Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology
Abstract
:1. Introduction
- It requires less resources (experiments, time, material, man hours, etc.) to get meaningful information;
- The estimates of effects of each factor are more precise;
- Interaction between factors can be estimated systematically; and
- Experimental information in a larger region of the factor space could be obtained.
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Alkaline Pre-Treatment of Empty Fruit Bunches (EFB) Fibres
2.3. Catalytic Biomass Hydrogenation
2.4. EG Yield Quantification
2.5. Design of Experiment, Statistical Analysis and Optimization
- Determine goal of each factor and response to be either maximize, minimize or in range;
- Set upper and lower limit for each factor and response;
- Set importance weightage for each factor and response (1 being least important, 5 being paramount).
3. Results and Discussion
3.1. Empty Fruit Bunches (EFB) Characterisation
3.2. Design of Experiments
3.3. Response Surface Analysis and Analysis of Variance (ANOVA)
261.31AD − 0.02BC – 3.85BD + 17.95CD – 0.01B2 – 0.04C2 + 1299.77D2
3.4. EG Yield Optimization and Verification
- Mass ratio for Raney nickel to tungstic acid = 0.96;
- Temperature = 240 °C;
- Pressure = 24.8 bar(g); and
- Mass ratio of tungstic acid to EFB = 0.10.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Zheng, M.; Ji, N.; Wang, A.; Shu, Y.; Wang, H.; Wang, X.; Chen, J.; Inventor. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Assignee. Method of Preparing Ethylene Glycol from Cellulose. U.S. Patent No. US7960594 B2, 24 October 2008. [Google Scholar]
- Tai, Z.; Zhang, J.; Wang, A.; Zheng, M.; Zhang, T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem. Commun. 2012, 48, 7052–7054. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 2013, 46, 1377–1386. [Google Scholar] [CrossRef]
- Zheng, M.; Pang, J.; Wang, A.; Zhang, T. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization. Chin. J. Catal. 2014, 35, 602–613. [Google Scholar] [CrossRef]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J. Cover picture: direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. 2008, 47, 8321–8534. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, A.; Ji, N.; Pang, J.; Wang, X.; Zhang, T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 2010, 3, 63–66. [Google Scholar] [CrossRef]
- Ji, N.; Zheng, M.; Wang, A.; Zhang, T.; Chen, J. Nickel promoted tungsten carbide catalysts for cellulose conversion: effect of preparation methods. ChemSusChem 2012, 5, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Tai, Z.; Zhang, J.; Wang, A.; Pang, J.; Zheng, M.; Zhang, T. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid. ChemSusChem 2013, 6, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Shu, Y.; Stottlemyer, A.L.; Chen, J. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal. Today 2009, 147, 77–85. [Google Scholar] [CrossRef]
- Xiao, Z.; Jin, S.; Pang, M.; Liang, C. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem. 2013, 15, 891–895. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, A.; Li, C.; Zheng, M.; Zhang, T. Selective production of 1, 2-propylene glycol from Jerusalem Artichoke Tuber using Ni-W2C/AC catalysts. ChemSusChem 2012, 5, 932–938. [Google Scholar] [CrossRef]
- Zhao, G.; Zheng, M.; Zhang, J.; Wang, A.; Zhang, T. Catalytic conversion of concentrated glucose to ethylene glycol with semi-continuous reaction system. Ind. Eng. Chem. Res. 2013, 52, 9566–9572. [Google Scholar] [CrossRef]
- Luo, C.; Wang, S.; Liu, H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew. Chem. Int. Ed. 2007, 46, 7636–7639. [Google Scholar] [CrossRef]
- Deng, T.; Liu, H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt–SnOx/Al2O3catalysts. Green Chem. 2013, 15, 116–124. [Google Scholar] [CrossRef]
