Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Preparation
2.2. Phytochemical Composition
2.3. Biological Assays
2.4. Docking Calculations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Composition
3.2. Antioxidant Potential
3.3. Enzyme Assays
3.4. Docking Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jain, A.; Katewa, S.; Galav, P.; Sharma, P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. J. Ethnopharmacol. 2005, 102, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Kaushik, D.; Khokra, S.; Chaudhary, B. Abutilon indicum (Atibala): Ethno-botany, phytochemistry and pharmacology–A review. Int. J. Pharm. Clin. Res. 2009, 1, 4–9. [Google Scholar]
- Bahadori, M.B.; Asghari, B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Abbas-Mohammadi, M.; Bahadori, S. Salvia nemorosa L. A novel source of bioactive agents with functional connections. LWT-Food Sci. Technol. 2017, 75, 42–50. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Dhouafli, Z.; Rigacci, S.; Leri, M.; Bucciantini, M.; Mahjoub, B.; Tounsi, M.S.; Wannes, W.A.; Stefani, M.; Hayouni, E.A. Screening for amyloid-β aggregation inhibitor and neuronal toxicity of eight Tunisian medicinal plants. Ind. Crops Prod. 2018, 111, 823–833. [Google Scholar] [CrossRef]
- Li, Q.; Tu, Y.; Zhu, C.; Luo, W.; Huang, W.; Liu, W.; Li, Y. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind. Crops Prod. 2017, 108, 512–519. [Google Scholar] [CrossRef]
- Li, W.; Risacher, S.L.; Gao, S.; Boehm II, S.L.; Elmendorf, J.S.; Saykin, A.J.; Initiative, A.s.D.N. Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer’s disease biomarker amyloid β1-42 in Alzheimer’s Disease Neuroimaging Initiative participants. Alzheimer Dement. Diagn. Assess. Dis. Monit. 2018, 10, 94–98. [Google Scholar] [CrossRef]
- Mendes, A.L.; Miot, H.A.; Haddad Junior, V. Diabetes mellitus and the skin. An. Bras. Dermatol. 2017, 92, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Bulut, G.; Mollica, A.; Picot-Allain, C.M.N.; Mahomoodally, M.F. In vitro and in silico evaluation of Centaurea saligna (K. Koch) Wagenitz—An endemic folk medicinal plant. Comput. Biol. Chem. 2018, 73, 120–126. [Google Scholar] [CrossRef]
- Arbat, A.A. Pharmacognostic studies of stem of Abutilon pannosum (Forst F.). Biosci. Discov. 2012, 3, 317–320. [Google Scholar]
- Gomaa, A.; Samy, M.N.; Desoukey, S.Y.; Kamel, M.S. Pharmacognostical studies of leaf, stem, root and flower of Abutilon hirtum (Lam.) Sweet. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 199–216. [Google Scholar]
- Ali, B.; Ibrahim, M.; Hussain, I.; Hussain, N.; Imran, M.; Nawaz, H.; Jan, S.; Khalid, M.; Ghous, T.; Akash, M.S.H. Pakistamide C, a new sphingolipid from Abutilon pakistanicum. Rev. Bras. Farmacogn. 2014, 24, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Baquar, S.R. Medicinal and poisonous plants of Pakistan. In Medicinal and Poisonous Plants of Pakistan; Printas: Karachi, Pakistan, 1989. [Google Scholar]
- Mohamed, I.E.T.; Nur, E.; Abdelrahman, M.E.N. The antibacterial, antiviral activities and phytochemical screening of some Sudanese medicinal plants. EurAsian J. BioSciences 2010, 4. [Google Scholar] [CrossRef]
- Gomaa, A.A.-R.; Samy, M.N.; Desoukey, S.Y.; Kamel, M.S. Phytochemistry and pharmacological activities of genus Abutilon: A review. J. Adv. Biomed. Pharm. Sci. 2018, 1, 56–74. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Mocan, A.; Macedonio, G.; Carradori, S.; Onaolapo, O.; Onaolapo, A.; Adegoke, J. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. J. Funct. Foods 2017, 35, 32–42. [Google Scholar] [CrossRef]
