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Abstract: The present study deals with the swimming of gyrotactic microorganisms in a nanofluid
past a stretched surface. The combined effects of magnetohydrodynamics and porosity are taken into
account. The mathematical modeling is based on momentum, energy, nanoparticle concentration, and
microorganisms’ equation. A new computational technique, namely successive local linearization
method (SLLM), is used to solve nonlinear coupled differential equations. The SLLM algorithm is
smooth to establish and employ because this method is based on a simple univariate linearization
of nonlinear functions. The numerical efficiency of SLLM is much powerful as it develops a series
of equations which can be subsequently solved by reutilizing the data from the solution of one
equation in the next one. The convergence was improved through relaxation parameters in the
study. The accuracy of SLLM was assured through known methods and convergence analysis. A
comparison of the proposed method with the existing literature has also been made and found an
excellent agreement. It is worth mentioning that the successive local linearization method was found
to be very stable and flexible for resolving the issues of nonlinear magnetic materials processing
transport phenomena.

Keywords: electro-conductive polymer processing; porous media; bio-convection; gyrotactic
microorganisms

1. Introduction

Recent betterments in nanotechnology arose through the investigation of the physical
characteristics of matter at the nanoscale level. Multiple industrial utilizations of nanofluids
established their growing use in heat transfer. The use of nanofluids has been promoted in assorted
imperative subfields due to their thermal transport and captivating uses. Like their peculiarly
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higher thermal conductivity, nanofluids have improved the stability that averts rapid establishing
and choking adjacent to heat transfers across the boundaries of the materials. Exploring the
stimulants in nanofluid, branches through the heat transfer enlargement into mechanisms comprising
space-cooling, hybrid-powered engines, nuclear engineering, micro-manufacturing, microchips in
computer processors, air-conditioners/refrigerators, fuel cells, diesel engine oil, and other higher energy
equipment. Classical theory of the single-phase fluids is helpful for the nanofluids by observing the
thermo-physical features of nanofluids, base fluids and their constituents. It is noteworthy that the
thermal conductivity of the nanofluids is enhanced through volume fraction, particle size, temperature,
and thermal conductivity. Buongiorno [1] promoted a nanofluid model to elaborate the propagation
of thermal energy. Tiwari and Das [2] developed a simpler model through which thermos-physical
characteristics were investigated as function of nanoparticle volume fraction. Kuznetsov and Nield [3]
used a Buongiorno model to interpret the conduction of thermophoretic diffusion and Brownian
motion on nanofluid flow neighboring a heating vertical surface through a pervious media and noted
that both thermophoresis and Brownian-motion bring a decrement in heat transfer rate through the
plate. As the standard of ultimate production relies on the heat transfer rate, as acknowledged, the
nanofluids with a higher rate of thermal conductivity enhance the rate of heat transfer [4,5]. For this
purpose, distinct techniques are adopted to raise the thermal conductivity of the fluids by providing
the suspension of nano/micro- or large-sized particles into liquids. An inventive approach to enhance
the heat transfer rate is performed by utilizing nano-scale particles into the base-fluid by Choi et al. [6].
They recorded that, by adding a tiny extent (<1%) of nanoparticles to regular heat transfer fluids,
the thermal conductivity for fluids up to almost 4-times and higher was enhanced. Ellahi et al. [7]
discussed the two-phase Newtonian nanofluid flow hybrid with hafnium particles under the effects of
slip. Majeed et al. [8] scrutinized the stretched stretching sheet under the combine effects of suction,
heat transfer and ferromagnetic viscoelastic fluid flow. Noghrehabadadi et al. [9] explored the flow and
heat transfer of nanofluids past a stretched subsurface, supposing of thermal convectively boundary
conditions and partial slip. Nilson and Griffiths [10] discussed the electro-osmotic flow with atomistic
physics and presented a detailed analysis using density functional theory. Lee et al. [11] presented
a comparative study on molecular dynamics via classical density function through a double layer
nano-channels with the help of the poisson–boltzmann theory. Some important analyses on the
nanofluid flow through various configurations are available in the references [12–16].

