Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Leachate Sampling and Characterization
2.2. Preparation of Tacca leontopetaloides Powder
2.3. Preparation of Tacca leontopetaloides Biopolymer Flocculant (TBPF)
2.4. Jar Test Analysis
2.5. Analytical Analysis
2.5.1. Element and Mineral of TBPF
2.5.2. Amylose/Amylopectin Fraction
2.5.3. Total Phenolic Compound
2.5.4. Swelling Index
2.5.5. Particle Size
2.5.6. Particle Charge
2.5.7. Functional Group Analysis
2.5.8. Thermal Analysis
2.5.9. Morphological
3. Results and Discussion
3.1. Raw Leachate Characteristics
3.2. Analysis of TBPF
3.3. Effect of TBPF at Different pH Values of Leachate
3.4. Effect of Different Dosage of TBPF
3.5. Characteristic of Flocs
3.5.1. Zeta Potential and Size Distribution
3.5.2. Structural Characteristic of Flocs by FTIR
3.5.3. Thermogravimetric Profile by TGA
3.5.4. Morphological Properties by SEM
3.5.5. Final Treatment and Comparison with Other Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pillai, J. Flocculants and Coagulants: The Keys to Water and Waste Management in Aggregate Production; Reprint R-680 Nalco Company: West Diehl Road, IL, USA, 1997. [Google Scholar]
- Oyegbile, B.; Ay, P.; Narra, S. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environ. Eng. Res. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Ndabigengesere, A.; Narasiah, K.S.; Talbot, B.G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 1995, 29, 703–710. [Google Scholar] [CrossRef]
- Aswin, S.G.; Meenambal, T. Study of Starch Based Coagulant in the Treatment of Dairy Waste Water in Coimbatore, Tamil Nadu. Int. J. Eng. Res. Technol. 2014, 3, 1009–1012. [Google Scholar]
- Oladoja, N.A.; Unuabonah, E.I.; AMUDA, O.S.; Kolawole, O.M. Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. In Polysaccharides as a Green and Sustainable Resource for Water and Wastewater Treatment; Springer: Gewerbestrasse, Switzerland, 2017; pp. 13–35. ISBN 978-3-319-56598-9. [Google Scholar]
- Nourani, M.; Baghdadi, M.; Javan, M.; Bidhendi, G.N. Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: Optimization through response surface methodology (RSM). J. Environ. Chem. Eng. 2016, 4, 1996–2003. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Mehraj, I.; Jain, A.; Ray, A.P. Application of Zia Mays, Cucorbita Pepo, Carica Papaya as Natural Coagulants for Purification of River Water. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 693–696. [Google Scholar]
- Tetteh, E.K.; Rathilal, S. Application of Organic Coagulants in Water and Wastewater Treatment. In Organic Polymer; IntechOpen: London, UK, 2019; pp. 1–19. [Google Scholar]
- Hossain, M.; Mondal, I.H. Biodegradable Surfactant from Natural Starch for the Reduction of Environmental Pollution and Safety for Water Living Organism. Int. J. Innov. Res. Adv. Eng. 2014, 1, 424–433. [Google Scholar]
- APHA/AWWA/WEF Standard Methods for the Examination of Water and Wastewater. Stand. Methods 2012, 541.
- Ogbonna, A.; Adepoju, S.; Ogbonna, C.; Yakubu, T.; Itelima, J.; Dajin, V. Root tuber of Tacca leontopetaloides L. (kunze) for food and nutritional security. Microbiology 2017, 1, 7–13. [Google Scholar]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, M.S.; Aziz, H.A.; Zamri, M.F.M.A.; Suja’, F.; Abdullah, A.Z.; Basri, N.E.A. Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Manag. 2018, 74, 362–372. [Google Scholar] [CrossRef]
- Shouliang, H.U.O.; Beidou, X.I.; Haichan, Y.U.; Liansheng, H.E.; Shilei, F.A.N.; Hongliang, L.I.U. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20, 492–498. [Google Scholar]
- Cataldo, F. Successful landfill leachate wastewater treatment using the sequence of ozonation, adsorption on charcoal and photo-ozonolysis. Eur. Chem. Bull. 2018, 7, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Koocheki, A.; Taherian, A.R.; Razavi, S.M.A. Bostan Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocoll. 2009, 23, 2369–2379. [Google Scholar] [CrossRef]
- Sandhu, K.; Singh, N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007, 101, 1499–1507. [Google Scholar] [CrossRef]
- Bouterfas, K.; Mehdadi, Z.; Benmansour, D.; Khaled, M.B. Optimization of extraction conditions of some phenolic compounds from White Horehound (Marrubium vulgare L.) leaves. Int. J. Org. Chem. 2014, 4, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Environmental Quality (Sewage and Industrial Effluent) Regulation 1979, Third Schedule Environmental Quality Act. Available online: http://www.water-treatment.com.cn/resources/discharge-standards/malaysia.htm (accessed on 10 October 2019).
