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Abstract: Ajmalicine is one of the most popular antihypertensive drugs obtained from the root
barks of Cathranthus roseus (L.) G. Don and Rauvolfia serpentine (L.) Benth. ex Kurz. It has also
potential antimicrobial, cytotoxic, central depressant and antioxidant activities. As the demand for
the alkaloid is significantly high, metabolic engineering approaches are being tried to increase its
production in both homologous and heterologous systems. The metabolic engineering approach
requires knowledge of the metabolic regulation of the alkaloid. For understanding the metabolic
regulation, fluxomic analysis is important as it helps in understanding the flux of the alkaloid
through the complicated metabolic pathway. The present study was conducted to analyse the flux
analysis of the ajmalicine biosynthesis, using a genetically encoded Fluorescent Resonance Energy
Transfer FRET-based nanosensor for ajmalicine (FLIP-Ajn). Here, we have silenced six important
genes of terpenoid indole alkaloid (TIA), namely G10H, 10HGO, TDC, SLS, STR and SDG, through
RNA-mediated gene silencing in different batches of C. roseus suspension cells, generating six silenced
cell lines. Monitoring of the ajmalicine level was carried out using FLIP-Ajn in these silenced
cell lines, with high spatial and temporal resolution. The study offers the rapid, high throughput
real-time measurement of ajmalicine flux in response to the silenced TIA genes, thereby identifying
the regulatory gene controlling the alkaloid flux in C. roseus suspension cells. We have reported that
the STR gene encoding strictosidine synthase of the TIA pathway could be the regulatory gene of the
ajmalicine biosynthesis.
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1. Introduction

Ajmalicine is one of the most important monoterpenoid indole alkaloids. It is isolated from the
root barks of Catharanthus roseus (L.) G. Don and Rauvolfia serpentina (L.) Benth. ex Kurz, where its
synthesis occurs through the terpenoid indole alkaloid (TIA) pathway [1–3]. It is a well-known
antihypertensive drug, and has also been utilized in the treatment of cardiovascular disorders [1,4].
Interestingly, it is also known to exhibit antimicrobial [5], cytotoxic [6], antioxidant [7], and central
depressant activities [8]. Moreover, as it increases the cerebral blood flow, leading to improved oxygen
bioavailability, it possesses intriguing potential in the treatment of Alzheimer’s disease, because the
reduction of cerebral blood flow is a common symptom associated with Alzheimer’s disease and
different forms of dementia [9,10]. Due to its high pharmaceutical significance, significant interest has
been recorded in increasing the production of ajmalicine [1,11,12]. However, the in planta production
of the terpene alkaloids is low, and chemical synthesis is unavailable. Moreover, the chemical extraction
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of these alkaloids is also influenced by the harvest season, environmental conditions, and local
habitat [13]. Therefore, different production systems based on plant cell and tissue culture have
been examined, utilizing the methods of elicitation and metabolic engineering in both homologous
(same plant cells/tissues) and heterologous systems (different plant or microbial system) [14–22].

Although the elucidation of the terpenoid indole alkaloid (TIA) pathway involved in the
biosynthesis of ajmalicine has been the area of intensive research, there is still room for the
exploration of the regulatory gene controlling the ajmalicine flux. Knowledge of the metabolic
pathway regulation is of critical importance prior to the plant metabolic engineering approach, as it
avoids the need for repetitive and tedious designing, construction, and testing of the production
outcomes. Moreover, the measurement of the metabolite concentration in the bulk population of
cells requires multiple reaction-based, time-consuming, and expensive chromatographic techniques,
which further slows down the process [23]. Therefore, two critical needs stand in the path of enhanced
metabolite production, i.e., the rapid analysis and the identification of the regulatory gene. A potential
solution to the problem at hand is the fluxomics study, which promises to identify the regulatory
element affecting the flux of the metabolite in a metabolic pathway. Although techniques like mass
spectrometry and nuclear magnetic resonance have contributed their potentiality in the flux study,
the limitations of invasiveness, and poor spatial and temporal resolution, remain on the counter. One of
the best approaches to address these limitations is the development of genetically encoded FRET-based
nanosensors. These nanosensors retain the ability to non-invasively measure the concentration of
a metabolite with high spatial and temporal resolution, and provide a high throughput evaluation
of the system in consideration. Therefore, it can enable rapid testing of a large number of metabolic
pathway designs. Another exciting feature of these nanosensors is the capability to monitor the
metabolite level in real-time with single cell resolution, which can enhance the understanding of the
complex interconnected metabolic pathways.

