
processes

Article

Infrared Infusion Monitor Based on Data
Dimensionality Reduction and Logistics Classifier

Xiaoli Wang , Haonan Zhou and Yong Song *

School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China;
wxl@sdu.edu.cn (X.W.); zhouhaonan@mail.sdu.edu.cn (H.Z.)
* Correspondence: songyong@sdu.edu.cn; Tel.: +86-138-6302-6640

Received: 13 February 2020; Accepted: 31 March 2020; Published: 7 April 2020
����������
�������

Abstract: This paper presents an infrared infusion monitoring method based on data dimensionality
reduction and a logistics classifier. In today’s social environment, nurses with hospital infusion work
are under excessive pressure. In order to improve the information level of the traditional medical
process, hospitals have introduced a variety of infusion monitoring devices. The current infusion
monitoring equipment mainly adopts the detection method of infrared liquid drop detection to
realize non-contact measurements. However, a large number of experiments have found that the
traditional infrared detection method has the problems of low voltage signal amplitude variation and
low signal-to-noise ratio (SNR). Conventional threshold judgment or signal shaping cannot accurately
judge whether droplets exist or not, and complex signal processing circuits can greatly increase the
cost and power consumption of equipment. In order to solve these problems, this paper proposes
a method for the accurate measurement of droplets without increasing the cost, that is, a method
combining data drop and a logistics classifier. The dimensionalized data and time information are
input into the logistics classifier to judge the drop landing. The test results show that this method can
significantly improve the accuracy of droplet judgment without increasing the hardware cost.

Keywords: drop count; logistics classifier; data dimensionality reduction

1. Introduction

In modern medicine, infusion is a very important and basic treatment. However, at present, the
hospital mainly uses manual management of infusion information, which has low efficiency and a
high labor cost. In order to improve the monitoring quality of infusion monitoring devices, researchers
have done a lot of research, but the effect of detection accuracy is not very ideal. Chen, F.G. et al.
proposed an infusion monitor based on gravity detection [1], but this type of monitor is very bulky
and inconvenient to use and susceptible to system motion. Cataldo, A. et al. proposed a TDR- and
microwave-based infusion detector solution [2], but this method has higher power consumption
and cannot be flexibly applied. The method of using camera detection proposed by [3] provides a
solution that can achieve higher precision detection, but its cost is too high, resulting in unsuitability
for large-scale promotion and application. Garmire, E. et al. have done some research on the nature of
infrared light propagation. The strong magnetic properties of infrared light and the physical properties
of refraction make it ideal for non-contact measurement of droplets, but its signal is not so stable, so
there are some difficulties in signal processing. Rachman has designed infrared infusion counters
that support wireless communication and use a voltage comparator to process the voltage signal [4].
Zhang, Y. et al. have done a similar design and connected a monostable trigger after the voltage
comparator [5]. The above two designs have proved the superiority of the infrared light detection
method, but in signal processing, the voltage comparator processing method brings large measurement
errors due to temperature change, and the tolerance of noise signal is very low. There are many filtering
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methods to solve such signal processing problems, but the filter circuit will inevitably use an extra
op amp chip, and some excellent filtering circuits even need three or more op amp chips to complete,
which increases the size, cost and power consumption of the device [6].

Cui, J. and Han, Z. have suggested that in order to ensure the safety and reliability of infusion
monitoring, wireless communication is very necessary for the device [7]. Bluetooth Low Energy (BLE) is
a very reliable communication method and it has been widely used in various embedded systems such as
indoor positioning [8], outdoor tracking [9], noninvasive pulse oximeter [10], mobile electrocardiogram
monitoring [11], and wearable health care equipment [12]. While compatible with various intelligent
communication devices, BLE can also be combined with other communication methods to form a
complex communication network to increase the size of the communication system [13]. Amano, H. et
al. have also conducted research on remote infusion monitoring employing Bluetooth [14]. However,
their design, like the design of Wen, X. [15], uses a separate single-chip microprocessor (SCM) to control
wireless communication. The microcontroller unit (MCU) of the system is implemented by another
SCM. This approach also increases the size, power consumption, and cost of the device. Therefore,
the design proposed in this paper will use the CC2540 SCM produced by TI as the only MCU of the
system and complete the control of wireless communication and system at the same time.

