Terpene Based Elastomers: Synthesis, Properties, and Applications
Abstract
:1. Introduction
2. Synthesis of Terpene Based Elastomers
2.1. Myrcene
2.2. Polyterpene Elastomers, other Than Polymyrcene
3. Properties of Polyterpene Elastomers
4. Applications of Terpenes
5. Conclusions and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2006. [Google Scholar]
- Silvestre, A.J.; Gandini, A. Chapter 2 Terpenes: major sources, properties and applications. In Monomers Polym. Compos. Renew. Resour; Belgacem, M.N., Gandini, A.., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 17–38. [Google Scholar]
- Wilbon, P.A.; Chu, F.; Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 2013, 34, 8–37. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances. Prog. Polym. Sci. 2015, 48, 1–39. [Google Scholar] [CrossRef]
- Zhao, J.; Schlaad, H. Synthesis of terpene-based polymers. Adv. Polym. Sci. 2013, 253, 151–190. [Google Scholar]
- Schoenberg, E.; Marsh, H.A.; Walters, S.J.; Saltman, W.M. Polyisoprene. Rubber Chem. Technol. 1979, 52, 526–604. [Google Scholar] [CrossRef]
- Mooibroek, H.; Cornish, K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 2000, 53, 355–365. [Google Scholar] [CrossRef]
- Ouardad, S.; Deffieux, A.; Peruch, F. Polyisoprene synthesized via cationic polymerization: State of the art. Pure Appl. Chem. 2012, 84, 2065–2080. [Google Scholar] [CrossRef]
- Moad, G. RAFT (co) polymerization of the conjugated diene monomers: Butadiene, isoprene and chloroprene. Polym. Int. 2017, 66, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Behr, A.; Johnen, L. Myrcene as a natural base chemical in sustainable chemistry: A critical review. ChemSusChem 2009, 2, 1072–1095. [Google Scholar] [CrossRef]
- Marvel, C.S.; Hwa, C.C.L. Polymyrcene. J. Polym. Sci. 1960, 45, 25–34. [Google Scholar] [CrossRef]
- Still, R.H.; Cawse, J.L.; Stanford, J.L. Functionally Terminated Polymers from Terpene Monomers and Their Applications. U.S. Patent US4564718A, 14 August 1984. [Google Scholar]
- Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from renewable sources. IV. Polyurethane elastomers based on myrcene polyols. J. Appl. Polym. Sci. 1986, 31, 1549–1565. [Google Scholar] [CrossRef]
- Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from renewable sources: 5. Myrcene-based polyols as rubber-toughening agents in glassy polyurethanes. Polymer 1987, 28, 368–374. [Google Scholar] [CrossRef]
- Cawse, J.L.; Stanford, J.L.; Still, R.H. Polymers from renewable sources. III. Hydroxy-terminated myrcene polymers. J. Appl. Polym. Sci. 1986, 31, 1963–1975. [Google Scholar] [CrossRef]
- Weems, A.C.; Delle Chiaie, K.R.; Yee, R.; Dove, A.P. Selective reactivity of myrcene for vat photopolymerization 3D Printing and post fabrication surface modification. Biomacromolecules 2020, 21, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Weems, A.C.; Delle Chiaie, K.R.; Worch, J.C.; Stubbs, C.J.; Dove, A.P. Terpene- and terpenoid-based polymeric resins for stereolithography 3D printing. Polym. Chem. 2019, 10, 5959–5966. [Google Scholar] [CrossRef] [Green Version]
- Johanson, A.J.; McKennon, F.L.; Goldblatt, L.A. Emulsion polymerization of myrcene. Ind. Eng. Chem. 1948, 40, 500–502. [Google Scholar] [CrossRef]
- Sarkar, P.; Bhowmick, A.K. Synthesis, characterization and properties of a bio-based elastomer: Polymyrcene. RSC Adv. 2014, 4, 61343–61354. [Google Scholar] [CrossRef]