- Xu, G.; Wang, A.; Pang, J.; Zheng, M.; Yin, J.; Zhang, T. Remarkable effect of extremely dilute H2SO4 on the cellulose conversion to ethylene glycol. Appl. Catal. A Gen. 2015, 502, 65–70. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, S.; Yang, H.; Yin, H.; Li, G. Catalytic conversion of cellulose for efficient ethylene glycol production and insights into the reaction pathways. RSC Adv. 2016, 6, 77499–77506. [Google Scholar] [CrossRef]
- Baek, I.G.; You, S.J.; Park, E.D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3. Bioresour. Technol. 2012, 114, 684–690. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, C.; Liu, H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew. Chem. Int. Ed. 2012, 51, 3249–3253. [Google Scholar] [CrossRef]
- Gu, M.; Shen, Z.; Yang, L.; Dong, W.; Kong, L.; Zhang, W.; Peng, B.; Zhang, Y. Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/β-zeolite catalyst. Sci. Rep. 2019, 9, 11938. [Google Scholar] [CrossRef]
- Ooms, R.; Dusselier, M.; Geboers, J.A.; Op de Beeck, B.; Verhaeven, R.; Gobechiya, E.; Martens, J.A.; Redl, A.; Sels, B.F. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: High productivity and reaction network elucidation. Green Chem. 2014, 16, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Wang, T.; Zheng, M.; Deng, W.; Pang, J.; Wang, A.; Wang, X.; Zhang, T. Versatile nickel–lanthanum(III) catalyst for direct conversion of cellulose to glycols. ACS Catal. 2015, 5, 874–883. [Google Scholar] [CrossRef]
- You, S.J.; Baek, I.G.; Park, E.D. Direct conversion of cellulose into polyols over Pt/CsxH3-xPW12O40. Clean Technol. 2013, 19, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Ding, D.; Shao, Y.; Liu, X.; Lu, G.; Wang, Y. Production of ethylene glycol and its monoether derivative from cellulose. ACS Sustain. Chem. Eng. 2014, 2, 2355–2362. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, L.; Peng, S.; Peng, F.; Yu, H.; Yang, J. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renew. Energy 2012, 37, 192–196. [Google Scholar] [CrossRef]
- Beine, A.K.; Hausoul, P.J.C.; Palkovits, R. Production of ethylene and propylene glycol from lignocellulose. In Chemicals and Fuels from Bio-Based Building Blocks; Chapter 10; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 245–270. [Google Scholar] [CrossRef]
- Li, H.; Fang, Z.; Smith, R.L.; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 2016, 55, 98–194. [Google Scholar] [CrossRef]
- Czitrom, V. One-Factor-at-a-time versus designed experiments. Am. Statist. 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Asadi, N.; Zilouei, H. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour. Technol. 2017, 227, 335–344. [Google Scholar] [CrossRef]
- Yasin, Y. Optimization of bio catalytic biodiesel production from pomace oil using response surface methodology. Fuel Process Technol. 2012, 99, 97–102. [Google Scholar] [CrossRef]
- Yatish, K.V.; Lalithamba, H.S.; Suresh, S.B.; Arun, S.B.; Vinay Kumar, P. Optimization of scum oil biodiesel production by using response surface methodology. Process Saf. Environ. 2016, 102, 667–672. [Google Scholar] [CrossRef]
- Silva, G.F.; Camargo, F.L.; Ferreira, A.L.O. Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process Technol. 2011, 92, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Renita, A.A.; Amarnath, J.D.; Sivasubramanian, S. A study on the optimization of algal biodiesel reaction parameters using response surface methodology. Int. J. Chem. Eng. Appl. 2012, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Kanimozhi, B.; Prabhavathi, P.; Dinesh Kumar, S.; Santhanam, P.; Abirami, M.; Karthik Sundaram, S.; Manikandan, A. A method of Central Composite Design (CCD) for optimization of biodiesel production from chlorella vulgaris. J. Pet. Environ. Biotechnol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Zawawi, A.Z.; Gaik, L.P.; Sebran, N.H.; Othman, J.; Hussain, A.S. An Optimisation study on biomass delignification process using alkaline wash. Biomass Conv. Bioref. 2017, 8, 59–68. [Google Scholar] [CrossRef]
- Vaughn, N.; Helseth, T. Design Expert 8 [Software]; Stat-Ease, Inc.: Minneapolis, MN, USA, 2016; Available online: https://www.statease.com/ (accessed on 31 August 2012).