Logistic classifiers have been widely used in cancer gene selection [16], landslide susceptibility
analysis [17,18], children’s sitting posture classification [19], and underwater cylindrical object
detection [20], and its stability and superiority have been fully confirmed. On the premise of
improving the accuracy of monitoring and counting, the hardware circuit is simplified. The circuit
design without an operational amplifier reduces the cost of the circuit and the power consumption
of the equipment. Since this detection method needs to store some voltage waveform information
and time information, in order to reduce the complexity of the operation and improve the detection
efficiency, this paper adds the data dimensionality reduction model before the design of the logistics
classifier and adjusts the model parameters of data dimension reduction when training the logistics
classifier to achieve more accurate detection. At the same time, in order to obtain the data of the training
model and provide the communication interface for information management in practical application,
this paper uses the chip supporting BLE4.0 communication control to realize communication and
device control at the same time. The experimental results show that this method can improve the
detection accuracy of liquid drop and reduce the requirements of hardware equipment, which is
conducive to the large-scale development of intelligent infusion equipment in the future.

2. Materials and Methods

2.1. The Equipment

The propagation of infrared light requires a medium, and when the propagation medium is a
uniform medium, the propagation of infrared light is a straight line. When infrared light needs to
pass through two media with different refractive indices, its propagation path will change due to the
refraction phenomenon. The reverse saturation current of the infrared photodiode depends on the
intensity of the infrared light it receives at a fixed frequency. When the intensity changes, the reverse
saturation current of the infrared photodiode also changes. Therefore, in the process of infusion, it is
only necessary to fix a device which can emit infrared light with fixed frequency and intensity at one
end of the transparent infusion tube, such as an infrared light-emitting diode, and fix another infrared
photodiode at its relative position to detect the change of light transmission medium in the infusion
tube. When there is no drop, there is only air in the infusion tube as a light propagation medium,
and the infrared light propagates in a straight line. At this time, the infrared photodiode can receive
infrared light of a certain intensity. When the liquid drops in the infusion tube, the light propagation
medium in the infusion tube becomes air and water droplets. Due to the refraction phenomenon,
the infrared ray propagation path emitted by the infrared light-emitting diode changes, so the infrared
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ray intensity received by the infrared receiving photodiode will change. Figure 1 shows the schematic
of the infusion monitor while it is in operation.
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signal output from the infrared photodiode circuit into a digital signal through the ADC. The antenna 
section contains a balun circuit [22] to ensure that the inverted F antenna operates in a better state. 

Figure 1. Droplet counter working diagram.

Infrared light-emitting diodes require a constant current to emit a constant intensity of light.
In addition, infrared photodiodes need to convert current changes into digital signals and send them
to the processor. There are a lot of active devices that can well meet the performance requirements of
this circuit, but it will cause a significant increase in power and cost. The circuit shown in Figure 2 uses
a bipolar junction transistor (BJT) constant current drive circuit and a passive resistor–capacitor op
amp circuit to complete the relevant design requirements.
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BLE4.0 is a wireless communication method widely used in embedded devices, so this paper
chose the chip CC2540 that supports BLE4.0 as the MCU of the device. Figure 3 shows the MCU and
wireless communication circuitry of the device. The infusion monitor device needs to receive the data
sent by the host computer while transmitting the signal detected by itself to the upper computer, so the
control of the system and the realization of the wireless communication are all required. The CC2540
is a wireless RF micro-controller that can communicate wirelessly with the host computer via the
BLE4.0 communication protocol and the onboard inverted-F antenna [21] while completing system
control. The PIN10 on the CC2540 is used to control the on and off of the BJT current to achieve LED
illumination control to reduce power consumption. The PIN07 converts the analog voltage signal
output from the infrared photodiode circuit into a digital signal through the ADC. The antenna section
contains a balun circuit [22] to ensure that the inverted F antenna operates in a better state.
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The core of the infusion monitor is to judge the drop of the droplet by the characteristics of
the collected voltage signal and calculate the infusion speed and the infusion volume according to
the correlation coefficient of the droplet tube. However, since the ambient light and temperature
have a great influence on the characteristics of the infrared photodiode, a simple voltage shaping
circuit cannot output a correct counting pulse. At the same time, the influence of temperature on the
reverse saturation current of the photodiode makes the threshold judgment mode not well applied.
The environmental noise will cause a large counting error in the edge judgment mode. The complex
signal processing circuit will bring higher cost and energy consumption, which has a bad influence on
the application prospect of the device.

