Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of EOP Hemicellulosic Hydrolysate
2.3. Inocula and Ethanol Fermentation
2.4. Analytical Methods
3. Results and Discussion
3.1. Composition and Detoxification of EOP Hydrolysate
3.2. Ethanol Fermentation by E. coli
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kohli, K.; Prajapati, R.; Sharma, B. Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 2019, 12, 233. [Google Scholar] [CrossRef] [Green Version]
- Miliotti, E.; Dell’Orco, S.; Lotti, G.; Rizzo, A.M.; Rosi, L.; Chiaramonti, D. Lignocellulosic ethanol biorefinery: Valorization of lignin-rich stream through hydrothermal liquefaction. Energies 2019, 12, 723. [Google Scholar] [CrossRef] [Green Version]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J.; Gallego, F.J.; López-Linares, J.C.; Castro, E. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: Valorization proposal in a biorefinery context. Spanish J. Agric. Res. 2017, 15, e0206. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Patiño, J.C.; Gómez-Cruz, I.; Romero, I.; Gullón, B.; Ruiz, E.; Brnčićc, M.; Castro, E. Ultrasound-assisted extraction as a first step in a biorefinery strategy for valorisation of extracted olive pomace. Energies 2019, 12, 2679. [Google Scholar] [CrossRef] [Green Version]
- Miranda, T.; Nogales, S.; Román, S.; Montero, I.; Arranz, J.I.; Sepúlveda, F.J. Control of several emissions during olive pomace thermal degradation. Int. J. Mol. Sci. 2014, 15, 18349–18361. [Google Scholar] [CrossRef] [Green Version]
- Manzanares, P.; Ballesteros, I.; Negro, M.J.; González, A.; Oliva, J.M.; Ballesteros, M. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renew. Energy 2020, 145, 1235–1245. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Sen, B.; Chou, Y.-P.; Wu, S.-Y.; Liu, C.-M. Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. Int. J. Hydrogen Energy 2016, 41, 4421–4428. [Google Scholar] [CrossRef]
- Kim, D. Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules 2018, 23, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geddes, C.C.; Mullinnix, M.T.; Nieves, I.U.; Peterson, J.J.; Hoffman, R.W.; York, S.W.; Yomano, L.P.; Miller, E.N.; Shanmugam, K.T.; Ingram, L.O. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 2011, 102, 2702–2711. [Google Scholar] [CrossRef] [PubMed]
- López-Linares, J.C.; Romero, I.; Cara, C.; Castro, E. Bioconversion of rapeseed straw: Enzymatic hydrolysis of whole slurry and cofermentation by an ethanologenic Escherichia coli. Energy Fuels 2016, 30, 9532–9539. [Google Scholar] [CrossRef]
- Tabata, T.; Yoshiba, Y.; Takashina, T.; Hieda, K.; Shimizu, N. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11. World J. Microbiol. Biotechnol. 2017, 33, 47. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Patiño, J.C.; Romero-García, J.M.; Ruiz, E.; Oliva, J.M.; Álvarez, C.; Romero, I.; Negro, M.J.; Castro, E. High solids loading pretreatment of olive tree pruning with dilute phosphoric acid for bioethanol production by Escherichia coli. Energy Fuels 2015, 29, 1735–1742. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Ruiz, E.; Romero, I.; Cara, C.; López-Linares, J.C.; Castro, E. Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production. Bioresour. Technol. 2017, 239, 326–335. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Romero, I.; Ruiz, E.; Cara, C.; Romero-García, J.M.; Castro, E. Design and optimization of sulfuric acid pretreatment of extracted olive tree biomass using response surface methodology. BioResources 2017, 12, 1779–1797. [Google Scholar] [CrossRef] [Green Version]