The present study undertakes the task of contributing better understanding of the metabolic
regulation of the ajmalicine synthesis by identifying the regulatory gene controlling the ajmalicine flux
through the FRET-based nanosensor for ajmalicine (FLIP-Ajn). The FLIP-Ajn was developed in our
previous study [24]. An overview of the strategy involved in identification of the regulatory switch
through FLIP-Ajn is given in Figure 1.
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A set of six transgenic cell lines of C. roseus was developed in this study through the
RNA-mediated gene silencing strategy. Each cell line harboured one silenced gene of the TIA pathway,
namely Geraniol-10-Hydroxylase (G10H), 10-hydroxygeraniol oxidoreductase (10HGO), Tryptophan
decarboxylase (TDC), secologanin synthase (SLS), strictosidine synthase (STR) and strictosidine-O-beta-
D-glucosidase (SDG). Real-time monitoring of the flux of ajmalicine was carried out in these cell lines
using the FLIP-Ajn. The study promises to identify the regulatory gene controlling the synthesis of
ajmalicine and, hence, gives an opportunity to enhance the production and yield of ajmalicine.

2. Materials and Methods

2.1. Development of the TIA Pathway Silenced Lines

The mRNA of the C. roseus seedling was used for reverse-transcription PCR (Polymerase Chain
Reaction) amplification of the 5′ end of Geraniol 10 Hydroxylase (G10H) ORF, 10-hydroxygeraniol
oxidoreductase (10HGO) ORF, Tryptophan decarboxylase (TDC) ORF, secologanin synthase (SLS) ORF,
strictosidine synthase (STR) ORF, and strictosidine-O-beta-D-glucosidase (SDG) ORF. The amplified
sequences showed no sequence homology to any known Catharanthus roseus gene. The forward
and reverse primers included attB1 and attB2 sites, respectively, as listed in Supplementary
Table S1. The amplified PCR products were cloned in pDONR 222 (Gateway donor vector) in a BP
clonase-mediated recombination reaction for the generation of entry clones, namely, pDONR222_G10H,
pDONR222_10HGO, pDONR222_TDC, pDONR222_SLS, pDONR222_STR and pDONR222_SDG.
These entry clones were further inserted into pHELLSGATE12 (Addgene, Watertown, MA, USA),
a binary gateway vector that silences genes in plants through intron containing hairpin RNA.
The reaction was mediated by LR clonase, and a set of six gene-silencing pG10Hi, p10HGOi, pTDCi,
pSLSi, pSTRi, and pSDGi expression clones were generated as described in the earlier study [25].

The recombinant construct of the FLIP-Ajn (pEarleyGate100_ECFP_CYP2D6_Venus) for the
real-time visualization of ajmalicine flux in plant cells was employed here. The Agrobacterium tumefaceins
EHA105 strain was co-transformed with the pEarleyGate100_ECFP_CYP2D6_Venus and gene-silencing
plasmids pG10Hi, p10HGOi, pTDCi, pSLSi, pSTRi, and pSDGi separately, through electroporation,
as described earlier [25]. Separate batches for co-transformations were conducted for
pEarleyGate100_ECFP_CYP2D6_Venus and one gene-silencing plasmid at a time, yielding six bacterial
cell lines transformed with pEarleyGate100_ECFP_CYP2D6_Venus and pG10Hi/p10HGOi/pTDCi/pSL
Si/pSTRi/pSDGi.

2.2. Generation of Transgenic C. roseus Cell Lines

To determine the regulatory gene involved in the biosynthesis of ajmalicine through the genetically
encoded FRET based nanosensor for ajmalicine, a set of six transgenic cell lines of C. roseus were
generated. The suspension culture of Symphytum officinale was also established as per the method
reported earlier [26], and used as control.