What we can be sure of is that there is at least one inflection point in the voltage waveform of each
droplet—of course, this does not mean that an inflection point is a droplet. Therefore, the inflection
point of the voltage waveform can be used as one of the features for further judging whether or not
there is a drop. At this point, our problem becomes judging whether the inflection point of a voltage
signal represents the landing of a droplet. This is a typical two-category problem.

2.2. The Data Reduction Method

Logistics classifiers are a very common two-classification method. However, with the general
logistics classification method, it is difficult to find a set of parameters applicable to different
environments; if the environmental conditions are compensated, it is necessary to add new sensors,
but such practice will still increase the cost and energy consumption of equipment. Considering that
the environmental change of the equipment is continuous and gradual, the rate of change of infusion
speed should be within a certain range. Therefore, the voltage characteristic and the last drop time
characteristic can help judge the environment, and this change compensates. In this way, we can
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control the accuracy error caused by environmental changes within the first drop. Once the first drop
is judged to be accurate, our equipment can work with high performance in a variety of environments.

However, the CC2540 chip used in this design has limited computing power and storage space,
and it also needs to be responsible for wireless communication control, so it is difficult for it to carry
out large-scale computation and excessive data storage.

Data dimensionality reduction is a compression of data. To correctly reduce the dimension of data,
the first thing is to ensure that the data after the dimension reduction can also carry the information
carried by the original data. Since CC2540′s computing power is not strong, the dimension reduction
method used in this paper can not be too complex. This paper uses a one-step operation to compress
the data and uses the data collected by the device to automatically train the parameters of this step.
In order to ensure that the compressed data can carry the information expressed by the original data
when training the compression operation parameters, it must be ensured that the compressed data can
be restored to the original data through a one-step operation.

Through observation and summary, it is found that the data of at least seven sampling points near
the inflection point should be used to represent the waveform changes caused by droplets. That is to
say, the voltage input signal Vin is a seven-dimensional vector. In order to simplify the calculation,
this paper uses a three-dimensional vector to represent its hidden features. So, this paper proposed the
following two steps:

Vh = f (Vin), (1)

Vout = g(Vh), (2)

The intermediate variable Vh is the feature that we want to extract, and the output signal Vout is
the vector equal to the input signal Vin. For these two operations, we do not care about the specific
form of the output signal Vout and its mapping mode g because they just reproduce the input signal.
What is really needed is Vh as the intermediate variable and its mapping method, f , because under the
premise that the intermediate variable Vh is different from the input signal Vin, the system can also
restore the input signal Vin through the intermediate variable Vh, which indicates that the intermediate
variable Vh has all the information input signal Vin carries, but it is expressed in a different form.
This shows that the intermediate variable Vh has completed the task of data dimensionality reduction.

For mapping f and mapping g, the most intuitive and efficient operation is linear transformation:

Vh = VinWh + Bh, (3)

Vout = VhWo + Bo, (4)

However, the intermediate variable Vh obtained by this method has a serious problem. Since there
is only a linear link in the operation process, when the weight matrix Wh and the offset matrix Bh are
acquired, there may be a problem that the feature expression is insufficient. So, this paper adds a
nonlinear transformation between Vh and Vout, and make its output Ṽh as the final voltage characteristic.
The expression for Ṽh is

Ṽh = ReLU(Vh) = MAX
(
Ṽh, 0

)
, (5)

Figure 4 shows the node calculation diagram after adding a nonlinear transformation, in which
the constant bias term is omitted.