- Romero-García, J.M.; Martínez-Patiño, C.; Ruiz, E.; Romero, I.; Castro, E. Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. Bioethanol 2016, 2. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Ruiz, E.; Cara, C.; Romero, I.; Castro, E. Advanced bioethanol production from olive tree biomass using different bioconversion schemes. Biochem. Eng. J. 2018, 137, 172–181. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, S.A. Colorimetric of total phenolics with phosphomolibicphosphotungstic acid reagents. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Satari, B.; Karimi, K.; Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review. Sustain. Energy Fuels 2019, 3, 11–62. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, R.; Jaiswal, A.K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 2016, 199, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Yadav, S.K.; Kumar, J.; Ahluwalia, V. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour. Technol. 2020, 299, 122633. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Cavka, A.; Jönsson, L.J.; Hong, F. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb. Cell Fact. 2013, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Rodriguez, M.E.; York, S.W.; Preston, J.F.; Ingram, L.O. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioeng. 2000, 69, 526–536. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sunwoo, I.Y.; Jeong, G.-T.; Kim, S.-K. Detoxification of hydrolysates of the red seaweed Gelidium amansii for improved bioethanol production. Appl. Biochem. Biotechnol. 2019, 188, 977–990. [Google Scholar] [CrossRef]
- Camargo, D.; Sydney, E.B.; Leonel, L.V.; Pintro, T.C.; Sene, L. Dilute acid hydrolysis of sweet sorghum bagasse and fermentability of the hemicellulosic hydrolysate. Braz. J. Chem. Eng. 2019, 36, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Brito, P.L.; de Azevedo Ferreira, C.M.; Silva, A.F.F.; de Araújo Pantoja, L.; Nelson, D.L.; dos Santos, A.S. Hydrolysis, detoxification and alcoholic fermentation of hemicellulose fraction from palm press fiber. Waste Biomass Valorization 2018, 9, 957–968. [Google Scholar] [CrossRef]
- Díaz-Blanco, D.I.; de La Cruz, J.R.; López-Linares, J.C.; Morales-Martínez, T.K.; Ruiz, E.; Rios-González, L.J.; Romero, I.; Castro, E. Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Ind. Crops Prod. 2018, 114, 154–163. [Google Scholar] [CrossRef]
- López-Linares, J.C.; García-Cubero, M.T.; Lucas, S.; González-Benito, G.; Coca, M. Microwave assisted hydrothermal as greener pretreatment of brewer’s spent grains for biobutanol production. Chem. Eng. J. 2019, 368, 1045–1055. [Google Scholar] [CrossRef]
- Pedraza, L.; Flores, A.; Toribio, H.; Quintero, R.; Le Borgne, S.; Moss-Acosta, C.; Martinez, A. Sequential thermochemical hydrolysis of corncobs and enzymatic saccharification of the whole slurry followed by fermentation of solubilized sugars to ethanol with the ethanologenic strain Escherichia coli MS04. BioEnergy Res. 2016, 9, 1046–1052. [Google Scholar] [CrossRef]
- Almeida, J.R.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.M.S.; Carneiro, L.M.; Teixeira, J.A. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 2012, 92, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Klinke, H.B.; Thomsen, A.B.; Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Farias, D.; Maugeri Filho, F. Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem. Eng. J. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Jennings, E.W.; Schell, D.J. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour. Technol. 2011, 102, 1240–1245. [Google Scholar] [CrossRef]
- López-Linares, J.C.; Cara-Corpas, C.; Ruiz-Ramos, E.; Moya-Vilar, M.; Castro-Galiano, E.; Romero-Pulido, I. Hemicellulose-derived sugars solubilisation of rape straw. Cofermentation of pentoses and hexoses by Escherichia coli. Span. J. Agric. Res. 2015, 13, e0213. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Chamorro, J.A.; Cara, C.; Romero, I.; Ruiz, E.; Romero-García, J.M.; Mussatto, S.I.; Castro, E. Ethanol production from brewers’ spent grain pretreated by dilute phosphoric acid. Energy Fuels 2018, 32, 5226–5233. [Google Scholar] [CrossRef]