- Sarkar, P.; Bhowmick, A.K. Terpene-based sustainable elastomers: Vulcanization and reinforcement characteristics. Ind. Eng. Chem. Res. 2018, 57, 5197–5206. [Google Scholar] [CrossRef]
- Ritter, H.; Steffens, C.; Storsberg, J. Cyclodextrin in polymer chemistry: Kinetic studies on the free-radical polymerization of cyclodextrin-complexed styrene from homogeneous aqueous solution. ePolymers 2005, 5, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Sivola, A. The N-butyllithium initiated polymerization of myrcene and its copolymerization with styrene. Acta Polytech. Scand. Chem. Technol. Ser. 1977, 134, 7–68. [Google Scholar]
- Bolton, J.M.; Hillmyer, M.A.; Hoye, T.R. Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett. 2014, 3, 717–720. [Google Scholar] [CrossRef]
- González-Villa, J.; Saldívar-Guerra, E.; León-Gómez, R.E.D.; López González, H.R.; Infante-Martínez, J.R. Kinetics of the anionic homopolymerization of β-myrcene and 4-methylstyrene in cyclohexane initiated by n-Butyllithium. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 2157–2165. [Google Scholar]
- Satoh, K. Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym. J. 2015, 47, 527–536. [Google Scholar] [CrossRef]
- Rummersburg, A.L. Polymerized Acyclic Terpenes and Method of Production. U.S. Patent US2373419A, 10 April 1945. [Google Scholar]
- Radchenko, A.V.; Bouchekif, H.; Peruch, F. Triflate esters as in-situ generated initiating system for carbocationic polymerization of vinyl ethers, isoprene, myrcene and ocimene. Eur. Polym. J. 2017, 89, 34–41. [Google Scholar] [CrossRef]
- Hulnik, M.I.; Vasilenko, I.V.; Radchenko, A.V.; Peruch, F.; Ganachaud, F.; Kostjuk, S.V. Aqueous cationic homo- and co-polymerizations of β-myrcene and styrene: A green route toward terpene-based rubbery polymers. Polym. Chem. 2018, 9, 5690–5700. [Google Scholar] [CrossRef]
- Loughmari, S.; Hafid, A.; Bouazza, A.; Bouadili, A.E.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: Access to bio-sourced elastomers. J. Polym. Sci. A Polym. Chem. 2012, 50, 2898–2905. [Google Scholar] [CrossRef]
- Georges, S.; Touré, A.O.; Visseaux, M.; Zinck, P. Coordinative chain transfer copolymerization and terpolymerization of conjugated dienes. Macromolecules 2014, 47, 4538–4547. [Google Scholar] [CrossRef]
- Georges, S.; Bria, M.; Zinck, P.; Visseaux, M. Polymyrcene microstructure revisited from precise high-field nuclear magnetic resonance analysis. Polymer 2014, 55, 3869–3878. [Google Scholar] [CrossRef]
- Díaz de León Gómez, R.E.; Enríquez-Medrano, F.J.; Maldonado Textle, H.; Mendoza Carrizales, R.; Reyes Acosta, K.; López González, H.R.; Olivares Romero, J.L.; Lugo Uribe, L.E. Synthesis and characterization of high cis-polymyrcene using neodymium-based catalysts. Can. J. Chem. Eng. 2016, 94, 823–832. [Google Scholar] [CrossRef]
- Jia, X.; Li, W.; Zhao, J.; Yi, F.; Luo, Y.; Gong, D. Dual catalysis of the selective polymerization of biosourced myrcene and methyl methacrylate promoted by salicylaldiminato cobalt(II) complexes with a pendant donor. Organometallics 2019, 38, 278–288. [Google Scholar] [CrossRef]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Grubbs, R.B. Nitroxide-mediated radical polymerization: limitations and versatility. Polym. Rev. 2011, 51, 104–137. [Google Scholar] [CrossRef]
- Hilschmann, J.; Kali, G. Bio-based polymyrcene with highly ordered structure via solvent free controlled radical polymerization. Eur. Polym. J. 2015, 73, 363–373. [Google Scholar] [CrossRef]