The following shows how to get the parameters Wh and Bh from the data samples. First, this paper
takes the actual voltage data that needs to be extracted by the model as the sample data set and ensures
that the data volume of this data set enables us to obtain the optimal parameters. After taking the
samples, first, assign the weight matrices Wh and Wo to a set of values in a random manner and
initialize the bias matrices Bh and Bo to zero vectors. Obviously, Vout is completely different from Vin
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and has a big difference. In order to narrow the difference between the two, it is needed to define a
function to measure this difference; here, we use the mean square function:

`(i)(Wh, Bh, WO, BO) =
1
2
(V(i)

in −V(i)
out)

2
, (6)
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The constant coefficient 1/2 makes the constant coefficient after deriving the squared term is 1,
which makes the formula form in the parameter optimization process simpler. Obviously, the smaller
the error, the closer the output value Vout is to the input value Vin, and the error is zero when the two
are equal. In a given sample data set, this error is only related to the parameters of the model, so it can
be recorded as a function with the model parameters as parameters. In addition, this paper measures
the quality of the model parameters using the average of all sample errors in the sample data set:

`(Wh, Bh, WO, BO) =
1
n

n∑
i=1

`(i)(Wh, Bh, WO, BO) =
1
n

n∑
i=1

1
2
(V(i)

in −V(i)
out)

2
, (7)

In the optimization process, we want to find a set of model parameters, denoted as, to minimize
the mean square function of the training samples:

Wh
∗, Bh

∗, WO
∗, BO

∗ = argmin
Wh,Bh,WO,BO

`(Wh, Bh, WO, BO), (8)

In addition, the next step is iterate over the parameters of the model so that each iteration may
reduce the value of the mean squared function. In each iteration, a small batch of B is randomly
selected at first, which contains a fixed number of training samples. Then, the mean square error of the
derivative of the data samples with respect to the model parameters is calculated. Then, you take the
product of that with a positive number reduction as model parameters in this iteration.

After the iteration is complete, this paper takes another dataset from outside the training dataset and
names it the test dataset. The test data set is also the actual voltage data from the device. The test data is
taken as the input of the model, the mean square error function value of the model is calculated, and the
quality of the model parameters is evaluated by the magnitude of the function value. If the mean squared
function value is close to 0, the model parameters meet the requirements; otherwise, iterate again.

Logistics classifiers have a good performance in the two-class problem and have been widely
used in various fields such as medicine, the environment, and society. In this design, to complete
the task of droplet counting, the first thing to do is whether there is a drop at a point in time. For a
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sampling time point, there are two states of “with droplets” and “without droplets”. The formula for
the logistic classifier is

O = h(X) =

[
o1

o2

]
, (9)

ŷ1 =
exp(o1)

exp(o1) + exp(o2)
, (10)

ŷ2 =
exp(o2)

exp(o1) + exp(o2)
, (11)

The value of the voltage on both sides of the transfer voltage inflection point and the time interval
between it and the inflection point indicated by the droplet before are used to judge whether the
droplet exists. Therefore, the voltage characteristic signal and time interval signal are used as the input
of logistic regression, and the probability of occurrence of these two states is taken as the output of
logistic regression.

The content of the function h is trained by the sample data. The gradient descent optimization
method is still used when training the weight matrix [23,24]. The difference from the general regression
problem is that it does not need the prediction probability to be exactly equal to the label probability.
Only the predicted value of the correct result is greater than the other result, so the mean squared loss
will no longer apply. The cross-entropy loss is very suitable for measuring the difference between two
probability distributions. Therefore, this paper used the cross-entropy loss as the loss function of the
model when optimizing the weight matrix of logistic regression. The specific formula for cross-entropy
loss in this model is

H
(
y(i), ŷ(i)

)
= −

(
y(i)1 log ŷ(i)1 + y(i)2 log ŷ(i)2

)
, (12)