2.3. Explant

For the growth of callus, leaf explants were selected in the study. Fresh leaves were collected from
the C. roseus plants grown in the herbal garden of Jamia Hamdard, New Delhi. The collected leaves
were washed under tap water consistently for 20 min, after which they were sterilized by the treatment
of 0.5% cetrimide for 10 min. The leaves were also given treatment with 0.1% HgCl2 for 5 min in the
following step. Next, the explants were soaked in 70% alcohol for 1 min, and finally, the alcohol was
removed by washing the explants with sterilized, double distilled water for 1 min. The callus was
produced in culture tubes containing Murashige and Skoog (MS) medium, supplemented with 0.5 µM2,
4-dichlorophenoxyacetic acid (2, 4-D). The MS medium also contained 3% sucrose and 0.62% agar,
and the pH was set to 5.65. The culturing was performed at 25 ± 2 ◦C in the culture room.
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2.4. Transformation and Co-Cultivation

The method of transformation and co-cultivation was followed as per our previous
study [24]. A single colony of A. tumefaceins EHA105, co-transformed with the nanosensor construct
(pEarleyGate100_ECFP_CYP2D6_Venus) and the gene-silencing plasmid (pG10Hi/p10HGOi/pT
DCi/pSLSi/pSTRi/pSDGi), was inoculated in Luria Bertani (LB) media containing 50 mg/L spectinomycin,
50 mg/L kanamycin and 50 mg/L rifampicin. Separate transformation and co-cultivation batches were
carried out for the different gene-silencing constructs. The transformed cells were allowed to grow in an
incubator shaker (150 rpm) at 28 ◦C for 36 h. After that, the callus lines maintained in the culture room
were collected and dipped in the agrobacterial suspension culture. The culture was then kept in an
incubator shaker at 28 ◦C (150 rpm) till optical density (O.D.600) reached 0.6. Further, the calluses were
dried by placing onto a sterile filter paper, and thereafter co-cultured with the Agrobacterial suspension
culture containing MS and 100 µM acetosyringone at 25 ± 2 ◦C for 3 days. In the following steps, the
calluses were washed with 500 mg/L cefotaxime and distilled water to remove the excess bacteria.
Finally, the explants were dried and transferred to a selection medium comprised of MS, 0.5 µM 2,
4-D, 50 mg/mL spectinomycin, 10 mg/L BASTA®, and 250 mg/L cefotaxime. Further, the antibiotic
and cefotaxime were removed from the medium, and the culture was kept at 25 ± 2 ◦C under a 16 h
photoperiod. Six sets of cell lines harboring the nanosensor (pEarleyGate100_ECFP_CYP2D6_Venus)
and each gene-silencing plasmid (pG10Hi/p10HGOi/pTDCi/pSLSi/pSTRi/pSDGi) were generated in
the study.

2.5. Elicitation

The elicitation was performed with 14 day-old suspension culture of each cell line in a fresh
medium, supplemented with 50 mM β-CD (Sigma-Aldrich, St. Louis, MO, USA) and 100 µM Methyl
Jasmonate (Sigma-Aldrich, St. Louis, MO, USA), as described in previous study [12]. The cells from all
the six cell lines were separately washed with cold distilled water and then transferred to separate
elicitation mediums. The culturing was performed in dark at 25 ◦C with constant shaking at 110 rpm.

2.6. FRET Analysis

The elicited plant cell culture containing the transiently expressed FLIP-Ajn (pEarleyGate100_E
CFP_CYP2D6_Venus) and the gene-silencing plasmid (pG10Hi/p10HGOi/pTDCi/pSLSi/pSTRi/pSDGi)
was pipetted in a 96 well microplate for FRET analysis. The Phosphate Buffer Saline (PBS) buffer was
used as a control. The analysis was performed in a microplate reader wherein the donor fluorophore
(ECFP) of the nanosensor was excited at 430 nm, and the Venus/ECFP emission intensity ratio was
recorded at every 5 min interval for 40 min. The analysis was conducted in triplicates, and the
filters used for the excitation of ECFP and emission of ECFP and Venus were 430/20 nm, 485/20 nm,
and 540/20 nm, respectively.