The magnetized stagnation flow past a stretched surface has numerous productive usages, such as
glass industries, a tragedy core reducing system, and decontamination of crude oil. Theoretically, the
boundary layer flow and the flow causes from a stretching plate are fairly imperative. Hiemenz [17]
first introduced the stagnation point flow in a two-dimensional channel. Chiam [18] scrutinized the
stretching and strain rate of the stagnation point flow of the sheet and observed that boundary layers
do not occur close to the sheet. Asma et al. [19] numerically inspected the magnetized nanofluid
motion over a rotating disk with activation energy and binary chemical formulation. It is important to
mention here that Makinde and Animasaun [20] investigated an admirable work related to magnetized
nanofluid flow alongside quartic autocatalysis chemical reaction and bio-convection, and recorded that,
for a fixed numeric of magnetic parameters, the local skin friction further develops at a larger thickened
parametric value, whereas the rate of local heat transfer decreases at high-temperature parametric
values past an uppermost subsurface of a paraboloid of uprising. Scrutinizing the definitive utilities
for nanofluid and MHD, few recent investigations can be found [21–38].

Activation energy is the minimum supply of energy needed to accomplish a chemical reaction. Very
few researchers have studied the activation energy along with chemical reaction to date. Sajid et al. [39]
scrutinized activation energy with nonlinear thermal radiation on the Maxwell Darcy-Forchheimer
nanofluid flow. The impact of activation energy with radiative stagnation point flow on cross nanofluid
was determined by Ijaz et al. [40]. Khan et al. [41] presented a theoretical report on tangent hyperbolic
nanofluid alongside a fused electrical magnetic field, with Wu’s slip and activation energy aspects. A
few other analyses of activation energy are given in [42–44].
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Bio-convection has many utilizations, similar to model oil, microbial enhanced oil recovery (EOR)
and gas-bearing sedimentary basins. Due to this, some researchers have analyzed the mechanisms of
several bio-convection obstacles providing suspended solid particles. The microbial EOR is a new
technological process for gas and oil production and enhancing oil restoration. This mechanism
involves the insertion of the preferred microorganisms into the containers and the residual oil left
in the reservoir is reduced through in situ amplification when secondary restoration is exhausted.
The self-impelled motile microorganisms enhanced the density of the base fluid in a peculiar way to
produce a bio-convection kind of stream. Based on the cause of propulsion, the motile microorganisms
perhaps categorized into various kinds of microorganisms, including oxytactic or chemotaxis, gyrotactic
microorganisms, and negate gravitaxis. Unlike the motile microorganisms, the nanoparticles are not
self-propelled, and their movement is through the thermophoresis and Brownian motion, impacting
the inward nanofluid. Kuznetsov and Avramenko [45] analyzed bio-convection into a suspension of
gyrotactic microorganisms through a layer of finite depth. This conception was extended by Kuznetsov
and Geng [46] to numerous bio-convection problems. Lee et al. [47] experimentally interpreted the
effects of convention in heated plate-fin. Khan and Makinde [48] examined nanofluid bio-convection
caused by gyrotactic-microorganisms and they perceived that the microorganisms amplify the base-fluid
density through floating/swimming in a specific manner. Recently, Raees et al. [49] interpreted that
bio-convection into nanofluids has made enormous contributions to the Colibri micro-volumes
spectrometer and benefitted the stability of nanofluids. Some other studies relating to gyrotactic
microorganisms can be viewed here [50,51].

The intention of the current analysis is to examine the impact of an activation energy on magnetized
fluid comprising of nanoparticles and motile gyrotactic microorganisms, flowing through a stretchable
permeable sheet, by employing a successive local linearization method [52,53] not yet available in
the existing literature. The current study scrutinizes the transporting phenomena into a nanofluid
consisting of self-impelled motile gyrotactic microorganisms by providing a non-uniform magnetic
field and convective cooling processes. The thermophoresis, Brownian-motion, and convectively
cooling phenomena are also examined. Numerical results are displayed, and comparability with
previous investigations is also provided for the validity of the current results.