- Rojas-Chamorro, J.A.; Romero, I.; López-Linares, J.C.; Castro, E. Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment. Renew. Energy 2020, 148, 81–90. [Google Scholar] [CrossRef]
- Wilkinson, S.; Smart, K.A.; Cook, D.J. A comparison of dilute acid- and alkali-catalyzed hydrothermal pretreatments for bioethanol production from brewers’ spent grains. J. Am. Soc. Brew. Chem. 2014, 72, 143–153. [Google Scholar] [CrossRef]
Detoxification Method | Carbohydrates (g/L) | ||||
Glucose | Xylose | Galactose | Arabinose | Mannose | |
Non-detoxification | 4.63 ± 0.24 | 23.69 ± 0.45 | 4.15 ± 0.14 | 3.42 ± 0.14 | 0.89 ± 0.02 |
Overliming | 4.61 ± 0.01 | 23.60 ± 0.11 | 3.78 ± 0.23 | 2.98 ± 0.18 | 0.73 ± 0.19 |
Activated charcoal | 4.53 ± 0.06 | 23.28 ± 0.31 | 3.39 ± 0.01 | 2.75 ± 0.02 | 0.64 ± 0.06 |
Detoxification Method | Inhibitory Compounds (g/L) | ||||
Formic Acid | Acetic Acid | HMF | Furfural | Total Phenols * | |
Non-detoxification | 0.40 ± 0.05 | 5.66 ± 0.15 | 0.15 ± 0.01 | 1.95 ± 0.07 | 4.49 ± 0.20 |
Overliming | 0.39 ± 0.02 | 5.66 ± 0.01 | n.d. | 1.17 ± 0.03 | 2.47 ± 0.12 |
Activated charcoal | 0.16 ± 0.03 | 5.38 ± 0.00 | n.d. | 0.34 ± 0.02 | 1.25 ± 0.02 |
Fermentation Parameters | Hydrolysate | |
---|---|---|
Overlimed Hydrolysate | Activated Charcoal Detoxified Hydrolysate | |
Ethanol concentration (g/L) | 13.58 ± 0.16 | 14.48 ± 0.47 |
Fermentation time (h) | 120 | 20 |
Ethanol yield (g ethanol/g consumed sugar) | 0.47 | 0.46 |
* Ethanol yield (%) | 92.2 | 89.7 |
Ethanol productivity (g/L/h) | 0.11 | 0.73 |
Raw Material | Pretreatment | Detoxification Method | Microorganism | EC (g/L) | EY (%) | Reference |
---|---|---|---|---|---|---|
Palm press fiber | 121 °C, 60 min, 5% H2SO4, 30% DM | Overliming | Scheffersomyces stipitis NRRLY 7124 | 6.1 | 64.7 | [30] |
Sweet sorghum bagasse | 121 °C, 40 min, 1.75% H2SO4, 5% DM | Activated charcoal | Scheffersomyces stipitis | 22.0 | 78.4 | [29] |
Sugarcane bagasse | 145 °C, 12 min, 0.5% H2SO4, 10% DM | Evaporation | Spathaspora passalidarum Y-207907 | 17.3 | 84.5 | [37] |
Corn stover | 190 °C, 1 min, 30% DM,0.048 g H2SO4/g dry biomass | Ammonium hydroxide | Zymomonas mobilis 8b | 38.0 | 80.0 | [38] |
Rapeseed straw | 130 °C, 60 min, 2% H2SO4, 10% DM | Ion-exchange resin | Escherichia coli MS04 | 25.0 | 86.0 | [39] |
Olive tree biomass | 164 °C, 0 min, 0.89% H2SO4, 15% DM | Overliming | Escherichia coli MM160 | 14.9 | 82.4 | [19] |
Brewers’ spent grain | 155 °C, 0 min, 2% H3PO4, 12.5% DM | Non detoxification | Escherichia coli SL100 | 16.0 | 78.0 | [40] |
130 °C, 26 min, 1% H2SO4, 12.5% DM | Scheffersomyces stipitis CBS605 | 11.4 | 53.0 | [41] | ||
Escherichia coli SL100 | 17.0 | 76.0 | ||||
121 °C, 30 min, 1% HCl, 25% DM | Saccharomyces cerevisiae 479 | 13.0 | 67.0 | [42] | ||
Exhausted olive pomace | 170 °C, 0 min, 2% H2SO4, 20% DM | Overliming | Escherichia coli SL100 | 13.6 | 92.2 | This work |
Activated charcoal | 14.5 | 89.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Linares, J.C.; Gómez-Cruz, I.; Ruiz, E.; Romero, I.; Castro, E. Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli. Processes 2020, 8, 533. https://doi.org/10.3390/pr8050533
López-Linares JC, Gómez-Cruz I, Ruiz E, Romero I, Castro E. Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli. Processes. 2020; 8(5):533. https://doi.org/10.3390/pr8050533
Chicago/Turabian StyleLópez-Linares, Juan Carlos, Irene Gómez-Cruz, Encarnación Ruiz, Inmaculada Romero, and Eulogio Castro. 2020. "Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli" Processes 8, no. 5: 533. https://doi.org/10.3390/pr8050533
APA StyleLópez-Linares, J. C., Gómez-Cruz, I., Ruiz, E., Romero, I., & Castro, E. (2020). Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli. Processes, 8(5), 533. https://doi.org/10.3390/pr8050533