In the above formula, y(i) represents the tag value of the sample data, and its elements y(i)1 and

y(i)2 must be one for 0 and the other for 1; ŷ(i) is a probability prediction value obtained after the sample

data is calculated, and the elements ŷ(i)1 and ŷ(i)2 are values between 0 and 1.
The node calculation diagram of the actual application of the data dimensionality reduction model

and the logistics classifier designed in this paper is shown in Figure 5.Processes 2020, 8, x 8 of 15 
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For its briefness, efficient and accuracy. Other machine learning methods would be too
complicated for this equipment; it is hard to classify the pseudo-code in this situation, as shown in
Algorithm 1, where η is the step size, γ is the specific gravity of the sliding gradient, ε is a constant for
stability, T is a small sample size.

Algorithm 1 Data reduction algorithm

Input: Data set: D =
{
Vin

(1), Vin
(2), Vin

(3), . . . , Vin
(m)

}
Number of small batch samples: T
Training super parameters: η,γ, ε
Iteration times: I
Output: Wh and Bh
Process:

1. s0 = 0
2. for i = 1, 2, . . . , I do
3. for t = 1, 2, . . . , T do
4. Vh = Vint Wh + Bh

5. Ṽh = ReLU(Vh)

6. Vout = ṼhWo + Bo

7. L = `(Wh, Bh, WO, BO))
8. gt = grad(L)
9. st = γst−1 + (1− γ)gt � gt
10. (Wh, Bh, Wo, Bo)=(Wh, Bh, Wo, Bo) −

η
√

st+ε
� gt

11. end for
12. end for;

2.3. Logistic Classifier

When the droplet falls, the voltage signal will appear in a waveform that rises first and then falls.
According to this feature, the inflection point of the voltage signal, especially the inflection point from
rise to fall, can be used as the characteristic point. However, since there may be such a turning point in
the noise, it is not directly believed that such a turning point is a drop of water. Therefore, this paper
inputs the voltage value at the inflection point, the voltage values of the first three inversion points,
and the latter three sampling points into the model of feature extraction to obtain a three-dimensional
voltage feature vector.

In order to make the equipment adapt to the changes of the environment, it is necessary to
ensure that the logistic classifier has higher accuracy for the sample data in different environments.
However, it has been found through experiments that if only one voltage value at the inflection point
is used as the input variable, it is difficult to adapt the voltage signal in different environments through
one set of parameters. Therefore, before the current inflection point, the knee voltage characteristic
which is judged to have a drop point is used as a reference for the input signal. In addition, considering
that the droplet velocity change of the droplet should be in a certain range, the interval between the
droplets also has a certain influence on the confidence of the droplet existence, so this paper puts the
interval between the current inflection point and the previous droplet. The time interval and the time
interval of the last drop are separately inputted into the classifier as time influence factors. When the
system has not yet collected the droplets during the startup, this paper burns a set of pre-set data with
the appropriate droplet data into the program as the data of the 0th droplet. This approach can only
control the interference caused by environmental changes in the judgment of the first droplet. Once the
first droplet is judged, the system can start executing the high-precision droplet judgment algorithm.
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Summarizing the above steps, the droplet detection algorithm proposed in this paper is shown in
Figure 6.
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3. Results

The device can be installed in various scenarios that may appear in the real world to collect
and sample data near the inflection point of 50,000 voltage values, and upload the data to the upper
computer through wireless transmission by using the antenna of the device. Then, thousands of
iterations were conducted to train the dimensionality reduction model. At this point, the values of
each parameter in algorithm 1 are shown as follows:

η= 0.02; γ= 0.8; ε = 10−6; T= 5 (13)

In this part of the experiment, this paper applies the algorithm model to the actual equipment
and tests it in the real environment. However, the other text-related products are not given to data
accuracy, so compared with other products, we do not know how to start and this can only be learnt
from related industries; presently related equipment cannot meet the needs of the industry for accuracy,
and the application of our method, under the environment of various kinds of actual testing accuracy,
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meets the needs of practical application standards (the error is within 2%, or 500 mL of transfusion
bottle 10 mL of error).