- Saleem, H.; Htar, T.T.; Naidu, R.; Nawawi, N.S.; Ahmad, I.; Ashraf, M.; Ahemad, N. Biological, chemical and toxicological perspectives on aerial and roots of Filago germanica (L.) huds: Functional approaches for novel phyto-pharmaceuticals. Food Chem. Toxicol. 2019, 123, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef]
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des. 2004, 18, 167–173. [Google Scholar] [CrossRef]
- Sarker, S.D.; Latif, Z.; Gray, A.I. Natural product isolation: An overview. Methods Biotechnol. 2006, 20, 36. [Google Scholar]
- Asghari, B.; Mafakheri, S.; Zarrabi, M.; Erdem, S.; Orhan, I.; Bahadori, M. Therapeutic target enzymes inhibitory potential, antioxidant activity, and rosmarinic acid content of Echium amoenum. S. Afr. J. Bot. 2018. [Google Scholar] [CrossRef]
- Srividya, A.; Dhanabal, S.; Jeevitha, S.; Varthan, V.V.; Kumar, R.R. Relationship between antioxidant properties and chemical composition of Abutilon indicum Linn. Ind. J. Pharm. Sci. 2012, 74, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Sharma, R.; Singh, H. Phytochemical and pharmacological profile of Abutilon indicum L. Sweet: A review. Int. J. Pharm. Sci. Rev. Res. 2013, 20, 120–127. [Google Scholar]
- Kailasam, K.V. Abutilon indicum L. (Malvaceae)-Medicinal Potential Review. Pharmacogn. J. 2015, 7, 330–332. [Google Scholar]
- San Miguel-Chávez, R. Phenolic antioxidant capacity: A review of the state of the art. In Phenolic Compounds-Biological Activity; InTech Open: London, UK, 2017. [Google Scholar]
- Loganayaki, N.; Siddhuraju, P.; Manian, S. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J. Food Sci. Technol. 2013, 50, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, Z.; Valizadeh, J.; Shermeh, O.A.; Akaberi, M. Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna J. Phytomed. 2015, 5, 1–9. [Google Scholar]
- Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Ozer, M.S.; Tepe, B.; Dilek, E.; Ceylan, O. Phenolic composition, antioxidant and enzyme inhibitory activities of acetone, methanol and water extracts of Clinopodium vulgare L. subsp. vulgare L. Ind. Crops Prod. 2015, 76, 961–966. [Google Scholar] [CrossRef]
- Marini, G.; Graikou, K.; Zengin, G.; Karikas, G.A.; Gupta, M.P.; Chinou, I. Phytochemical analysis and biological evaluation of three selected Cordia species from Panama. Ind. Crops Prod. 2018, 120, 84–89. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int. J. Food Prop. 2017, 20, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Sarikurkcu, C.; Uyar, P.; Aktumsek, A.; Uysal, S.; Kocak, M.S.; Ceylan, R. Crepis foetida L. subsp. rhoeadifolia (Bieb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods 2015, 17, 698–708. [Google Scholar] [CrossRef]
- Parveen, S.; Khalid, A.; Farooq, A.; Choudhary, M.I. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 2001, 58, 963–968. [Google Scholar]
- Yan, Y.-X.; Sun, Y.; Li, Z.-R.; Zhou, L.; Qiu, M.-H. Chemistry and biological activities of Buxus alkaloids. Curr. Bioact. Compd. 2011, 7, 47–64. [Google Scholar] [CrossRef]
- Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. 2003, 89, 261–264. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Sachdeva, P.; Kukkar, M. Evaluation of protective role of Abutilon Indicum in Aluminium chloride induced Alzheimer’s disease in Rats. J. Pharm. Sci. 2017, 7, 314–321. [Google Scholar]
- Asghari, B.; Salehi, P.; Farimani, M.M.; Ebrahimi, S.N. α-Glucosidase Inhibitors from Fruits of Rosa canina L. Rec. Nat. Prod. 2015, 9, 276–283. [Google Scholar]
- Orhan, N.; Hoçbaç, S.; Orhan, D.D.; Asian, M.; Ergun, F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran. J. Basic Med. Sci. 2014, 17, 426–432. [Google Scholar]