- Choy, S.Y.; Prasad, K.N.; Wu, T.Y.; Raghunandan, M.E.; Ramanan, R.N. Performance of conventional starches as natural coagulants for turbidity removal. Ecol. Eng. 2016, 94, 352–364. [Google Scholar] [CrossRef]
- Nwokocha, L.M.; Senan, C.; Williams, P.A. Structural, physicochemical and rheological characterization of Tacca involucrata starch. Carbohydr. Polym. 2011, 86, 789–796. [Google Scholar] [CrossRef]
- Bratby, J. Coagulation and Flocculation: With an Emphasis on Water and Wastewater Treatment. Filtr. Sep. 1980, 55–58. [Google Scholar] [CrossRef]
- Teh, C.Y.; Wu, T.Y.; Juan, J.C. Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: Treatment performance and flocs characterization. Ecol. Eng. 2014, 71, 509–519. [Google Scholar] [CrossRef]
- Vijayaraghavan, G.; Sivakumar, T.; Vimal Kumar, A. Application of Plant Based Coagulants for Waste Water Treatment. Int. J. Adv. Eng. Res. Stud. 2011, 1, 88–92. [Google Scholar]
- Aziz, H.A.; Izzati, N.; Sobri, M. Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environ. Sci. Pollut. Resour. 2015. [Google Scholar] [CrossRef] [PubMed]
- Kizil, R.; Irudayaraj, J.; Koushik, S. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Sellami, M.; Zarai, Z.; Khadhraoui, M.; Jdidi, N.; Leduc, R.; Rebah, F. ben Cactus juice as biofloculant in the coagulation-flocculation process for industrial wastewater treatment: A comparative study with polyacrylamide. Water Sci. Technol. 2014, 70, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Banana pith as a natural coagulant for polluted river water. Ecol. Eng. 2016, 95, 699–705. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.A.J.; Yusoff, M.S.; Umar, M.; Bashir, M.J.K.; Adlan, M.N. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J. Hazard. Mater. 2011, 190, 582–587. [Google Scholar] [CrossRef]
- Meraz, K.A.S.; Vargas, S.M.P.; Maldonado, J.T.L.; Bravo, J.M.C.; Guzman, M.T.O.; Maldonado, E.A.L. Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: Evaluation through zeta potential measurements. Chem. Eng. J. 2016, 284, 536–542. [Google Scholar] [CrossRef]
- Smidt, E.; Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007, 27, 268–276. [Google Scholar] [CrossRef]
- Miller, S.M.; Fugate, E.J.; Smith, J.A. Toward Understanding the Efficacy and Mechanism of Opuntia spp. as a Natural Coagulant for Potential Application in Water Treatment. Enviorn. Sci. Technol. 2008, 42, 4274–4279. [Google Scholar] [CrossRef]
- Zin, N.S.M.; Aziz, H.A.; Tajudin, S.A.A. Performance of Tapioca starch in removing suspended solid, colour, and ammonia from real partial stabilized leachate by coagualtion-flocculation method. ARPN J. Eng. Appl. Sci. 2016, 11, 2543–2546. [Google Scholar]
- Aziz, H.A.; Rahim, N.A.; Ramli, S.F.; Alazaiza, M.Y.D.; Omar, F.M.; Hung, Y.-T. Potential Use of Dimocarpus longan Seeds as a Flocculant in Landfill Leachate Treatment. Water 2018, 10, 1672. [Google Scholar] [CrossRef] [Green Version]
Parameter | This Study | DOE Discharge Standard A [19] | ||
---|---|---|---|---|
Max | Min | Average | ||
pH | 8.1 | 7.2 | 7.6 | 6.0–9.0 |
Turbidity, NTU | 275 | 82.3 | 218 | - |
COD, mg/L | 6800 | 3425 | 5150 | 50 |
TSS, mg/L | 243 | 184 | 214 | 50 |
DO, mg/L | 0.44 | 0.11 | 0.30 | - |
TDS, g/L | 0.16 | 0.15 | 0.15 | - |
Nitrate, mg/L | 227 | 100 | 269 | - |
Color, Pt/Co | 36500 | 5250 | 14201 | 100 |
Sulfate, mg/L | 650 | 200 | 341 | - |
TOC, mg/L | 650 | 50 | 442 | - |
Ammoniacal nitrogen, mg/L | 270 | 24 | 79.16 | 5 |
Aluminium, mg/L | 21.9 | 0.20 | 16.35 | - |
Cadmium, mg/L | 17.01 | 12 | 15.33 | 0.01 |
Zinc, mg/L | 14.27 | 2.88 | 10.46 | 2 |