- Bauer, N.; Brunke, J.; Kali, G. Controlled radical Polymerization of myrcene in bulk: Mapping the effect of conditions on the system. ACS Sustain. Chem. Eng. 2017, 5, 10084–10092. [Google Scholar] [CrossRef]
- Niedner, L.; Kali, G. Green engineered polymers: Solvent free, room-temperature polymerization of monomer from a renewable resource, without utilizing initiator. Chem. Select 2019, 4, 3495–3499. [Google Scholar] [CrossRef]
- Métafiot, A.; Kanawati, Y.; Gérard, J.-F.; Defoort, B.; Marić, M. Synthesis of β-myrcene-based polymers and styrene block and statistical copolymers by SG1 nitroxide-mediated controlled radical polymerization. Macromolecules 2017, 50, 3101–3120. [Google Scholar] [CrossRef]
- Métafiot, A.; Gagnon, L.; Pruvost, S.; Hubert, P.; Gérard, J.-F.; Defoort, B.; Marić, M. β-myrcene/isobornyl methacrylate SG1 nitroxide-mediated controlled radical polymerization: Synthesis and characterization of gradient, diblock and triblock copolymers. RSC Adv. 2019, 9, 3377–3395. [Google Scholar] [CrossRef] [Green Version]
- Trumbo, D.L. Free radical copolymerization behavior of myrcene. Polym. Bull. 1993, 31, 629–636. [Google Scholar] [CrossRef]
- Sarkar, P.; Bhowmick, A.K. Terpene based sustainable elastomer for low rolling resistance and improved wet grip application: Synthesis, characterization and properties of poly (styrene-co-myrcene). ACS Sustain. Chem. Eng. 2016, 4, 5462–5474. [Google Scholar] [CrossRef]
- Grune, E.; Bareuther, J.; Blankenburg, J.; Appold, M.; Shaw, L.; Müller, A.H.E.; Floudas, G.; Hutchings, L.R.; Gallei, M.; Frey, H. Towards bio-based tapered block copolymers: The behaviour of myrcene in the statistical anionic copolymerization. Polym. Chem. 2019, 10, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lu, J.; Su, K.; Wang, D.; Han, B. Bio-based β-myrcene-modified solution-polymerized styrene-butadiene rubber for improving carbon black dispersion and wet skid resistance. J. Appl. Polym. Sci. 2019, 136, 48159–48169. [Google Scholar] [CrossRef]
- Quirk, R.P.; Huang, T.-L. Alkyllithium-initiated polymerization of myrcene new block copolymers of styrene and myrcene. In New Monomers and Polymers; Springer: Boston, MA, USA, 1984; pp. 329–355. [Google Scholar]
- Zhang, S.; Han, L.; Ma, H.; Liu, P.; Shen, H.; Lei, L.; Li, C.; Yang, L.; Li, Y. Investigation on synthesis and application performance of elastomers with biogenic myrcene. Ind. Eng. Chem. Res. 2019, 58, 12845–12853. [Google Scholar] [CrossRef]
- Liu, B.; Li, L.; Sun, G.; Liu, D.; Li, S.; Cui, D. Isoselective 3,4- (co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: An approach to a new elastomer. Chem. Commun. 2015, 51, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Gleason, A.H.; Nelson, J.F. Synthetic Drying Oils by Copolymerization of Diolefins with Myrcene. U.S. Patent 2829065, 1 April 1958. [Google Scholar]
- Li, W.; Zhao, J.; Zhang, X.; Gong, D. Capability of PN3-type cobalt complexes toward selective (Co-)polymerization of myrcene, butadiene, and isoprene: Access to biosourced polymers. Ind. Eng. Chem. Res. 2019, 58, 2792–2800. [Google Scholar] [CrossRef]