- Picot, C.; Subratty, A.H.; Mahomoodally, M.F. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro. Adv. Pharmacol. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod. 2017, 107, 518–525. [Google Scholar] [CrossRef]
- Pant, G.; Sai, K.; Babasaheb, S.; Reddy, R.; Sibi, G. In vitro α-amylase and α-glucosidase inhibitor activity of abutilon indicum leaves. Asian J. Pharm. Clin. Res. 2013, 6, 22–24. [Google Scholar]
- Neagu, E.; Roman, G.P.; Radu, G.L. Antioxidant capacity of some Symphytum officinalis extracts processed by ultrafiltration. Rom. Biotechnol. Lett. 2010, 15, 5505–5511. [Google Scholar]
- Vujanović, M.; Zengin, G.; Đurović, S.; Mašković, P.; Cvetanović, A.; Radojković, M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. S. Afr. J. Bot. 2018. [Google Scholar] [CrossRef]
Extracts | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg QE/g) |
---|---|---|
AF-M | 51.92 ± 0.80 a | 72.59 ± 0.47 a |
AF-D | 18.71 ± 0.43 b | 40.43 ± 0.32 b |
S.no | RT (min) | B. Peak (m/z) | Tentative Compound Identification | Comp. Class | Mol. Formula | Mol. Mass | DB Diff (ppm) |
---|---|---|---|---|---|---|---|
1 | 2.65 | 215.0411 | Isobergapten | Coumarin | C12 H8 O4 | 216.0411 | 5.49 |
2 | 2.67 | 165.0488 | 1-Methylxanthine | Alkaloid | C6 H6 N4 O2 | 166.0488 | 1.52 |
3 | 12.24 | 461.0807 | 5,6,7,2′-Tetrahydroxyflavone 7-glucuronide | Flavonoid | C21 H18 O12 | 462.0807 | −1.94 |
4 | 12.57 | 173.0895 | Suberic acid | Organic Acid | C8 H14 O4 | 174.0895 | −1.54 |
5 | 12.59 | 447.1011 | 6-Hydroxyluteolin 5-rhamnoside | Flavonoid | C21 H20 O11 | 448.1011 | −1.23 |
6 | 12.774 | 328.127 | 3-O-Acetylhamayne | Alkaloid | C18 H19 N O5 | 329.127 | −1.96 |
7 | 12.776 | 445.0851 | 5,7,2′-Trihydroxyflavone 7-glucuronide | Flavonoid | C21 H18 O11 | 446.0851 | −0.44 |
8 | 13.23 | 521.1375 | Chrysosplenoside D | Flavonoid | C24 H26 O13 | 522.1375 | −0.3 |
9 | 13.79 | 593.1385 | Kaempferol 3-(2′′-(Z)-p-coumaroylglucoside) | Flavonoid | C30 H26 O13 | 594.1385 | −1.91 |
10 | 15.15 | 329.241 | 5,8,12-trihydroxy-9-octadecenoic acid | Fatty acid | C18 H34 O5 | 330.241 | −1.06 |
11 | 17.70 | 293.1826 | Gingerol | Phenol | C17 H26 O4 | 294.1826 | 1.7 |
S.no | RT (min) | B. Peak (m/z) | Tentative Compound Identification | Comp. Class | Mol. Formula | Mol. Mass | DB Diff (ppm) |
---|---|---|---|---|---|---|---|
1 | 0.913 | 191.0277 | Citric acid | Organic Acid | C6 H8 O7 | 192.0277 | −3.68 |
2 | 8.578 | 173.0892 | Suberic acid | Organic Acid | C8 H14 O4 | 174.0892 | 0.01 |
3 | 11.414 | 3298.2399 | 5,8,12-trihydroxy-9-octadecenoic acid | Fatty acid | C18 H34 O5 | 330.2399 | 2.32 |
4 | 12.222 | 309.2156 | Dihydroalbocycline | Lactone | C18 H30 O4 | 310.2156 | −3.96 |
5 | 12.482 | 307.1996 | Methylgingerol | Phenol | C18 H28 O4 | 308.1996 | −2.78 |
6 | 13.106 | 293.184 | Gingerol | Phenol | C17 H26 O4 | 294.184 | −3.08 |
7 | 15.663 | 295.2357 | 12-oxo-10Z-octadecenoic acid | Fatty acid | C18 H32 O3 | 296.2357 | −1.91 |
8 | 18.277 | 277.2242 | 9Z,12Z,15E-octadecatrienoic acid | Fatty acid | C18 H30 O2 | 278.2242 | 1.2 |
9 | 18.309 | 353.2781 | 1-Linoleoyl Glycerol | Fatty acid | C21 H38 O4 | 354.2781 | −2.99 |
10 | 19.211 | 693.2344 | Sanggenon G | Isoprenylated flavonoid | C40 H38 O11 | 694.2344 | 10.12 |
11 | 19.212 | 279.2416 | 6E,9E-octadecadienoic acid | Fatty acid | C18 H32 O2 | 280.2416 | −4.92 |
12 | 20.384 | 393.1834 | cis-3-Hexenyl b-primeveroside | Glucopyranoside derivative | C17 H30 O10 | 394.1834 | 1.39 |
Extracts | Radical Scavenging Activity | Reducing Power | Total Antioxidant Capacity | Ferrous Chelating | ||