The elicited culture was also observed under a confocal microscope (Leica, Germany) using
a 10× objective. The FRET was recorded using 430 nm excitation, and a spectral scan was collected.
Imaging was performed by 430 nm excitation filter and two emission filters, i.e., 485 nm (ECFP) and
540 nm (Venus). The Venus/ECFP emission intensity ratio was recorded by using LAS-AF software
(Leica, Germany). The cell culture of Symphytum officinale was used as control.

2.7. PCR Analysis

Firstly, the genomic DNA was isolated from the frozen suspension cells of the C. roseus. The genomic
DNA isolation was performed with 0.5 g of the cells using DNeasy Plant Mini Kit (Qiagen, Germany).
Amplification of the G10H, 10HGO, TDC, SLS, STR, SDG and CYP2D6 genes was carried out using
gene-specific primers in a thermal cycler (Bio-Rad, Hercules, CA, USA) to confirm the transformation
of the genes (Supplementary Figures S1 and S2). Expressions of these genes were analysed using
real time PCR. Total RNA was extracted from the suspension cells using RNeasy Plant Mini Kit
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(Qiagen, Germany). The synthesized synthesized complementary DNA (cDNA) were then subjected
to Reverse Transcription Polymerase Chain Reaction (RT-PCR) analysis with SYBR Green RT-PCR
Reagents Kit (Life Technologies, Thermo Fisher, Waltham, MA, USA) and LightCycler® Software
4.1 (Roche Life Science, Penzberg, Germany). The cycle with signal higher than the background
and 10× standard deviation was determined as the threshold cycle (CT). The house-keeping gene,
Catharanthus roseus 40S ribosomal protein S9 (Rps9), was used for normalizing the expression levels
in all samples. As mentioned above, different samples of the transformed suspension cells were taken
at every 20 min interval for 130 min, and the mRNA expression levels of the silenced genes were
analyzed to investigate the temporal expression of TIA pathway genes in C. roseus suspension cells,
and further lay the foundation for understanding the RNA silencing process.

3. Results

3.1. Gene Silencing and Validation

Six silenced cell lines were generated through Agrobacterium tumefaceins-mediated transformation,
wherein the transformed gene-silencing plasmids, pG10Hi, p10HGOi, pTDCi, pSLSi, pSTRi and
pSDGi, suppressed the TIA pathway genes G10H, 10HGO, TDC, SLS, STR, and SDG, respectively.
The cell lines were also successfully transformed with the recombinant construct of FLIP-Ajn
(pEarleyGate100_ECFP_CYP2D6_Venus) for real-time visualization of ajmalicine flux [24]. The PCR
analysis of genomic DNA isolated from frozen culture cells validated the transformation of the G10H,
10HGO, TDC, SLS, STR, SDG and CYP2D6 (Figure S1). The relative mRNA expression levels of the
TIA pathway genes at varying intervals showed the significant silencing of all the genes around 50 min
after transformation. The gene expressions levels of all the genes were found high in the first 10 min of
transformation. However, at 30 min the expression level sharply declined, and further continued to
decline till 70 min, after which stability in the expression level was seen. Therefore, it was determined
that the RNA silencing in the suspension cells was completely achieved at 70 min of transformation with
the gene-silencing plasmids. Although the initial expression level of all the genes differed, the induction
of RNA silencing resulted in similar expression levels beyond 50 min (Figure S3). Real-time RT-PCR
analysis showed that the Geraniol-10-Hydroxylase, 10-hydroxygeraniol oxidoreductase, Tryptophan
decarboxylase, secologanin synthase, strictosidine synthase, and strictosidine-O-beta-D-glucosidase
genes were down-regulated in the plant cell lines harboring pG10Hi-, p10HGOi-, pTDCi-, pSLSi-,
pSTRi-, and pSDGi-silencing plasmids (Figure 2).