- Laur, E.; Welle, A.; Vantomme, A.; Brusson, J.M.; Carpentier, J.F.; Kirillov, E. Stereoselective copolymerization of styrene with terpenes catalyzed by an Ansa-lanthanidocene catalyst: Access to new syndiotactic polystyrene-based materials. Catalysts 2017, 7, 361. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.; Bhowmick, A.K. Terpene based sustainable methacrylate copolymer series by emulsion polymerization: Synthesis and structure-property relationship. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 2639–2649. [Google Scholar] [CrossRef]
- Métafiot, A.; Gérard, J.-F.; Defoort, B.; Marić, M. Synthesis of β-myrcene/glycidyl methacrylate statistical and amphiphilic diblock copolymers by SG1 nitroxide-mediated controlled radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 860–878. [Google Scholar] [CrossRef]
- Sahu, P.; Sarkar, P.; Bhowmick, A.K. Design of a molecular architecture via a green route for an improved silica reinforced nanocomposite using bioresources. ACS Sustain. Chem. Eng. 2018, 6, 6599–6611. [Google Scholar] [CrossRef]
- Sarkar, P.; Bhowmick, A.K. Green approach toward sustainable polymer: Synthesis and characterization of poly-(myrcene-co-dibutyl itaconate). ACS Sustainable Chem. Eng. 2016, 4, 2129–2141. [Google Scholar] [CrossRef]
- Sibaja, B.; Sargent, J.; Auad, M.L. Renewable thermoset copolymers from tung oil and natural terpenes. J. Appl. Polym. Sci. 2014, 131, 41155–41162. [Google Scholar] [CrossRef]
- Zhou, C.; Wei, Z.; Lei, X.; Li, Y. Fully biobased thermoplastic elastomers: Synthesis and characterization of poly(L-lactide)-b-polymyrcene-b-poly(L-lactide) triblock copolymers. RSC Adv. 2016, 6, 63508–63514. [Google Scholar] [CrossRef]
- Shibata, M.; Asano, M. Biobased thermosetting resins composed of terpene and bismaleimide. J. Appl. Polym. Sci. 2013, 129, 301–309. [Google Scholar] [CrossRef]
- Kobayashi, S.; Lu, C.; Hoye, T.R.; Hillmyer, M.A. Controlled polymerization of a cyclic diene prepared from the ring-closing metathesis of a naturally occurring monoterpene. J. Am. Chem. Soc. 2009, 131, 7960–7961. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.; Espinosa, L.M.; Meier, M.A.R. Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 2011, 44, 7253–7262. [Google Scholar] [CrossRef]
- Veazey, R.L. Polyalloocimene and Method for the Preparation Thereof. U.S. Patent 4694059, 15 September 1987. [Google Scholar]
- Marvel, C.S.; Kiener, P.E.; Vessel, E.D. Polyalloöcimene. J. Am. Chem. Soc. 1959, 81, 4694–4697. [Google Scholar] [CrossRef]
- Marvel, C.S.; Kiener, P.E. Polyalloöcimene II. J. Polym. Sci. 1962, 61, 311–331. [Google Scholar] [CrossRef]
- Sahu, P.; Bhowmick, A.K. Redox emulsion polymerization of terpenes: Mapping the effect of the system, structure, and reactivity. Ind. Eng. Chem. Res. 2019, 58, 20946–20960. [Google Scholar] [CrossRef]
- Sahu, P.; Sarkar, P.; Bhowmick, A.K. Synthesis and characterization of a terpene-based sustainable polymer: Poly-alloocimene. ACS Sustain. Chem. Eng. 2017, 5, 7659–7669. [Google Scholar] [CrossRef]
- Newmark, R.A.; Majumdar, R.N. 13C-NMR spectra of cis-polymyrcene and cis-polyfarnesene. J. Polym. Sci. A Polym. Chem. 1988, 26, 71–77. [Google Scholar] [CrossRef]
- Gergely, A.L.; Turkarslan, O.; Puskas, J.E.; Kaszas, G. The role of electron pair donors in the carbocationic copolymerization of isobutylene with alloocimene. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4717–4721. [Google Scholar] [CrossRef]
- Gergely, A.L.; Puskas, J.E. Synthesis and characterization of thermoplastic elastomers with polyisobutylene and polyalloocimene blocks. J. Polym. Sci. A Polym. Chem. 2015, 53, 1567–1574. [Google Scholar] [CrossRef]