- Nieves, D.C.; Karimi, K.; Horvath, I.S. Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Ind. Crops Prod. 2011, 34, 1097–1101. [Google Scholar] [CrossRef] [Green Version]
- Whitcomb, P.J.; Larntz, K. The role of pure error on normal probability plots. In Proceedings of the Transactions of the 46th Annual Quality Congress, Milwaukee, WI, USA, 18–20 May 1992. [Google Scholar]
- Akhtar, J.; Teo, C.L.; Lai, L.W.; Hassan, N.; Idris, A.; Aziz, R.A. Factors affecting delignification of oil palm empty fruit bunch by microwave-assisted dilute acid/alkali pre-treatment. Bioresources 2015, 10, 588–596. [Google Scholar]
- Muryanto, E.T.; Haznan, A.; Agung, C.; Effendi, T.C.; Yanni, S. Alkaline delignification of oil palm empty fruit bunch using black liquor from pretreatment. Proced. Chem. 2015, 16, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Kim, Y.S.; Oh, K.K. Fractionation and delignification of empty fruit bunches with low reaction severity for high sugar recovery. Bioresour. Technol. 2013, 146, 176–183. [Google Scholar] [CrossRef]
- Choi, W.I.; Park, J.Y.; Lee, J.P.; Oh, Y.K.; Park, Y.C.; Kim, J.S.; Park, J.M.; Kim, C.H.; Lee, J.S. Optimization of NaOH catalyzed steam pretreatment of empty fruit bunch. Biotechnol. Biofuels 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Hamisan, A.F.; Aziz, S.A.; Kamaruddin, K.; Md Shah, U.K.; Shahab, N.; Hassan, M.A. Delignification of oil palm empty fruit bunch using chemical and microbial pretreatment methods. Int. J. Agric. Res. 2009, 4, 250–256. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, H. Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy Fuels 2010, 24, 1963–1971. [Google Scholar] [CrossRef]
- Kruse, A.; Dahmen, N. Water—A magic solvent for biomass conversion. J. Supercrit. Fluid. 2015, 96, 36–45. [Google Scholar] [CrossRef]
- Pang, J.; Zheng, M.; Sun, R.; Song, L.; Wang, A.; Wang, X.; Zhang, T. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass. Bioresour. Technol. 2015, 175, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Sebran, N.H.; Gaik, L.P.; Hussain, A.S. Structural analysis on the effect of base-catalysed delignification process parameters on palm oil empty fruit bunches fibres using glycome profiling. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 458, p. 012070. [Google Scholar] [CrossRef]
Factor | Variables | Low | Centre Point | High | −Alpha | +Alpha |
---|---|---|---|---|---|---|
A | Raney Nickel to tungstic acid ratio | 0.80 | 1.00 | 1.20 | 0.66 | 1.34 |
B | Temperature, °C | 230 | 240 | 250 | 223 | 257 |
C | Pressure, bar(g) | 18.0 | 21.5 | 25.0 | 15.6 | 27.4 |
D | Tungstic acid to EFB ratio | 0.060 | 0.080 | 0.100 | 0.046 | 0.114 |
Component | Untreated EFB Ref [35] | Pre-Treated EFB |
---|---|---|
Cellulose (wt.%) | 41.26 | 66.97 |
Hemicellulose (wt.%) | 26.76 | 14.91 |
Lignin (wt.%) | 24.25 | 11.08 |
Al (wt.%) | <0.000001 | 0.001300 |
Zn (wt.%) | <0.000001 | 0.011300 |
K (wt.%) | 0.959316 | 0.013200 |
P (wt.%) | 0.025927 | 0.003200 |
Mg (wt.%) | 0.060639 | 0.032000 |
Fe (wt.%) | 0.031442 | 0.023400 |
Ca (wt.%) | 0.063611 | 0.590000 |
Cu (wt.%) | <0.000001 | 0.000090 |
S (wt.%) | 0.270000 | 0.000010 |
Na (wt.%) | Not reported | 0.059300 |
Moisture content (wt.%) | 5.17 | 6.16 |
Ash Content (wt.%) | 2.68 | 0.81 |
Run | Factor A | Factor B | Factor C | Factor D | Response |
---|---|---|---|---|---|
Raney Ni:H2WO4 | Temperature | Pressure | H2WO4:EFB | EG Yield (wt.%) | |