3.2. Analysis of Ajmalicine Dynamics

The FRET analysis in the C. roseus transgenic cell lines by the FLIP-Ajn nanosensor helped in
the study of the ajmalicine dynamics, and in the identification of the regulatory gene controlling flux
of ajmalicine. Ratiometric analysis of different FRET-based nanosensors for real-time monitoring of
the flux of maltose [27], glucose [28] and vitamin B12 [29], glutamate [30] and ribose [31] showed
that the FRET ratio (acceptor/donor emission intensity) corresponded to the substrate concentration
in the presence of the target substrate. In the present study, the FRET analysis conducted in the
microplate reader showed high Venus/ECFP emission intensity (FRET) ratio change relative to the
control in the transgenic cell lines harbouring pG10Hi, p10HGOi, pTDCi, pSLSi, and pSDGi (Figure 3).
A FRET ratio change of 0.35, 0.33, 0.29, 0.27 and 0.20 was observed for the cells transformed with
pG10Hi, p10HGOi, pTDCi, pSLSi, and pSDGi, respectively. A similar trend of increased FRET ratio
change within the time length of 40 min was observed in all the cell lines. In the first 25 min, a
constant increase in the FRET ratio was observed, which saturated after 25 min. On the contrary,
insignificant FRET ratio change was observed in the pSTRi-harbouring cells. The pSTRi line graph
showed a constant reading near 0.70, similar to control. Since, no change in the FRET ratio was
obtained in the pSTRi-containing cell line, during the entire duration of analysis, it can be inferred
that the silencing of STR negatively regulated the synthesis of ajmalicine. As the FRET ratio reports



Processes 2020, 8, 589 6 of 12

the change in the substrate (ajmalicine) concentration, it can be concluded that the pSTRi cells had
little to no traces of ajmalicine. Further, the FRET ratio change was found similar to that of the control
(PBS buffer), therefore, it can be suggested that STR has a high probability of controlling or regulating
the ajmalicine synthesis.
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Figure 2. Real-time reverse transcriptase PCR of the mRNA translating tryptophan decarboxylase
(TDC), geraniol 10-hydroxylase (G10H), 10-hydroxygeraniol (10HGO), strictosidine β-glucosidase
(SDG), strictosidine synthase (STR) and secologanin synthase (SLS). Levels of the silenced lines are
normalized to 100% in the wild type line. The gene expression level of the silenced lines relative to the
wild type is represented here. Values are mean of three independent replicates. Vertical bars show the
standard deviation.
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represent increased FRET ratio in the cells harbouring silenced G10H, 10HGO, TDC, SLS and SDG, that
reached saturation after 25 min. No significant change in the FRET ratio is observed in the silenced STR
cells. Values are mean of three independent replicates. Vertical bars represent the standard error.
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The transient expression of the nanosensor in single cells harboring pG10Hi/p10HG
Oi/pTDCi/pSLSi/pSTRi/pSDGi-silencing plasmids was studied with the help of a confocal microscope
for 20 min (Figure 4). The FRET ratio reported the change in the concentration/flux of ajmalicine
in response to the silenced genes. In the different elicited cells subjected to FRET analysis, no change
in the FRET ratio was observed for the first 2.5 min, and the FRET ratio value was recorded near 0.73.
Maximum FRET ratio change of ~0.3 was recorded for the pSLSi-containing cell. A sharp increase in the
FRET ratio, i.e., 0.83, was observed after 2.5 min, which gradually increased to reach the maximum
value (1.03) at 20 min. In the p10HGOi-harbouring cell, FRET ratio change increased to 0.82 after
2.5 min. Gradual increase in the FRET ratio was recorded, which reached the maximum (1.02) at 20 min.
Next, the FRET ratio change of ~0.26 was recorded for pSDGi-containing cell. A similar trend of sharp
increase in the FRET ratio (0.81) was observed that gradually increased to 0.99 in the 20 min analysis.
Similar increase in FRET ratio was also observed for the pG10Hi-harbouring cell, i.e., a rise in the
FRET ratio value was seen near 0.83 after 2.5 min, which gradually increased to 0.97. The FRET ratio
change of ~0.24 was recorded in this case. Further, the pTDCi-containing cell showed comparatively
lower FRET ratio change: ~0.20 in the entire duration of analysis. The first increase in the FRET ratio
(0.79) was observed after 2.5 min, which reached 0.92 in 20 min. In contrast, insignificant FRET ratio
change was observed for the cell harbouring pSTRi. The FRET ratio value ~0.73 was observed in the
20 min of analysis. The observation was similar to that of the control, i.e., the S. officinale cell (devoid of
ajmalicine). The result suggests the important role of STR in the synthesis of ajmalicine.
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represent the standard error.