- Roh, J.H.; Roy, D.; Lee, W.K.; Gergely, A.L.; Puskas, J.E.; Roland, C.M. Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers. Polymer 2015, 56, 280–283. [Google Scholar] [CrossRef]
- Kantor, J.; Puskas, J.E.; Kaszas, G. The effect of reaction conditions on the synthesis of thermoplastic elastomers containing polyalloocimene, polyisobutylene and tapered blocks. Chin. J. Polym. Sci. 2019, 37, 884–890. [Google Scholar] [CrossRef]
- Zhang, D.; Hillmyer, M.A.; Tolman, W.B. Catalytic polymerization of a cyclic ester derived from a “cool” natural precursor. Biomacromolecules 2005, 6, 2091–2095. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lee, Y.; Tolman, W.B.; Hillmyer, M.A. Thermoplastic elastomers derived from menthide and tulipalin A. Biomacromolecules 2012, 13, 3833–3840. [Google Scholar] [CrossRef]
- Wanamaker, C.L.; O’Leary, L.E.; Lynd, N.A.; Hillmyer, M.A.; Tolman, W.B. Renewable-resource thermoplastic elastomers based on polylactide and polymenthide. Biomacromolecules 2007, 8, 3634–3640. [Google Scholar] [CrossRef]
- Shin, J.; Martello, M.T.; Shrestha, M.; Wissinger, J.E.; Tolman, W.B.; Hillmyer, M.A. Pressure-sensitive adhesives from renewable triblock copolymers. Macromolecules 2011, 44, 87–94. [Google Scholar] [CrossRef]
- Wanamaker, C.L.; Bluemle, M.J.; Pitet, L.M.; O’Leary, L.E.; Tolman, W.B.; Hillmyer, M.A. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers. Biomacromolecules 2009, 10, 2904–2911. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.; Choi, W.J.; Seo, H.; Kim, P.; Kim, G.-J.; Kim, Y.-W.; Shin, J. Thermoset elastomers derived from carvomenthide. Biomacromolecules 2015, 16, 246–256. [Google Scholar] [CrossRef]
- Lowe, J.R.; Martello, M.T.; Tolman, W.B.; Hillmyer, M.A. Functional biorenewable polyesters from carvone-derived lactones. Polym. Chem. 2011, 2, 702–708. [Google Scholar] [CrossRef]
- Jang, J.; Park, H.; Jeong, H.; Mo, E.; Kim, Y.; Yuk, J.S.; Choi, S.Q.; Kim, Y.-W.; Shin, J. Thermoset elastomers covalently crosslinked by hard nanodomains of triblock copolymers derived from carvomenthide and lactide: Tunable strength and hydrolytic degradability. Polym. Chem. 2019, 10, 1245–1257. [Google Scholar] [CrossRef]
- Grau, E.; Mecking, S. Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene. Green Chem. 2013, 15, 1112–1115. [Google Scholar] [CrossRef] [Green Version]
- Gautrot, J.E.; Zhu, X.X. Main-Chain Bile Acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization. Angew. Chem. Int. Edit. 2006, 45, 6872–6874. [Google Scholar] [CrossRef] [PubMed]
- Gautrot, J.E.; Zhu, X.X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks. J. Mater. Chem. 2009, 19, 5705–5716. [Google Scholar] [CrossRef]
- Choi, S.W.; Ritter, H. Novel polymerization of myrcene in aqueous media via cyclodextrin-complexes. ePolymers 2007, 45, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wei, Z.; Wang, Y.; Yu, Y.; Leng, X.; Li, Y. Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. Eur. Polym. J. 2018, 99, 477–484. [Google Scholar] [CrossRef]
- Sahu, P.; Bhowmick, A.K. Sustainable self-healing elastomers with thermoreversible network derived from biomass via emulsion polymerization. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 738–751. [Google Scholar] [CrossRef]
- Mangeon, C.; Thevenieau, F.; Renard, E.; Langlois, V. Straightforward route to design biorenewable networks based on terpenes and sunflower oil. ACS Sustainable Chem. Eng. 2017, 5, 6707–6715. [Google Scholar] [CrossRef]
