A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Electrode Preparation
2.2.1. Titanium Surface Preparation
2.2.2. Coating SnO2–Sb2O3
2.2.3. Electrochemical Deposition Ni–Ce–PbO2
2.3. Electrode Characterization
2.4. Electrochemical Oxidation
3. Results and Discussion
3.1. Surface Morphological and Crystallographic Analysis
3.2. Electrochemical Performance Test
3.3. Electrochemical Oxidation of Cl− in Simulated Wastewater
Anode: 2OH− − 4e−→ O2 + 2H+
Cathode: 4H+ + 4e−→2H2
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guàrdia, M.D.; Guerrero, L.; Gelabert, J.; Gou, P.; Arnau, J. Sensory characterisation and consumer acceptability of small calibre fermented sausages with 50% substitution of NaCl by mixtures of KCl and potassium lactate. Meat Sci. 2008, 80, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Liu, Q.F.; Mao, J.H.; Qian, Z.H.; Jin, S.J.; Hu, J.Y.; Jin, W.L. Effect of environmental temperature on efficiency of electrochemical chloride removal from concrete. Constr. Build. Mater. 2018, 193, 189–195. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Z.; Zhang, M.; Zhang, H.; Zhang, X.; Pan, G.; Zou, J.; Xiong, Z. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system. J. Environ. Sci. (China) 2015, 32, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Ali, I.; Saleh, T.A.; Nayak, A.; Agarwal, S. Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2012, 2, 6380–6388. [Google Scholar] [CrossRef]
- Hu, S.; Ding, S.F.; Fan, Z.S. Zero release technology of desulfurization waste water in coal—Fired power plant. Clean Coal Technol. 2015, 21, 129–133. [Google Scholar]
- Liu, H.; Liu, Y.; Zhang, C.; Shen, R. Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes. J. Appl. Electrochem. 2008, 38, 101–108. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Shmychkova, O.; Luk’yanenko, T.; Velichenko, A.; Meda, L.; Amadelli, R. Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties. Electrochim. Acta 2013, 111, 332–338. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Wang, F.; Hong, P.; Wang, C.; Ouyang, X.; Zhu, C.; Wei, Y.; Hun, Y.; Fang, W. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochim. Acta 2016, 201, 240–250. [Google Scholar] [CrossRef]
- Shuangchen, M.; Jin, C.; Gongda, C.; Weijing, Y.; Sijie, Z. Research on desulfurization wastewater evaporation: Present and future perspectives. Renew. Sustain. Energy Rev. 2016, 58, 1143–1151. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, Y.; Liu, W.; Chang, L.; Li, X. Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode. J. Taiwan Inst. Chem. Eng. 2014, 45, 2975–2985. [Google Scholar] [CrossRef]
- Dai, Q.; Xia, Y.; Chen, J. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode. Electrochim. Acta 2016, 188, 871–881. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, Q.; Chen, J. Electrochemical degradation of aspirin using a Ni doped PbO2 electrode. J. Electroanal. Chem. 2015, 744, 117–125. [Google Scholar] [CrossRef]
- Yao, Y.; Teng, G.; Yang, Y.; Huang, C.; Liu, B.; Guo, L. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. Sep. Purif. Technol. 2019, 211, 456–466. [Google Scholar] [CrossRef]
- Elaissaoui, I.; Akrout, H.; Grassini, S.; Fulginiti, D.; Bousselmi, L. Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere 2019, 217, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chang, L.; Duan, X.; Bai, W.; Sui, X.; Zhao, X. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis. Electrochim. Acta 2019, 300, 53–66. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Yu, H.; Xu, A.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2-Sb/3D highly ordered macro-porous PbO2 electrode. J. Electroanal. Chem. 2018, 826, 181–190. [Google Scholar] [CrossRef]
- Santos, J.E.L.; de Moura, D.C.; da Silva, D.R. Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye. J. Solid State Electrochem. 2018, 23, 351–360. [Google Scholar] [CrossRef]
- Du, H.; Duan, G.; Wang, N.; Liu, J.; Tang, Y.; Pang, R.; Chen, Y.; Wan, P. Fabrication of Ga2O3–PbO2 electrode and its performance in electrochemical advanced oxidation processes. J. Solid State Electrochem. 2018, 22, 3799–3806. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, F.; Xu, M.; Hun, Y.; Fang, W.; Wei, Y.; Zhu, C.G. Preparation and characterization of Ce and PVP co-doped PbO2 electrode for waste water treatment. J. Taiwan Inst. Chem. Eng. 2015, 51, 135–142. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, M.; Wang, F.; Liang, X.; Wei, Y.; Hu, Y.; Zhu, C.G.; Fang, W. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta 2017, 247, 535–547. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, C.; Yang, Y.; Li, M.; Ren, B. Electrochemical removal of thiamethoxam using three-dimensional porous PbO2-CeO2 composite electrode: Electrode characterization, operational parameters optimization and degradation pathways. Chem. Eng. J. 2018, 350, 960–970. [Google Scholar] [CrossRef]
- Xie, R.; Meng, X.; Sun, P.; Niu, J.; Jiang, W.; Bottomley, L.; Li, D.; Chen, Y.; Crittenden, J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B Environ. 2017, 203, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Neodo, S.; Rosestolato, D.; Ferro, S.; De Battisti, A. On the electrolysis of dilute chloride solutions: Influence of the electrode material on Faradaic efficiency for active chlorine, chlorate and perchlorate. Electrochim. Acta 2012, 80, 282–291. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Gui, L.; Peng, R.; Yu, P. A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater. Processes 2020, 8, 466. https://doi.org/10.3390/pr8040466
Liu S, Gui L, Peng R, Yu P. A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater. Processes. 2020; 8(4):466. https://doi.org/10.3390/pr8040466
Chicago/Turabian StyleLiu, Sheng, Lin Gui, Ruichao Peng, and Ping Yu. 2020. "A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater" Processes 8, no. 4: 466. https://doi.org/10.3390/pr8040466
APA StyleLiu, S., Gui, L., Peng, R., & Yu, P. (2020). A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater. Processes, 8(4), 466. https://doi.org/10.3390/pr8040466