4. Discussion

The biosynthesis of terpenoid indole alkaloids in Catharanthus roseus follows an intricate
pathway, comprising a highly compartmentalized system. The metabolic pathway genes have
been previously characterized and the function was elucidated. Geraniol 10-hydroxylase encoded by
G10H is a cytochrome P450 monooxygenase (CYP76B6) enzyme and involves oxidation of geraniol to
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10-hydroxygeraniol [32]. The 10-hydroxygeraniol oxidoreductase encoded by 10HGO catalyzes the
oxidation of 10-hydroxygeraniol to produce aldehyde 10-oxogeraniol [33–36]. Later, in the pathway
secologanin synthase (SLS) catalyzes the production of iridoid secologanin [37]. The tryptophan
decarboxylase (TDC), a pyridoxal phosphate-dependent enzyme of the indole pathway, decarboxylates
tryptophan and produces tryptamine. This is believed to be the connecting link between primary
and secondary metabolism [38]. Further, the central monoterpenoid indole alkaloid (MIA) precursor,
strictosidine, is formed by the catalysis of strictosidine synthase (STR) [39]. In the following step,
strictosidine is deglycosylated to produce a series of intermediates, including strictosidine aglycone,
catalyzed by the enzyme strictosidine β-glucosidase (SDG). The steps further lead to the formation
of various monoterpenoid indole alkaloids including ajmalicine [40]. An overview of ajmalicine
biosynthesis is given in Figure 5.
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Figure 5. Overview of the biosynthesis of ajmalicine in C. roseus. (AS, anthranilate synthase;
CPR, cytochrome P450 reductase; DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase;
DXS, 1-deoxy-D-xylulose-5-phosphate synthase; G10H, geraniol 10-hydroxylase; GES, geraniol synthase;
GPPS, geranyl diphosphate synthase; IDI, isopentenyl diphosphate isomerase; LAMT, loganic acid
O-methyltransferase; SDG, strictosidine glucosidase; SLS, secologanin synthase; STR, strictosidine
synthase; TDC, tryptophan decarboxylase).

Our study was aimed at suppressing the key genes (G10H, 10HGO, TDC, SLS, STR, SDG) of the TIA
pathway through RNA-mediated gene silencing in cell suspension culture, and studying the response
of ajmalicine flux through a FLIP-Ajn nanosensor. The FLIP-Ajn nanosensor was earlier developed
and characterized by our group [24]. Six silenced cell lines were generated in the study. Each cell line
suppressed one key gene of the TIA pathway (Figure 2). Real-time monitoring of the ajmalicine level
in the silenced cell lines by the FLIP-Ajn nanosensor showed an order of the possible regulatory role of
the key TIA pathway genes. The FRET ratio was established as the criterion to identify the regulatory
role of the genes. The FLIP-Ajn comprises of a ligand binding protein (CYP2D6) sandwiched between
a FRET pair (ECFP and Venus). In the presence of ajmalicine, the CYP2D6 undergoes conformational
changes and brings the FRET pair closer to each other. The excitation of ECFP at 430 nm caused the
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fluorescence resonance energy transfer to take place, and energy was transferred to Venus. This transfer
of energy led a change in the emission intensities of ECFP and Venus, i.e., reduced emission intensity
of ECFP and increased emission intensity of Venus. The FLIP-Ajn follows a ratiometric analysis, and
measures the ajmalicine concentration/flux as a function of Venus/ECFP emission intensity (FRET)
ratio. As observed from Figures 3 and 4, little to no change in the FRET ratio was observed in the
STR-silenced lines. The order of the response of different genes was STR > TDC > G10H > SDG >