2. Modeling

Let a bi-dimensional incompressible viscous, steady, and magnetized nanofluid flow comprising
gyrotactic microorganisms through a stretched porous sheet filling porous space be assumed, as shown
in Figure 1.
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The leading equations for continuity, momentum, thermal energy, nanoparticle concentration,
and microorganisms [54] are
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ũ +
∂ũ
∂ŷ
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∂ŷ

= α

∂2T̃
∂x̂2 +

∂2T̃
∂ŷ2
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Their respective boundary conditions can be read as
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is an Arrhenius function,

m is the dimensionless exponent, T̃ is the temperature, C̃ is the concentration for nanoparticle, Ñ
is the density for motile microorganism, p̃ the pressure, ρ f , ρm,ρp are the densities of nanofluid,
microorganisms, DT is thermophoresis-diffusion coefficient, DM is diffusivity of microorganisms,
DB is Brownian-diffusion coefficient, k is the thermal conductivity of nanofluid, σ is the electrical
conductivity of nanofluid, γ is the average volume for a microorganisms, α = k/

(
ρcp

)
is the thermal

diffusivity, kr is chemical reaction rate, Ea activation energy, CF is the Forchheimer coefficient, k0 is the
Boltzman constant, bWC are constants, τ̃ = (ρC)p/(ρC) f is the proportion of the effected nanoparticle
heat capacitance of the base-fluid, strength of magnetic field is B(x) = B0(x̂), velocity of stretched
sheet is Ũw = ax̂, positive constant is a, concentration is C̃w, temperature of the wall is T̃w, motile
microorganisms’ densities are Ñ∞ and Ñw, ambient concentration is C̃∞ and ambient temperature
is T̃∞.

The similarity transformation variables are defined as follows
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The significant parameters are defined in the list of Nomenclatures.
The shear stress, the local heat, the local mass, and the motile microorganisms’ fluxes past the

subsurface, imperative parameters, the skin-friction coefficient, the local Sherwood number, the local
density number of the motile microorganisms, the local Nusselt number and the local Reynolds number,
are respectively defined as
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3. Numerical Solution

The implementation of the SLLM to the present system of differential equations needs to reduce
the order of Equation (10). In view of the transformation g′ = h, Equations (10)–(13) can be written as

h′′ + gh′ − h2
− Frh2
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By using Taylor’s series expansion, the non-linear term “h2” can be linearized as

h2
t+1 = h2

t + 2ht[ht+1 − ht] = 2htht+1 − h2
t. (22)

Here, the subscript “t” stands for the previous approximated value, whereas the subscript “t + 1”
stands for the current approximated value.

Now, when we placed Equation (22) in Equation (18), then the non-linear system along with the
corresponding boundary conditions are first decoupled by employing the Gauss–Seidel relaxation
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method, and then, in view of Chebyshev spectral collocation, the resulting system interims of
differentiation matrix “D = 2

l D” become

Dgt+1 = ht, (23){
D2 + diag[d11]D− diag[d12]I− d13I

}
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ht+1(η0) = 0 = θt+1(η0) = φt+1(η0) = Φt+1(η0). (29)

The system can be expressed in a more simplified way as
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...
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diag[d32] =


d32(η0) · · ·

...
. . .

...
· · · d32(ηN)

, diag[d33] =


d33(η0) · · ·

...
. . .

...
· · · d33(ηN)

,

diag[d42] =


d42(η0) · · ·

...
. . .

...
· · · d42(ηN)

, d3,t = d4,t = 0 =


0
...
0

. (41)

gt+1 = [g(η0), g(η1), ..., g(ηN)]
T, ht+1 = [h(η0), h(η1), ..., h(ηN)]

T, (42)

θt+1 = [θ(η0),θ(η1), ...,θ(ηN)]
T,φt+1 = [φ(η0),φ(η1), ...,φ(ηN)]

T, (43)

Φt+1 = [Φ(η0), Φ(η1), ..., Φ(ηN)]
T are vectors of sizes (N + 1) × 1, while0 is a vector of order

