WWs considering functioning hours (Figure 7) and water quality indicators. The determined
values for α are [0.8, 0.6, 0.7, 0.9], and for β, [0.2, 0.4, 0.3, 0.1]. The γ factor was set to 1 for all wells
because of the high demand of water (WW1 and WW6 were not activated).

The evolutions of Ft_r, respectively, the level in the distribution reservoir, and FW_f, after applying
the FDC solution, are presented in Figure 9.

The FDC solution impacts on reducing energy consumption is consistent. Concluding from
Figure 10 (percentage power differences between the system with and without FDC), the resulting
improvement is about 9%.

The second scenario follows another consistent period of data accumulation, analysis, and testing,
to assure longer-term efficiency tests on the real system. As said before, overcoming procedural issues
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and the imposed constraints on FDC functioning, the solution was tested in autonomous functioning
on the real plant for a two-week periods.Processes 2020, 8, x FOR PEER REVIEW 10 of 17 
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Figure 10. Percentage power difference after using FDC.

Also, during the additional consistent data accumulation and analysis, changes in the local
system functioning were encountered and assimilated. The most important was the manual WWs
activation/deactivation procedures over time, caused mainly by local operator’s preferences, but also
by shorter-term faults on the well’s equipment. As noticed in the last 1.5 years of experiments, the local
operators are manually activating/deactivating WWs every 4–7 months (usually selecting 4–5 active
wells), which are entered into the local algorithm. Particularly, the presented second scenario uses also
four selected WWs from the six available, but WW4 is replaced with WW1. The authors conclude that
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when a new water source is added to the system, the proactive historian requires at least four months
of consistent data analysis to include the new structure correctly in the decision and control algorithm.

The second scenario details the functioning of the real system, augmented with the constrained
FDC solution (restricted to fixed flow setpoints at the four mentioned WWs), over a two-week period
between 23 November 2019 to 7 December 2019. In this period, Figures 11 and 12 are illustrating the
evolution of the flows for the 4 WWs (WW 1, 2, 3, 7), respectively, the total consumed energy.
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Figures 13–16 present the evolution of the flows for the 4WWs and the total consumed energy
over four weeks, between 11 January 2020 to 8 February 2020, without the FDC solution. For a correct
comparison, the tests without FDC are realized in a period with the same water demand and
consumption as in the first two weeks, not considering the winter holidays period.
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Table 1 details the initial and the final values of the energy index for each week, the consumed
energy for each week, the average energy consumption for the two, respectively, the four-week
period, and finally the difference of energy consumption in percentages to prove the efficiency of the
proposed solution.

Table 1. Total energy consumption (MWh) of the drinking water facility (DWF).

Two Weeks with Constrained FDC
Solution

(23 November 2019–7 December 2019)

Four Weeks without FDC Solution
(11 January 2020–8 February 2020)

Week 1 Week 2 Week 1 Week 2 Week 3 Week 4

Init. val. (MWh) 722 724.6 742.7 746.3 749.8 753.3
Final val. (MWh) 724.6 727.4 746.3 749.8 753.3 756.7

Consumption (MWh)] 2.6 2.8 3.6 3.5 3.5 3.4

Average (MWh) 2.7 3.5

Difference (%) +30%

In Table 1, the consumed energy average for the two weeks tests with FDC was 2.7 MWh, and
for the four-week tests without FDC was 3.5 MWh. The study identifies and exposes, in Table 1,
a consistent increase in energy consumption of around 30% when the system is not foreseen with the
proposed solution.

4. Discussion

The paper presents a fog computing decision and control solution that reduces the energy
consumption in water treatment and distribution, the energy efficiency being highly related to proper
water sources allocation and usage. The study follows previous research steps in researching and
developing a proactive historian which concluded in a fog-based data accumulation system (practically
a low-cost and lightweight historian) and a data-dependency analysis solution that is able to establish
valuable correlations in a process-aware manner. Process specific constraints, statuses, impact, degrees
of freedom, and limitations are taken into consideration to filter dependencies and to provide the
proper recipe and feedback for the functioning system.

The solution is applied non-invasively over the local control structures and uses interoperation.
Therefore, its applicability is widespread in the water sector and generally in the manufacturing
industry, where the local systems are of various types with a high percentage of legacy structures.

In the authors’ opinion, the correct and more complete answer to clarify specific outcomes,
representations, and impact of IIoT and Industry 4.0 may come only after applicative research and
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detailed particularizing and long-term studies of local systems and processes. The current research
provides an applicable recipe for drinking water facilities, and the obtained results are proving the
efficiency of the concept.

Although the efficiency is considerably increased in the first scenario, the authors claim and prove
within the second scenario that more than 9% can be obtained. Some of the reasons:

• The reduced possibility to properly compare the results in the real system using short-term tests,
because of yet-limited FDC applicability access on the DWF for longer periods determined the
consideration of the lowest value of 9%.

• The small number of WWs in the context of a high water demand implies longer functioning times
for each well and therefore not many degrees of freedom (e.g., the degrees of freedom would
increase if all 6 WWs from the real DWF would be in function);

• The initial WDF–WWs automation solution in many DWFs is poorly implemented. The current
comparison implies initial fixed flow setpoint for the WWs that were highly adjusted (e.g., the
flow setpoints were set using the best knowledge of the operators and the initial system developer
for the DWF);

The second scenario, implying longer-term two-week testing and autonomous functioning of the
system augmented with the constrained proposed solution, proves a much more consistent impact.
The system without the FDC proved an increase in energy consumption by 30% in the hypothesis that
the FDC solution was constrained from using the individual variable flow setpoints algorithm for the
water wells that would provide even higher efficiency, and of considering only 4 of the 6 available
water sources.

The presented results demonstrate the efficiency of the concept.
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Abbreviations

OPC Open Platform Communications or Object Linking and Embedding (OLE) for Process Control
UA Unified Architecture
DA Data Access
IIoT Industrial Internet of Things
FDC Fog computing decision and control solution
PLC Programmable logic controller
SCADA Supervisory control and data acquisition
DWF Drinking water facility
WTP Water treatment plant
WDF Water distribution facility
WW Water well
PS Pumping station
FC Frequency converter
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