10HGO > SLS. Therefore, it has been suggested that the down-regulation of STR caused little to no
production of ajmalicine in the elicited cell culture, due to which the FLIP-Ajn reported a fixed FRET
ratio (Figures 3 and 4). Moreover, in all the other cell lines (G10H, 10HGO, TDC, SDG and SLS),
increase in the FRET ratio was observed after 2.5 min, which suggests that the synthesis of ajmalicine
started after 2.5 min of elicitation with β -CD and MJ (Figure 4).

Earlier different plant metabolic engineering strategies have been employed to identify the
rate-limiting steps of TIA production in order to enhance the production of ajmalicine. These studies
dealt with the over-expression of genes or transcription factors in hairy roots or cell suspension
culture [3,20,22,41,42]. However, none of the strategies could monitor the level of production of
the ajmalicine in real-time and in single cells. The FLIP-Ajn nanosensor monitored the single cell
dynamics of ajmalicine in real-time in the silenced cell lines elicited with MJ and β-CD. Previous
study showed that the elicitation through β-CD and MJ is associated with the upregulation of G10H,
SLS, STR and TDC, and reported an increased ajmalicine production [18]. The regulatory role of
STR as described in our study is in line with the earlier findings [20,43–45]. Moreover, our findings
were also consistent with the other gene expression studies. As reported earlier, the over-expression
of TDC enhanced the production of tryptophan, and no change in TIA accumulation was seen [46].
Further, over-expression of TDC was also reported to increase the production of tryptamine [47]. The
transgenic hairy root lines of C. roseus, designed to over-express G10H alone, and the key transcription
factor ORCA3 genes alongwith G10H, resulted in the production of more catharanthine than in
the control [48]. The earlier findings, related to the transcriptomic analysis of C. roseus hairy roots
overexpressing anthranilate synthase (AS) in the indole pathway, elucidated the complex regulation of
the TIA pathway. The study showed that the overexpression of AS affected the metabolic network and
the multiple signal transduction pathways [49]. Moreover, multigenic interactions were also assessed
earlier [19]. It has been shown that the co-overexpression of MEP (Methylerythritol 4-phosphate)
pathway genes, DXR and MECS or DXR/MECS and STR, is related to an increased yield of ajmalicine.
Therefore, the multigenic interactions cannot be ruled out, and future similar experiments encompassing
the entire known pathway genes could help in better understanding the metabolic regulation. The
present study, however, validates one of the possible gene candidates, STR, as the regulatory element
in ajmalicine synthesis, and presents a better picture of the complex metabolic regulation.

Fluxomic analysis of the ajmalicine biosynthesis in transgenic C. roseus cell lines, by the use of
a FRET-based genetically encoded nanosensor (FLIP-Ajn), revealed that the order of the regulatory
activity of the key genes of the TIA pathway was STR > TDC > G10H > SDG > 10HGO > SLS.
The strictosidine synthase was found to be the potential regulatory gene in controlling the ajmalicine
biosynthesis. The information of the regulatory gene of the ajmalicine biosynthesis pathway can be
applied to a metabolic engineering approach to improve the production of ajmalicine. The work
represents the first report of identification of the regulatory gene involved in the synthesis of ajmalicine
through a FRET-based nanosensor. This study provided a cost-effective, rapid and high throughput
strategy to study metabolic regulation. Further, the multigenic interaction involved in the TIA
pathway regulation, along with the future discovery of new pathway genes, can also be studied by the
present method.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/5/589/s1,
Figure S1. PCR amplified DNA fragments of the TIA pathway genes, Figure S2. PCR amplified DNA fragments of
the CYP2D6, Figure S3. Temporal mRNA expression levels of the silenced genes in transformed suspension cells.
Values are mean of three independent replicates. Vertical bars show the standard deviation. Table S1: Primers
used in the amplification of the TIA pathway genes.
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