The mean square loss of main training times and the change of training times are shown in
Figure 7. The x-coordinate is the training times and the y-coordinate is the loss degree and the data type
is logarithmic. In Figures 7 and 8, dark red represents the description of the original data. Bright red is
used by the tensor board to filter the original data automatically, which can better show the trend of
data loss rate.
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Figure 7. (a) The average square loss during training varies with the number of training sessions.
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In addition, the dimension-reduced data retain the characteristics of the original data.
However, at the same time, it retains the characteristics of useful signals, as well as the characteristics
of some useless signals, such as noise and interference. Therefore, in this paper, while training the
classifier, some parameters of the data dimensionality reduction model were fine-tuned to ensure that
the algorithm model can get better results. In the training process, in order to reduce the dependence
of the classifier on temperature conditions and lighting environments, this paper added voltage data
under different temperature conditions and lighting conditions to the training data set. Finally, the
training data under different drop speeds was added to reduce the dependence of the classifier on
the time characteristic parameters, so that the classification performance of the classifier can be better
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played in various environments. As the number of trainings increase, the cross-entropy loss of the
model and the correct rate of classification are shown in Figure 8. By looking at Figure 8, it can be
seen that the cross-entropy loss of the model has dropped to a very low level, and the classifier’s
classification ability has reached 100%.
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Next, test the actual test performance of the device. The test placed three infusion detection
devices by the window, indoors, and in the shade, and started counting 100 mL of liquid every hour
from 12:00 noon. Since the drop coefficient of the infusion tube is 15 drops/mL, the theoretical correct
value of the infusion detector should be 1500 drops.

In the actual collection in this paper, there are 2682 data from the shady place, 3010 data from
indoor, and 2611 data from by the window. When stratified sampling was conducted, 70% of the
sampled data is used for training and 30% for actual testing. After training, the recall rate measured on
the training set was 100%, and the accuracy rate measured on the test set was also 100%. When applied
to the actual Bluetooth device, this value decreased slightly. The data records of the test are shown in
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Table 1, and the change in accuracy is shown in Figure 9. The conclusion is that the infusion detector
has high accuracy in three environments and, at each time, is easily derived.

Table 1. Test data record.

12:00 13:00 14:00 15:00 16:00 17:00 18:00 Theory Accuracy

By the Window 1486 1493 1504 1498 1502 1496 1503 1500 99.83%
Indoor 1494 1508 1512 1488 1493 1502 1510 1500 99.93%

Shady Place 1502 1503 1495 1498 1501 1489 1497 1500 99.86%
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After the test set was constructed, two sets of test data were randomly selected in the test set.
The test results are shown in Figure 10a,b, where red is the input data (original data) and green is the
generalization of the basic expression algorithm of the results of the two graphs after reconstruction.
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4. Conclusions

The main content of this design is the optimal design of the infusion monitor. After the completion
of the basic detection method screening, this paper determined the infrared detection method to
achieve our goal. Infrared infusion monitors have existed before, but there were various problems in
the previous design, or there was a contradiction between cost and effect, which made the application
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and promotion of infrared infusion detectors very difficult. This design improves the use effect by
using data dimensionality reduction and a logistics classifier without increasing hardware cost and
power consumption. At the same time, we should be aware that this method of droplet detection and
classification may not be applicable only to the field of medical infusion.

In the next step, we will mainly research the accuracy error caused by liquids with special physical
properties and the problem of not being able to automatically identify the droplet size. Since most of
the liquids involved in the infusion are transparent solutions, colloids and turbid liquids may be rare.
Therefore, we did not sample the relevant data at the time of design. We will do some processing on
this part of the data in the next step. In addition, the models of the infusion tubes are not the same, the
volume of each drop will be different, but our model cannot automatically distinguish the droplets of
different volumes, so we will optimize the structure of the classifier to get the ability to automatically
identify the size of the drop.
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