- Cawse, J.L.; Stanford, J.L. Rubber-toughened polyurethane network and composite materials. Polymer 1987, 28, 356–367. [Google Scholar] [CrossRef]
- Lamparelli, D.H.; Paradiso, V.; Della Monica, F.; Proto, A.; Guerra, S.; Giannini, L.; Capacchione, C. Toward more sustainable elastomers: Stereoselective copolymerization of linear terpenes with butadiene. Macromolecules 2020, 53, 1665–1673. [Google Scholar] [CrossRef]
- Yoo, T.; Henning, S.K. Synthesis and characterization of farnesene-based polymers. Rubber Chem. Technol. 2017, 90, 308–324. [Google Scholar] [CrossRef]
- Leavell, M.D.; McPhee, D.J.; Paddon, C.J. Developing fermentative terpenoid production for commercial usage. Curr. Opin. Biotechnol. 2016, 37, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Bass, S. What Are Terpenes? Outlining their History, Properties, and Functions. Available online: http://www.herbanindigo.com/cannabis/p/what-are-terpenes (accessed on 15 May 2019).
- Hazan, Z. Therapeutic Uses of Mastic Gum Fractions. U.S. Patent WO2010100650A2, 10 September 2010. [Google Scholar]
- Hazan, Z.; Amselem, S. Compositions of Polymeric Myrcene. U.S. Patent WO2010100651A2, 10 September 2010. [Google Scholar]
- Wypych, G. Handbook of Surface Improvement and Modification; ChemTec Publishing: Toronto, ON, Canada, 2018. [Google Scholar]
- Rubulotta, G.; Quadrelli, E.A. Terpenes: A valuable family of compounds for the production of fine chemicals. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 215–229. [Google Scholar]
- United States Department of Agriculture. USDA BioPreferred Program Guidelines How to Display and Promote the USDA Biobased Product Label, June 2016. Available online: https://www.biopreferred.gov/BPResources/files/BioPreferredBrandGuide.pdf (accessed on 1 June 2019).
- Papageorgiou, G.Z. Thinking green: Sustainable polymers from renewable resources. Polymers 2018, 10, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A. Sustainable polymers: Opportunities for the next decade. ACS Macro Lett. 2013, 2, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Schneiderman, D.K.; Hillmyer, M.A. 50th anniversary perspective: There is a great future in sustainable polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- Herbert, K.M.; Schrettl, S.; Rowan, S.J.; Weder, C. 50th anniversary perspective: Solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50, 8845–8870. [Google Scholar] [CrossRef]
- Hazan, Z.; Adamsky, K.; Lucassen, A.C.B. Use of Isolated Fractions of Mastic Gum for Treating Optic Neuropathy. U.S. Patent WO2016142936A1, 15 September 2016. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, P.; Bhowmick, A.K.; Kali, G. Terpene Based Elastomers: Synthesis, Properties, and Applications. Processes 2020, 8, 553. https://doi.org/10.3390/pr8050553
Sahu P, Bhowmick AK, Kali G. Terpene Based Elastomers: Synthesis, Properties, and Applications. Processes. 2020; 8(5):553. https://doi.org/10.3390/pr8050553
Chicago/Turabian StyleSahu, Pranabesh, Anil K Bhowmick, and Gergely Kali. 2020. "Terpene Based Elastomers: Synthesis, Properties, and Applications" Processes 8, no. 5: 553. https://doi.org/10.3390/pr8050553
APA StyleSahu, P., Bhowmick, A. K., & Kali, G. (2020). Terpene Based Elastomers: Synthesis, Properties, and Applications. Processes, 8(5), 553. https://doi.org/10.3390/pr8050553