(N + 1) × 1 and I is an identity matrix of order (N + 1) × (N + 1).
The implementation of boundary conditions on the system (23)–(27), yields the following

B1 =


B1

0 . . . 1

, gt+1 =


gt+1(η0)

gt+1(η1)
...

gt+1(ηN)

,

E1 =


E1

0

, B2 =


1 . . . 0

B2

0 . . . 1

, ht+1 =


ht+1(η0)

ht+1(η1)
...

ht+1(ηN)

,

E2 =


0

E2

1

, B3 =


1 . . . 0

B3

0 . . . 1

, θt+1 =


θt+1(η0)

θt+1(η1)
...

θt+1(ηN)

, E3 =


0

E3

1

,

(44)


1 . . . 0

B4

0 . . . 1


,φt+1 =



φt+1(η0)

φt+1(η1)
...

φt+1(ηN)


, E4 =


0

E4

1

,


1 . . . 0

B5

0 . . . 1


, Φt+1 =


Φt+1(η0)

Φt+1(η1)
...

Φt+1(ηN)


,

E5 =


0

E5

1

.
(45)

The applicable initial guesses approximation are selected as

g0(η) = (1− e−η), h0(η) = e−η,θ0(η) = φ0(η) = Φ0(η) = e−η. (46)

These initial approximation assumptions satisfy the boundary conditions (28) and (29), which
subsequently accomplish the approximations of gt, ht,θt,φt, Φt for each t = 1, 2, . . . . . . by employing
the SLLM technique.
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4. Convergence of SLLM Technique

A significant effort was executed to obtain the convergent solutions by employing the successive
over-relaxation (SOR) method for each result via this iterative scheme. If “Z” is the resolving function,
then the SLLM technique at the (t + 1) iteration is

B1Zt+1 = E1, (47)

Now, by revising this, the new mode of the SLLM technique is indicated as

B1Zt+1 = (1−ω)B1Zt +ωE1, (48)

where “ω” is the convergence improving the parametric quantity whereas “B1” and “E1” represent
matrices. This revised SLLM technique improves the accuracy and efficiency of numerical results.

5. Discussion

This section is dedicated to the numerical results, their validation, and the discussion. To inspect
the presence of all the leading parameters numerically, the computational software MATLAB was
used for the numerical simulations. Table 1 shows the computed convergent outcomes of Nux/Re1/2

x ,
Shx/Re1/2

x and Nnx/Re1/2
x across the number of collocation points N, Nt, and Nb by fixing other

parameters, whereas Table 2 depicts the comparability of −θ′(0),−φ′(0) across Nt and Nb with the
preceding investigations by fixing the other parameters of the governing equations. Figures 2–15
have been plotted against all the leading parameters for microorganism distribution, nanoparticle
concentration, temperature, and velocity distribution, respectively.

Table 1. Numerical convergent values of Nusselt number, Sherwood Number, and the local density
number of the motile microorganisms across N, Nt and Nb by fixing M = 1, βD = Fr = Ec = σ1 = δ =

E = 0, Nr = 0.5, Rb = 0.5, Gr
R2

e
= 0.5, Pr = 10, Le = 10, Lb = 2, Pe = 0.5, Ωd = 1.0.

N Nt Nb
Nux

Re1/2
x

Shx

Re1/2
x

Nnx

Re1/2
x

50 0.3 0.1 1.7573 6.6646 8.4301
60 0.3 0.1 1.7584 6.6658 8.4311
70 0.3 0.1 1.7587 6.6662 8.4314
80 0.3 0.1 1.7587 6.6662 8.4314
100 0.3 0.1 1.7587 6.6662 8.4314
50 0.5 0.5 1.1430 7.7175 9.3273
60 0.5 0.5 1.1446 7.7189 9.3290
70 0.5 0.5 1.1452 7.7198 9.3294
80 0.5 0.5 1.1452 7.7198 9.3294
100 0.5 0.5 1.1452 7.7198 9.3294

Table 2. Comparison of the current outcomes for −θ′(0) and −φ′(0) with the previous investigations
across Nt and Nb by taking Pr = Le = 10, M = βD = Fr =

Gr
R2

e
= Nr = Rb = 0, Ec = σ1 = δ = E = 0.