0.80–1.20 | 230–250 °C | 18–25 bar(g) | 0.060–0.100 | ||
1 | 0.66 | 240 | 21.5 | 0.080 | 21.31 |
2 | 1.00 | 240 | 21.5 | 0.080 | 22.95 |
3 | 1.00 | 240 | 15.6 | 0.080 | 19.23 |
4 | 0.80 | 250 | 25.0 | 0.100 | 26.00 |
5 | 0.80 | 250 | 18.0 | 0.100 | 19.20 |
6 | 1.00 | 240 | 27.4 | 0.080 | 24.36 |
7 | 1.00 | 257 | 21.5 | 0.080 | 21.56 |
8 | 1.20 | 230 | 25.0 | 0.100 | 24.56 |
9 | 1.34 | 240 | 21.5 | 0.080 | 25.19 |
10 | 1.20 | 250 | 18.0 | 0.060 | 10.73 |
11 | 1.00 | 240 | 21.5 | 0.114 | 26.54 |
12 | 1.20 | 250 | 25.0 | 0.060 | 23.40 |
13 | 1.00 | 240 | 21.5 | 0.046 | 22.76 |
14 | 0.80 | 230 | 18.0 | 0.060 | 15.59 |
15 | 1.00 | 240 | 21.5 | 0.080 | 22.87 |
16 | 1.20 | 230 | 18.0 | 0.100 | 20.86 |
17 | 1.00 | 223 | 21.5 | 0.080 | 18.79 |
18 | 0.80 | 230 | 25.0 | 0.060 | 19.48 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | Remarks |
---|---|---|---|---|---|
Linear | 0.0019 | 0.0241 | 0.6455 | 0.4407 | Suggested |
2FI | 0.7463 | 0.0198 | 0.5475 | - | - |
Quadratic | 0.0227 | 0.0697 | 0.9845 | - | Suggested (Chosen in this study) |
Cubic | 0.0697 | - | 0.9996 | - | Aliased |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 138.02 | 13 | 10.62 | 112.13 | 0.0012 | Significant |
A: Raney Nickel to Tungstic acid | 7.53 | 1 | 7.53 | 79.50 | 0.0030 | |
B: Temperature | 3.84 | 1 | 3.84 | 40.52 | 0.0078 | |
C: Pressure | 16.31 | 1 | 16.31 | 172.28 | 0.0010 | |
D: Tungstic acid to EFB | 7.14 | 1 | 7.14 | 75.45 | 0.0032 | |
AB | 0.4646 | 1 | 0.4646 | 4.91 | 0.1136 | |
AC | 6.10 | 1 | 6.10 | 64.40 | 0.0040 | |
AD | 2.40 | 1 | 2.40 | 25.33 | 0.0151 | |
BC | 1.00 | 1 | 1.00 | 10.59 | 0.0473 | |
BD | 1.30 | 1 | 1.30 | 13.75 | 0.0341 | |
CD | 5.66 | 1 | 5.66 | 59.79 | 0.0045 | |
B2 | 13.08 | 1 | 13.08 | 138.15 | 0.0013 | |
C2 | 2.78 | 1 | 2.78 | 29.33 | 0.0123 | |
D2 | 3.13 | 1 | 3.13 | 33.09 | 0.0104 | |
Residual | 0.2841 | 3 | 0.0947 | |||
Lack of Fit (LOF) | 0.2809 | 2 | 0.1404 | 43.88 | 0.1061 | Not significant |
Pure Error | 0.0032 | 1 | 0.0032 | |||
Cor Total | 138.31 | 16 | ||||
Std. Dev. | 0.3077 | R2 | 0.9979 | |||
Mean | 22.04 | Adjusted R2 | 0.9890 | |||
C.V. % | 1.40 | Adequate Precision | 38.8853 |
Factor/Response | Goal | Lower Limit | Upper Limit | Importance |
---|---|---|---|---|
A:Raney Nickel to tungstic acid | is in range | 0.8 | 1.2 | 3 |
B:Temperature | is in range | 230 | 250 | 3 |
C:Pressure | is in range | 18 | 25 | 3 |
D:Tungstic acid to EFB | is in range | 0.06 | 0.1 | 3 |
Response: EG yield | maximize | 15.59 | 26.54 | 5 |
Pressure Vessel Size | Number of Runs | EG Yield, wt.% | ΔEG Yield, wt.% |
---|---|---|---|
1.5-L | 5 | 28.74 ± 2.13 | +1.85 |
18.75-L | 5 | 25.64 ± 3.04 | −1.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Law, P.G.; Sebran, N.H.; Zawawi, A.Z.; Hussain, A.S. Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology. Processes 2020, 8, 588. https://doi.org/10.3390/pr8050588
Law PG, Sebran NH, Zawawi AZ, Hussain AS. Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology. Processes. 2020; 8(5):588. https://doi.org/10.3390/pr8050588
Chicago/Turabian StyleLaw, Poh Gaik, Noor Haida Sebran, Ashraf Zin Zawawi, and Azlan Shah Hussain. 2020. "Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology" Processes 8, no. 5: 588. https://doi.org/10.3390/pr8050588
APA StyleLaw, P. G., Sebran, N. H., Zawawi, A. Z., & Hussain, A. S. (2020). Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology. Processes, 8(5), 588. https://doi.org/10.3390/pr8050588