Lead, mg/L | 18.82 | 0.63 | 12.70 | 0.1 |
Nickel, mg/L | 16.74 | 8.92 | 13.62 | 0.2 |
Zeta potential, mV | −31.62 | −30.55 | −31.08 | - |
Properties/Starch | This Study | Rice [23] | Native Sago Trunk (NST) [25] |
---|---|---|---|
pH | 6 | 7.55 | - |
Swelling index, g/g@4 h | 12.5–12.6 | - | - |
Bulk density, g/mL | 0.63 | - | - |
Gelatinization temperature, °C | 60–80 | - | - |
Thermal resistant temperature, °C | 280–340 | - | - |
Fraction amylose/amylopectin | 26:74 | 20.5:79.5 | 31:69 |
Viscosity, Pa·s | 0.037–0.04 | - | - |
Zeta potential, mV | −13.14 | −2.09 | −22.2 |
Elemental composition, % | |||
C | 34.51–35.33 | - | 38.94 |
H | 7.7 | - | 9.77 |
S | Nil | - | - |
N | Nil | - | 0.88 |
Mineral Content (mg/L) | TBPF |
---|---|
Calcium | 34 |
Cadmium | 2.1–2.19 |
Iron | 0.2–0.21 |
Magnesium | 1.0–1.51 |
Sodium | 26.20–26.25 |
Zinc | 1.41–1.42 |
Potassium | 29.28–29.30 |
Total phenolic compound | 0.38–0.39 |
Samples | Zeta Potential (mV) ± SD | Diameter (nm) ± SD |
---|---|---|
Leachate | −31.62 ± 1.8 | 94 ± 1.3 |
TBPF | −13.14 ± 1.8 | 107 ± 6.3 |
TBPF + leachate | 2.17 ± 0.91 | 337 ± 42 |
Parameter | Leachate | TBPF | Floc (TBPF + leachate) |
---|---|---|---|
Initial drying range (°C) | 25–150 | 25–150 | 25–150 |
Initial moisture loss (%) | 1.85 | 3.5 | 1.97 |
Degradation range (°C) | 150–350 and 350–530 | 200–370 | 150–350 and 350–530 |
Onset degradation temperature (°C) | 236 and 400 | 272 | 191 and 388 |
Temperature at which maximum derivative weight loss occurred (°C) | 237 and 403 | 304 | 240 and 429 |
Maximum derivative weight loss (mg/min) | 0.026 and 0.044 | 1.1 | 0.188 and 0.036 |
Amount residue left at 500 °C (%) | 83 | 31 | 55 |
Parameter | Treatment | DOE Discharge Standard A [19] | |
---|---|---|---|
Before | After | ||
pH | 7.6 | 6.7 | 6.0–9.0 |
Turbidity, NTU | 218 | 45.8–54.5 | - |
COD, mg/L | 5150 | 3820–4429 | 50 |
TSS, mg/L | 214 | 19.3–19.9 | 50 |
Color, Pt/Co | 14201 | 852–994 | 100 |
Natural Flocculant | Polymer Element | Dosage, mg/L | pH | Removal, % | References | |||
---|---|---|---|---|---|---|---|---|
Turbidity | TSS | COD | Color | |||||
TBPF | Amylose and amylopectin | 240 | 3 | 75–79 | 90.7–91 | 14–25 | 93–94 | This study |
Durio zibethinus (CDSS) | Amylose, amylopectin and epichlorohydrin | 250 | 5 | 90 | 87 | 65 | 91 | [13] |
Tapioca starch (TS) | Amylose and amylopectin | 2500 | 4 | - | 12 | - | 54.7 | [33] |
Native sago trunk starch (NSTS) | Amylose and amylopectin | 7000 | 4 | 0 | 27.9 | 1.7 | 13.1 | [25] |
Dimocarpus longan seed (LSP) | Protein | 2000 | 4 | - | 22.2 | 39.4 | 28.3 | [34] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhtar, N.S.M.; Idris, J.; Musa, M.; Andou, Y.; Ku Hamid, K.H.; Puasa, S.W. Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment. Processes 2020, 8, 527. https://doi.org/10.3390/pr8050527
Makhtar NSM, Idris J, Musa M, Andou Y, Ku Hamid KH, Puasa SW. Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment. Processes. 2020; 8(5):527. https://doi.org/10.3390/pr8050527
Chicago/Turabian StyleMakhtar, Nurul Shuhada Mohd, Juferi Idris, Mohibah Musa, Yoshito Andou, Ku Halim Ku Hamid, and Siti Wahidah Puasa. 2020. "Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment" Processes 8, no. 5: 527. https://doi.org/10.3390/pr8050527
APA StyleMakhtar, N. S. M., Idris, J., Musa, M., Andou, Y., Ku Hamid, K. H., & Puasa, S. W. (2020). Plant-Based Tacca leontopetaloides Biopolymer Flocculant (TBPF) Produced High Removal of Turbidity, TSS, and Color for Leachate Treatment. Processes, 8(5), 527. https://doi.org/10.3390/pr8050527