Nb Nt Current Outcomes for−θ
′

(0)
Khan and Pop

[55] Current Outcomes for−φ
′

(0)
Khan and Pop

[55]

0.1 0.1 0.952523 0.9524 2.129413 2.1294
0.2 0.693411 0.6932 2.274116 2.2740
0.3 0.520134 0.5201 2.528622 2.5286

0.3 0.1 0.252177 0.2522 2.410124 2.4100
0.2 0.181637 0.1816 2.515065 2.5150
0.3 0.135610 0.1355 2.608924 2.6088

Figure 2 depicts that the velocity distribution decelerates by enhancing the permeability parameter
βD, and also can be seen as a deceleration in momentum by taking increments of M, due to the existing
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body-force brought through the magnetic field, well-known as the Lorentz force, causing a decrement
in the velocity overshooting and momentum boundary-layer thickness. In Figure 3, it was reported
that the velocity distribution decelerates for both parameters by enhancing the numeric value of these
parameters, i.e., the Forchheimer parameter Fr and M. In Figure 4, it is recorded that, by taking the
increment in Nr, the velocity distribution decreases as a result of an increment in the negate buoyancy
generated through the existence of nanoparticles, while the Richardson number Gr/R2

e , was boosted
by enhancing the values of the Richardson number. Figure 5 portrays that, through an increment in Rb,
the velocity distribution decreases because the power of convection due to the bio-convection worked
against the convection of buoyancy force, whereas the Richardson number Gr/R2

e , was boosted by
enlarging the values of the Richardson number.
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The impact of the buoyancy proportion parameter Nr, Prandtl number Pr, Hartmann number
M, the Brownian-motion parameter Nb, the thermophoresis parameter Nt, local Eckert number Ec,
for various numeric values are shown in Figures 6–9. From Figure 6, can be seen that by taking the
increment in Nr, the temperature distribution decreases as a result of an increment in the negate
buoyancy generated through the existence of nanoparticles, while the Richardson number Gr/R2

e , it is
boosted by enhancing the values of the Richardson number. Figure 7 shows that, by taking an increment
in Prandtl number Pr, the temperature distribution slows, although enhancing the thermophoresis
parameter Nt accelerates the temperature distribution. Figure 8 shows the effect of thermophoresis
parameter Nt and the Brownian-motion parameter Nb of the temperature distribution, and also noticed
that the temperature distribution boosts both parameters by enhancing the numeric value of these
parameters. The influence of Eckert number Ec and the Brownian-motion parameter Nb of temperature
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distribution is shown in Figure 9, and the temperature distribution is boosted for both parameters by
enhancing the numeric value of these parameters. Further heating is due to the interaction of the fluid
and nanoparticles because of the Brownian-motion, thermophoresis, and viscous dissipation impact.
Therefore, the thickness of the thermal boundary layer becomes higher across the larger numeric of Nt,
Nb and Ec and temperature overshoots into the neighborhood of the stretched permeable sheet. The
impact of the bio-convection Lewis number Le, the Brownian-motion parameter Nb, the thermophoresis
parameter Nt, the chemical reaction constant σ1, relative temperature parameter δ, the parameter for
activation energy E, the bio-convection Lb, Peclet number Pe and the microorganisms’ concentration
difference parameter Ωd for concentration distribution and the density of motile microorganisms
are shown, respectively, through Figures 10–15. Figure 10 shows the effect of bio-convection Lewis
number Le and the thermophoresis parameter Nt of the concentration distribution and also shows
that the concentration distribution decelerates by enhancing the numeric value of Lewis number Le,
because the convection of nanoparticles enhances if we add larger values to Lewis number Le and are
incremented through increases in thermophoresis parameter Nt. Therefore, we suggested that the
nanoparticle’s boundary layer thickens with Nt. From Figure 11, it observed that, by enlarging the
Brownian-motion parameter Nb and the bio-convection Lewis number Le, the concentration profile
slows for both parameters. Figure 12 portrays the influence of the chemical reaction constant σ1 and
the parameter for activation energy E, and shows that φ is decelerated with enlarging values of σ1,
while it is incremented with larger values of E. Figure 13 depicts the impact of the relative temperature
parameter δ and the parameter for activation energy E, and shows that φ earns the largest values for
δ = −0.5,−0.1,−1.5,−2.0 and enhances with increments in E. The graphical behavior of various values
of the bio-convection Lb and Peclet number Pe in Figure 14 show that a decrement in the density of
motile microorganisms quickly occurs by enhancing the bio-convection Lb and Peclet number Pe. That
is, the density of motile microorganisms decreases strongly, and by enhancing the bio-convection
Lewis number Lb and Peclet number Pe the decrement in microorganisms’ diffusion can be calculated,
hence the density and boundary layer thickness downturn for motile microorganisms with rising
values of Lb and Pe. The power of the Peclet number Pe and the microorganism concentrations’ varying
parametric quantity Ωd are shown in Figure 15, and the density of motile microorganisms is decreased
by enhancing both the parameters, i.e., the Peclet number Pe and the microorganism concentrations’
varying parametric quantity Ωd.Processes 2020, 8, x FOR PEER REVIEW 11 of 20 
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6. Conclusions