---|---|---|---|---|---|---|
DPPH (mgTE/g Extract) | ABTS (mgTE/g Extract) | FRAP (mgTE/g Extract)) | CUPRAC (mgTE/g Extract) | Phosphomolybdenum (mgTE/g Extract) | Metal Chelating (mgEDTAE/g Extract) | |
AF-M | 66.64 ± 1.42 a | 120.92 ± 1.99 a | 123.16 ± 5.73 a | 204.26 ± 0.34 a | 2.51 ± 0.13 a | 40.15 ± 0.34 b |
AF-D | 4.83 ± 0.94 b | 13.87 ± 1.32 b | 30.63 ± 0.94 b | 77.60 ± 4.50 b | 1.39 ± 0.16 b | 51.57 ± 0.25 a |
Extracts | AChE (mg GALAE/g Extract) | BChE (mg GALAE/g Extract) | Tyrosinase (mg KAE/g Extract) | Glucosidase (mmol ACAE/g Extract) | Amylase (mmol ACAE/g Extract) |
---|---|---|---|---|---|
AF-M | 3.33 ± 0.08 b | 1.67 ± 0.08 b | 129.01 ± 0.97 a | 0.60 ± 0.03 a | 1.72 ± 0.05 a |
AF-D | 4.50 ± 0.59 a | 4.55 ± 0.26 a | 112.89 ± 2.16 b | 0.65 ± 0.02 a | 1.88 ± 0.04 a |
Binding Energy/Inhibition Constant Ki | Interaction Site | |
---|---|---|
Isobergapten | ||
AChE | −6.99 (7.50 µM) | Ala 127(HB), Tyr 133(HB), Trp 86 |
BChE | −6.52 (16.53 µM) | Tyr 440(HB), Trp 82(HB), His 438, Tyr 332, Ala 328, Phe 329 |
Tyrosinase | −7.63 (2.55 µM) | Met 61, His 60, Asn 205, Val 218, Gly 216, His 208, Ala 221 |
α-amylase | −6.30 (23.92 µM) | Lys 209(HB), Leu 232, Glu 230, Val 231, His 210, Tyr 155 |
α-glucosidase | −7.33 (4.27 µM) | Arg 552(HB), Met 470, Phe 601, Asp 469, Ile 358 |
6-Hydroxyluteolin 5-rhamnoside | ||
AChE | −11.26 (5.61 nM) | Glu 202(HB), Trp 86, Tyr 337(HB), Tyr 124(HB), Trp 286, Ser 293(HB), Arg 296(HB) |
BChE | −5.90 (47.49 µM) | Ile 69(HB), Asp 70(HB), Gly 116(HB), Thr 120, Trp 82, Glu 197(HB), His 438(HB) |
Tyrosinase | −4.77 (318.76 µM) | Gly 200(HB), Arg 209, Val 218, His 208, Ala 221, His 60(HB) |
α-amylase | −4.87 (268.16 µM) | Leu 232(HB), Lys 209, His 210, Leu 166, Leu 173, His 122(HB), Tyr 82, Trp 83 |
α-glucosidase | −8.04 (1.28 µM) | Ala 234(HB), Asp 568, Arg 552(HB), Met 470, Trp 432(HB), Asp 469(HB), Asp 357(HB), Trp 565 |
3-O-Acetylhamayne | ||
AChE | −9.38 (133.91 nM) | Tyr 124(HB), Tyr 341, Tyr 337, His 447, Glu 202, Trp 86, Gly 120, Leu 130, Tyr 133(HB) |
BChE | −8.84 (329.84 nM) | Thr 122(HB), His 438, Ala 328, Trp 82 |
Tyrosinase | −7.13 (5.96 µM) | Asn 205 (HB), Phe 197, Arg 209, Gly 216, Val 217, Val 218, His 208, His 60, His 204, Ala 221 |
α-amylase | −6.37 (21.52 µM) | Asp 206(HB), Leu 173, Leu 166, Glu 230, Leu 232, Asp 297 |
α-glucosidase | −6.36 (21.87 µM) | Asp 568(HB), Trp 432, Phe 476, Trp 329, Phe 601 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, H.; Sarfraz, M.; Ahsan, H.M.; Khurshid, U.; Kazmi, S.A.J.; Zengin, G.; Locatelli, M.; Ahmad, I.; Abdallah, H.H.; Mahomoodally, M.F.; et al. Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae). Processes 2020, 8, 336. https://doi.org/10.3390/pr8030336
Saleem H, Sarfraz M, Ahsan HM, Khurshid U, Kazmi SAJ, Zengin G, Locatelli M, Ahmad I, Abdallah HH, Mahomoodally MF, et al. Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae). Processes. 2020; 8(3):336. https://doi.org/10.3390/pr8030336
Chicago/Turabian StyleSaleem, Hammad, Muhammad Sarfraz, Hafiz Muhammad Ahsan, Umair Khurshid, Syed Asif Jahanzeb Kazmi, Gokhan Zengin, Marcello Locatelli, Irshad Ahmad, Hassan H. Abdallah, Mohamad Fawzi Mahomoodally, and et al. 2020. "Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae)" Processes 8, no. 3: 336. https://doi.org/10.3390/pr8030336
APA StyleSaleem, H., Sarfraz, M., Ahsan, H. M., Khurshid, U., Kazmi, S. A. J., Zengin, G., Locatelli, M., Ahmad, I., Abdallah, H. H., Mahomoodally, M. F., Rengasamy, K. R., & Ahemad, N. (2020). Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae). Processes, 8(3), 336. https://doi.org/10.3390/pr8030336