The notable results of the current investigation are:

i. The successive local linearization method is found to be very stable and flexible for resolving
nonlinear magnetic materials’ processing transport phenomena problems;

ii. The numerical efficiency of SLLM is powerful, because it develops in a series of equations which
are solved by reutilizing the data from the solution of one equation in the next equation;

iii. Due to its accuracy, efficiency, and smoothness, it is visualized that the proposed SLLM technique
could be employed as a feasible technique for solving certain classes of boundary layer fluid
flow problems;

iv. Furthermore, in the present investigation, we have ignored the behavior of non-Newtonian
nanofluid models and double-diffusive convection flows, which can be considered in the
upcoming articles.
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Nomenclatures

ũ, ṽ Components of velocity
k Thermal conductivity
a, b Constants
g Dimensionless stream function
g Gravity
Cgx̂ Skin friction coefficient
Shx̂ Sherwood number
Nnx̂ Local-density number of motile microorganisms
Nux̂ Nusselt number[
cp

]
f

Heat capacity

B0 Magnetic field
CF Forchheimer coefficient
qw Local heat flux past the surface
T̃w Temperature of the wall
k0 Boltzmann constant
T̃∞ Ambient temperature
k Porosity parameter
p̃ Pressure(
cp

)
s

Heat capacity of solid fraction

Ũw Stretching sheet velocity
x̂, ŷ Cartesian coordinates along the surface
C̃ The concentration for nanoparticle
Pr Prandtl number
Ñ Density for motile microorganism
DB Brownian-diffusion coefficient
DM Diffusivity of microorganisms[
cp

]
p

Nanoparticles heat capacity

Rex Local Reynolds number
DT Thermophoresis diffusion coefficient
WC Heat capacitance of the nanoparticle
M Hartmann number
Gr/R2

e The local Richardson number
Nr Buoyancy proportion parameter
Nb Brownian motion parameter
m Dimensionless exponent
Rb Bioconvection Rayleigh number
Nt Thermophoresis parameter
Ec Eckert number
Ea Activation energy
Lb Bioconvection Lewis number
kr Chemical reaction rate
Le Lewis number
Pe Bio-convection Peclet number
qm Local mass flux past the surface
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Greek Symbols

κn f Thermal conductivity of nanofluid
Φ Motile microorganism profile
φ Concentration profile
µn f Dynamic viscosity
θ Temperature profile
νn f Kinematic viscosity of nanofluid
κn f Thermal conductivity of nanofluid
ρ f Density of the fluid
σ Electrical conductivity
τw Shear stress
ρm, ρp Densities of microorganisms and nanoparticles
Ωd Microorganisms concentration variance parameter
γ Average volume for a microorganism
α Thermal diffusivity
βD Permeability parameter
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